alpar@1
|
1 |
/* MFASP, Minimum Feedback Arc Set Problem */
|
alpar@1
|
2 |
|
alpar@1
|
3 |
/* Written in GNU MathProg by Andrew Makhorin <mao@gnu.org> */
|
alpar@1
|
4 |
|
alpar@1
|
5 |
/* The Minimum Feedback Arc Set Problem for a given directed graph
|
alpar@1
|
6 |
G = (V, E), where V is a set of vertices and E is a set of arcs, is
|
alpar@1
|
7 |
to find a minimal subset of arcs, which being removed from the graph
|
alpar@1
|
8 |
make it acyclic.
|
alpar@1
|
9 |
|
alpar@1
|
10 |
Reference:
|
alpar@1
|
11 |
Garey, M.R., and Johnson, D.S. (1979), Computers and Intractability:
|
alpar@1
|
12 |
A guide to the theory of NP-completeness [Graph Theory, Covering and
|
alpar@1
|
13 |
Partitioning, Minimum Feedback Arc Set, GT9]. */
|
alpar@1
|
14 |
|
alpar@1
|
15 |
param n, integer, >= 0;
|
alpar@1
|
16 |
/* number of vertices */
|
alpar@1
|
17 |
|
alpar@1
|
18 |
set V, default 1..n;
|
alpar@1
|
19 |
/* set of vertices */
|
alpar@1
|
20 |
|
alpar@1
|
21 |
set E, within V cross V,
|
alpar@1
|
22 |
default setof{i in V, j in V: i <> j and Uniform(0,1) <= 0.15} (i,j);
|
alpar@1
|
23 |
/* set of arcs */
|
alpar@1
|
24 |
|
alpar@1
|
25 |
printf "Graph has %d vertices and %d arcs\n", card(V), card(E);
|
alpar@1
|
26 |
|
alpar@1
|
27 |
var x{(i,j) in E}, binary;
|
alpar@1
|
28 |
/* x[i,j] = 1 means that (i->j) is a feedback arc */
|
alpar@1
|
29 |
|
alpar@1
|
30 |
/* It is known that a digraph G = (V, E) is acyclic if and only if its
|
alpar@1
|
31 |
vertices can be assigned numbers from 1 to |V| in such a way that
|
alpar@1
|
32 |
k[i] + 1 <= k[j] for every arc (i->j) in E, where k[i] is a number
|
alpar@1
|
33 |
assigned to vertex i. We may use this condition to require that the
|
alpar@1
|
34 |
digraph G = (V, E \ E'), where E' is a subset of feedback arcs, is
|
alpar@1
|
35 |
acyclic. */
|
alpar@1
|
36 |
|
alpar@1
|
37 |
var k{i in V}, >= 1, <= card(V);
|
alpar@1
|
38 |
/* k[i] is a number assigned to vertex i */
|
alpar@1
|
39 |
|
alpar@1
|
40 |
s.t. r{(i,j) in E}: k[j] - k[i] >= 1 - card(V) * x[i,j];
|
alpar@1
|
41 |
/* note that x[i,j] = 1 leads to a redundant constraint */
|
alpar@1
|
42 |
|
alpar@1
|
43 |
minimize obj: sum{(i,j) in E} x[i,j];
|
alpar@1
|
44 |
/* the objective is to minimize the cardinality of a subset of feedback
|
alpar@1
|
45 |
arcs */
|
alpar@1
|
46 |
|
alpar@1
|
47 |
solve;
|
alpar@1
|
48 |
|
alpar@1
|
49 |
printf "Minimum feedback arc set:\n";
|
alpar@1
|
50 |
printf{(i,j) in E: x[i,j]} "%d %d\n", i, j;
|
alpar@1
|
51 |
|
alpar@1
|
52 |
data;
|
alpar@1
|
53 |
|
alpar@1
|
54 |
/* The optimal solution is 3 */
|
alpar@1
|
55 |
|
alpar@1
|
56 |
param n := 15;
|
alpar@1
|
57 |
|
alpar@1
|
58 |
set E := 1 2, 2 3, 3 4, 3 8, 4 9, 5 1, 6 5, 7 5, 8 6, 8 7, 8 9, 9 10,
|
alpar@1
|
59 |
10 11, 10 14, 11 15, 12 7, 12 8, 12 13, 13 8, 13 12, 13 14,
|
alpar@1
|
60 |
14 9, 15 14;
|
alpar@1
|
61 |
|
alpar@1
|
62 |
end;
|