examples/spp.mod
author Alpar Juttner <alpar@cs.elte.hu>
Sun, 05 Dec 2010 17:35:23 +0100
changeset 2 4c8956a7bdf4
permissions -rw-r--r--
Set up CMAKE build environment
alpar@1
     1
/* SPP, Shortest Path Problem */
alpar@1
     2
alpar@1
     3
/* Written in GNU MathProg by Andrew Makhorin <mao@gnu.org> */
alpar@1
     4
alpar@1
     5
/* Given a directed graph G = (V,E), its edge lengths c(i,j) for all
alpar@1
     6
   (i,j) in E, and two nodes s, t in V, the Shortest Path Problem (SPP)
alpar@1
     7
   is to find a directed path from s to t whose length is minimal. */
alpar@1
     8
alpar@1
     9
param n, integer, > 0;
alpar@1
    10
/* number of nodes */
alpar@1
    11
alpar@1
    12
set E, within {i in 1..n, j in 1..n};
alpar@1
    13
/* set of edges */
alpar@1
    14
alpar@1
    15
param c{(i,j) in E};
alpar@1
    16
/* c[i,j] is length of edge (i,j); note that edge lengths are allowed
alpar@1
    17
   to be of any sign (positive, negative, or zero) */
alpar@1
    18
alpar@1
    19
param s, in {1..n};
alpar@1
    20
/* source node */
alpar@1
    21
alpar@1
    22
param t, in {1..n};
alpar@1
    23
/* target node */
alpar@1
    24
alpar@1
    25
var x{(i,j) in E}, >= 0;
alpar@1
    26
/* x[i,j] = 1 means that edge (i,j) belong to shortest path;
alpar@1
    27
   x[i,j] = 0 means that edge (i,j) does not belong to shortest path;
alpar@1
    28
   note that variables x[i,j] are binary, however, there is no need to
alpar@1
    29
   declare them so due to the totally unimodular constraint matrix */
alpar@1
    30
alpar@1
    31
s.t. r{i in 1..n}: sum{(j,i) in E} x[j,i] + (if i = s then 1) =
alpar@1
    32
                   sum{(i,j) in E} x[i,j] + (if i = t then 1);
alpar@1
    33
/* conservation conditions for unity flow from s to t; every feasible
alpar@1
    34
   solution is a path from s to t */
alpar@1
    35
alpar@1
    36
minimize Z: sum{(i,j) in E} c[i,j] * x[i,j];
alpar@1
    37
/* objective function is the path length to be minimized */
alpar@1
    38
alpar@1
    39
data;
alpar@1
    40
alpar@1
    41
/* Optimal solution is 20 that corresponds to the following shortest
alpar@1
    42
   path: s = 1 -> 2 -> 4 -> 8 -> 6 = t */
alpar@1
    43
alpar@1
    44
param n := 8;
alpar@1
    45
alpar@1
    46
param s := 1;
alpar@1
    47
alpar@1
    48
param t := 6;
alpar@1
    49
alpar@1
    50
param : E :   c :=
alpar@1
    51
       1 2    1
alpar@1
    52
       1 4    8
alpar@1
    53
       1 7    6
alpar@1
    54
       2 4    2
alpar@1
    55
       3 2   14
alpar@1
    56
       3 4   10
alpar@1
    57
       3 5    6
alpar@1
    58
       3 6   19
alpar@1
    59
       4 5    8
alpar@1
    60
       4 8   13
alpar@1
    61
       5 8   12
alpar@1
    62
       6 5    7
alpar@1
    63
       7 4    5
alpar@1
    64
       8 6    4
alpar@1
    65
       8 7   10;
alpar@1
    66
alpar@1
    67
end;