alpar@1
|
1 |
/* glpk.h */
|
alpar@1
|
2 |
|
alpar@1
|
3 |
/***********************************************************************
|
alpar@1
|
4 |
* This code is part of GLPK (GNU Linear Programming Kit).
|
alpar@1
|
5 |
*
|
alpar@1
|
6 |
* Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
|
alpar@1
|
7 |
* 2009, 2010 Andrew Makhorin, Department for Applied Informatics,
|
alpar@1
|
8 |
* Moscow Aviation Institute, Moscow, Russia. All rights reserved.
|
alpar@1
|
9 |
* E-mail: <mao@gnu.org>.
|
alpar@1
|
10 |
*
|
alpar@1
|
11 |
* GLPK is free software: you can redistribute it and/or modify it
|
alpar@1
|
12 |
* under the terms of the GNU General Public License as published by
|
alpar@1
|
13 |
* the Free Software Foundation, either version 3 of the License, or
|
alpar@1
|
14 |
* (at your option) any later version.
|
alpar@1
|
15 |
*
|
alpar@1
|
16 |
* GLPK is distributed in the hope that it will be useful, but WITHOUT
|
alpar@1
|
17 |
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
alpar@1
|
18 |
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
|
alpar@1
|
19 |
* License for more details.
|
alpar@1
|
20 |
*
|
alpar@1
|
21 |
* You should have received a copy of the GNU General Public License
|
alpar@1
|
22 |
* along with GLPK. If not, see <http://www.gnu.org/licenses/>.
|
alpar@1
|
23 |
***********************************************************************/
|
alpar@1
|
24 |
|
alpar@1
|
25 |
#ifndef GLPK_H
|
alpar@1
|
26 |
#define GLPK_H
|
alpar@1
|
27 |
|
alpar@1
|
28 |
#include <stdarg.h>
|
alpar@1
|
29 |
#include <stddef.h>
|
alpar@1
|
30 |
|
alpar@1
|
31 |
#ifdef __cplusplus
|
alpar@1
|
32 |
extern "C" {
|
alpar@1
|
33 |
#endif
|
alpar@1
|
34 |
|
alpar@1
|
35 |
/* library version numbers: */
|
alpar@1
|
36 |
#define GLP_MAJOR_VERSION 4
|
alpar@1
|
37 |
#define GLP_MINOR_VERSION 45
|
alpar@1
|
38 |
|
alpar@1
|
39 |
#ifndef GLP_PROB_DEFINED
|
alpar@1
|
40 |
#define GLP_PROB_DEFINED
|
alpar@1
|
41 |
typedef struct { double _opaque_prob[100]; } glp_prob;
|
alpar@1
|
42 |
/* LP/MIP problem object */
|
alpar@1
|
43 |
#endif
|
alpar@1
|
44 |
|
alpar@1
|
45 |
/* optimization direction flag: */
|
alpar@1
|
46 |
#define GLP_MIN 1 /* minimization */
|
alpar@1
|
47 |
#define GLP_MAX 2 /* maximization */
|
alpar@1
|
48 |
|
alpar@1
|
49 |
/* kind of structural variable: */
|
alpar@1
|
50 |
#define GLP_CV 1 /* continuous variable */
|
alpar@1
|
51 |
#define GLP_IV 2 /* integer variable */
|
alpar@1
|
52 |
#define GLP_BV 3 /* binary variable */
|
alpar@1
|
53 |
|
alpar@1
|
54 |
/* type of auxiliary/structural variable: */
|
alpar@1
|
55 |
#define GLP_FR 1 /* free variable */
|
alpar@1
|
56 |
#define GLP_LO 2 /* variable with lower bound */
|
alpar@1
|
57 |
#define GLP_UP 3 /* variable with upper bound */
|
alpar@1
|
58 |
#define GLP_DB 4 /* double-bounded variable */
|
alpar@1
|
59 |
#define GLP_FX 5 /* fixed variable */
|
alpar@1
|
60 |
|
alpar@1
|
61 |
/* status of auxiliary/structural variable: */
|
alpar@1
|
62 |
#define GLP_BS 1 /* basic variable */
|
alpar@1
|
63 |
#define GLP_NL 2 /* non-basic variable on lower bound */
|
alpar@1
|
64 |
#define GLP_NU 3 /* non-basic variable on upper bound */
|
alpar@1
|
65 |
#define GLP_NF 4 /* non-basic free variable */
|
alpar@1
|
66 |
#define GLP_NS 5 /* non-basic fixed variable */
|
alpar@1
|
67 |
|
alpar@1
|
68 |
/* scaling options: */
|
alpar@1
|
69 |
#define GLP_SF_GM 0x01 /* perform geometric mean scaling */
|
alpar@1
|
70 |
#define GLP_SF_EQ 0x10 /* perform equilibration scaling */
|
alpar@1
|
71 |
#define GLP_SF_2N 0x20 /* round scale factors to power of two */
|
alpar@1
|
72 |
#define GLP_SF_SKIP 0x40 /* skip if problem is well scaled */
|
alpar@1
|
73 |
#define GLP_SF_AUTO 0x80 /* choose scaling options automatically */
|
alpar@1
|
74 |
|
alpar@1
|
75 |
/* solution indicator: */
|
alpar@1
|
76 |
#define GLP_SOL 1 /* basic solution */
|
alpar@1
|
77 |
#define GLP_IPT 2 /* interior-point solution */
|
alpar@1
|
78 |
#define GLP_MIP 3 /* mixed integer solution */
|
alpar@1
|
79 |
|
alpar@1
|
80 |
/* solution status: */
|
alpar@1
|
81 |
#define GLP_UNDEF 1 /* solution is undefined */
|
alpar@1
|
82 |
#define GLP_FEAS 2 /* solution is feasible */
|
alpar@1
|
83 |
#define GLP_INFEAS 3 /* solution is infeasible */
|
alpar@1
|
84 |
#define GLP_NOFEAS 4 /* no feasible solution exists */
|
alpar@1
|
85 |
#define GLP_OPT 5 /* solution is optimal */
|
alpar@1
|
86 |
#define GLP_UNBND 6 /* solution is unbounded */
|
alpar@1
|
87 |
|
alpar@1
|
88 |
typedef struct
|
alpar@1
|
89 |
{ /* basis factorization control parameters */
|
alpar@1
|
90 |
int msg_lev; /* (reserved) */
|
alpar@1
|
91 |
int type; /* factorization type: */
|
alpar@1
|
92 |
#define GLP_BF_FT 1 /* LUF + Forrest-Tomlin */
|
alpar@1
|
93 |
#define GLP_BF_BG 2 /* LUF + Schur compl. + Bartels-Golub */
|
alpar@1
|
94 |
#define GLP_BF_GR 3 /* LUF + Schur compl. + Givens rotation */
|
alpar@1
|
95 |
int lu_size; /* luf.sv_size */
|
alpar@1
|
96 |
double piv_tol; /* luf.piv_tol */
|
alpar@1
|
97 |
int piv_lim; /* luf.piv_lim */
|
alpar@1
|
98 |
int suhl; /* luf.suhl */
|
alpar@1
|
99 |
double eps_tol; /* luf.eps_tol */
|
alpar@1
|
100 |
double max_gro; /* luf.max_gro */
|
alpar@1
|
101 |
int nfs_max; /* fhv.hh_max */
|
alpar@1
|
102 |
double upd_tol; /* fhv.upd_tol */
|
alpar@1
|
103 |
int nrs_max; /* lpf.n_max */
|
alpar@1
|
104 |
int rs_size; /* lpf.v_size */
|
alpar@1
|
105 |
double foo_bar[38]; /* (reserved) */
|
alpar@1
|
106 |
} glp_bfcp;
|
alpar@1
|
107 |
|
alpar@1
|
108 |
typedef struct
|
alpar@1
|
109 |
{ /* simplex method control parameters */
|
alpar@1
|
110 |
int msg_lev; /* message level: */
|
alpar@1
|
111 |
#define GLP_MSG_OFF 0 /* no output */
|
alpar@1
|
112 |
#define GLP_MSG_ERR 1 /* warning and error messages only */
|
alpar@1
|
113 |
#define GLP_MSG_ON 2 /* normal output */
|
alpar@1
|
114 |
#define GLP_MSG_ALL 3 /* full output */
|
alpar@1
|
115 |
#define GLP_MSG_DBG 4 /* debug output */
|
alpar@1
|
116 |
int meth; /* simplex method option: */
|
alpar@1
|
117 |
#define GLP_PRIMAL 1 /* use primal simplex */
|
alpar@1
|
118 |
#define GLP_DUALP 2 /* use dual; if it fails, use primal */
|
alpar@1
|
119 |
#define GLP_DUAL 3 /* use dual simplex */
|
alpar@1
|
120 |
int pricing; /* pricing technique: */
|
alpar@1
|
121 |
#define GLP_PT_STD 0x11 /* standard (Dantzig rule) */
|
alpar@1
|
122 |
#define GLP_PT_PSE 0x22 /* projected steepest edge */
|
alpar@1
|
123 |
int r_test; /* ratio test technique: */
|
alpar@1
|
124 |
#define GLP_RT_STD 0x11 /* standard (textbook) */
|
alpar@1
|
125 |
#define GLP_RT_HAR 0x22 /* two-pass Harris' ratio test */
|
alpar@1
|
126 |
double tol_bnd; /* spx.tol_bnd */
|
alpar@1
|
127 |
double tol_dj; /* spx.tol_dj */
|
alpar@1
|
128 |
double tol_piv; /* spx.tol_piv */
|
alpar@1
|
129 |
double obj_ll; /* spx.obj_ll */
|
alpar@1
|
130 |
double obj_ul; /* spx.obj_ul */
|
alpar@1
|
131 |
int it_lim; /* spx.it_lim */
|
alpar@1
|
132 |
int tm_lim; /* spx.tm_lim (milliseconds) */
|
alpar@1
|
133 |
int out_frq; /* spx.out_frq */
|
alpar@1
|
134 |
int out_dly; /* spx.out_dly (milliseconds) */
|
alpar@1
|
135 |
int presolve; /* enable/disable using LP presolver */
|
alpar@1
|
136 |
double foo_bar[36]; /* (reserved) */
|
alpar@1
|
137 |
} glp_smcp;
|
alpar@1
|
138 |
|
alpar@1
|
139 |
typedef struct
|
alpar@1
|
140 |
{ /* interior-point solver control parameters */
|
alpar@1
|
141 |
int msg_lev; /* message level (see glp_smcp) */
|
alpar@1
|
142 |
int ord_alg; /* ordering algorithm: */
|
alpar@1
|
143 |
#define GLP_ORD_NONE 0 /* natural (original) ordering */
|
alpar@1
|
144 |
#define GLP_ORD_QMD 1 /* quotient minimum degree (QMD) */
|
alpar@1
|
145 |
#define GLP_ORD_AMD 2 /* approx. minimum degree (AMD) */
|
alpar@1
|
146 |
#define GLP_ORD_SYMAMD 3 /* approx. minimum degree (SYMAMD) */
|
alpar@1
|
147 |
double foo_bar[48]; /* (reserved) */
|
alpar@1
|
148 |
} glp_iptcp;
|
alpar@1
|
149 |
|
alpar@1
|
150 |
#ifndef GLP_TREE_DEFINED
|
alpar@1
|
151 |
#define GLP_TREE_DEFINED
|
alpar@1
|
152 |
typedef struct { double _opaque_tree[100]; } glp_tree;
|
alpar@1
|
153 |
/* branch-and-bound tree */
|
alpar@1
|
154 |
#endif
|
alpar@1
|
155 |
|
alpar@1
|
156 |
typedef struct
|
alpar@1
|
157 |
{ /* integer optimizer control parameters */
|
alpar@1
|
158 |
int msg_lev; /* message level (see glp_smcp) */
|
alpar@1
|
159 |
int br_tech; /* branching technique: */
|
alpar@1
|
160 |
#define GLP_BR_FFV 1 /* first fractional variable */
|
alpar@1
|
161 |
#define GLP_BR_LFV 2 /* last fractional variable */
|
alpar@1
|
162 |
#define GLP_BR_MFV 3 /* most fractional variable */
|
alpar@1
|
163 |
#define GLP_BR_DTH 4 /* heuristic by Driebeck and Tomlin */
|
alpar@1
|
164 |
#define GLP_BR_PCH 5 /* hybrid pseudocost heuristic */
|
alpar@1
|
165 |
int bt_tech; /* backtracking technique: */
|
alpar@1
|
166 |
#define GLP_BT_DFS 1 /* depth first search */
|
alpar@1
|
167 |
#define GLP_BT_BFS 2 /* breadth first search */
|
alpar@1
|
168 |
#define GLP_BT_BLB 3 /* best local bound */
|
alpar@1
|
169 |
#define GLP_BT_BPH 4 /* best projection heuristic */
|
alpar@1
|
170 |
double tol_int; /* mip.tol_int */
|
alpar@1
|
171 |
double tol_obj; /* mip.tol_obj */
|
alpar@1
|
172 |
int tm_lim; /* mip.tm_lim (milliseconds) */
|
alpar@1
|
173 |
int out_frq; /* mip.out_frq (milliseconds) */
|
alpar@1
|
174 |
int out_dly; /* mip.out_dly (milliseconds) */
|
alpar@1
|
175 |
void (*cb_func)(glp_tree *T, void *info);
|
alpar@1
|
176 |
/* mip.cb_func */
|
alpar@1
|
177 |
void *cb_info; /* mip.cb_info */
|
alpar@1
|
178 |
int cb_size; /* mip.cb_size */
|
alpar@1
|
179 |
int pp_tech; /* preprocessing technique: */
|
alpar@1
|
180 |
#define GLP_PP_NONE 0 /* disable preprocessing */
|
alpar@1
|
181 |
#define GLP_PP_ROOT 1 /* preprocessing only on root level */
|
alpar@1
|
182 |
#define GLP_PP_ALL 2 /* preprocessing on all levels */
|
alpar@1
|
183 |
double mip_gap; /* relative MIP gap tolerance */
|
alpar@1
|
184 |
int mir_cuts; /* MIR cuts (GLP_ON/GLP_OFF) */
|
alpar@1
|
185 |
int gmi_cuts; /* Gomory's cuts (GLP_ON/GLP_OFF) */
|
alpar@1
|
186 |
int cov_cuts; /* cover cuts (GLP_ON/GLP_OFF) */
|
alpar@1
|
187 |
int clq_cuts; /* clique cuts (GLP_ON/GLP_OFF) */
|
alpar@1
|
188 |
int presolve; /* enable/disable using MIP presolver */
|
alpar@1
|
189 |
int binarize; /* try to binarize integer variables */
|
alpar@1
|
190 |
int fp_heur; /* feasibility pump heuristic */
|
alpar@1
|
191 |
#if 1 /* 28/V-2010 */
|
alpar@1
|
192 |
int alien; /* use alien solver */
|
alpar@1
|
193 |
#endif
|
alpar@1
|
194 |
double foo_bar[29]; /* (reserved) */
|
alpar@1
|
195 |
} glp_iocp;
|
alpar@1
|
196 |
|
alpar@1
|
197 |
typedef struct
|
alpar@1
|
198 |
{ /* additional row attributes */
|
alpar@1
|
199 |
int level;
|
alpar@1
|
200 |
/* subproblem level at which the row was added */
|
alpar@1
|
201 |
int origin;
|
alpar@1
|
202 |
/* row origin flag: */
|
alpar@1
|
203 |
#define GLP_RF_REG 0 /* regular constraint */
|
alpar@1
|
204 |
#define GLP_RF_LAZY 1 /* "lazy" constraint */
|
alpar@1
|
205 |
#define GLP_RF_CUT 2 /* cutting plane constraint */
|
alpar@1
|
206 |
int klass;
|
alpar@1
|
207 |
/* row class descriptor: */
|
alpar@1
|
208 |
#define GLP_RF_GMI 1 /* Gomory's mixed integer cut */
|
alpar@1
|
209 |
#define GLP_RF_MIR 2 /* mixed integer rounding cut */
|
alpar@1
|
210 |
#define GLP_RF_COV 3 /* mixed cover cut */
|
alpar@1
|
211 |
#define GLP_RF_CLQ 4 /* clique cut */
|
alpar@1
|
212 |
double foo_bar[7];
|
alpar@1
|
213 |
/* (reserved) */
|
alpar@1
|
214 |
} glp_attr;
|
alpar@1
|
215 |
|
alpar@1
|
216 |
/* enable/disable flag: */
|
alpar@1
|
217 |
#define GLP_ON 1 /* enable something */
|
alpar@1
|
218 |
#define GLP_OFF 0 /* disable something */
|
alpar@1
|
219 |
|
alpar@1
|
220 |
/* reason codes: */
|
alpar@1
|
221 |
#define GLP_IROWGEN 0x01 /* request for row generation */
|
alpar@1
|
222 |
#define GLP_IBINGO 0x02 /* better integer solution found */
|
alpar@1
|
223 |
#define GLP_IHEUR 0x03 /* request for heuristic solution */
|
alpar@1
|
224 |
#define GLP_ICUTGEN 0x04 /* request for cut generation */
|
alpar@1
|
225 |
#define GLP_IBRANCH 0x05 /* request for branching */
|
alpar@1
|
226 |
#define GLP_ISELECT 0x06 /* request for subproblem selection */
|
alpar@1
|
227 |
#define GLP_IPREPRO 0x07 /* request for preprocessing */
|
alpar@1
|
228 |
|
alpar@1
|
229 |
/* branch selection indicator: */
|
alpar@1
|
230 |
#define GLP_NO_BRNCH 0 /* select no branch */
|
alpar@1
|
231 |
#define GLP_DN_BRNCH 1 /* select down-branch */
|
alpar@1
|
232 |
#define GLP_UP_BRNCH 2 /* select up-branch */
|
alpar@1
|
233 |
|
alpar@1
|
234 |
/* return codes: */
|
alpar@1
|
235 |
#define GLP_EBADB 0x01 /* invalid basis */
|
alpar@1
|
236 |
#define GLP_ESING 0x02 /* singular matrix */
|
alpar@1
|
237 |
#define GLP_ECOND 0x03 /* ill-conditioned matrix */
|
alpar@1
|
238 |
#define GLP_EBOUND 0x04 /* invalid bounds */
|
alpar@1
|
239 |
#define GLP_EFAIL 0x05 /* solver failed */
|
alpar@1
|
240 |
#define GLP_EOBJLL 0x06 /* objective lower limit reached */
|
alpar@1
|
241 |
#define GLP_EOBJUL 0x07 /* objective upper limit reached */
|
alpar@1
|
242 |
#define GLP_EITLIM 0x08 /* iteration limit exceeded */
|
alpar@1
|
243 |
#define GLP_ETMLIM 0x09 /* time limit exceeded */
|
alpar@1
|
244 |
#define GLP_ENOPFS 0x0A /* no primal feasible solution */
|
alpar@1
|
245 |
#define GLP_ENODFS 0x0B /* no dual feasible solution */
|
alpar@1
|
246 |
#define GLP_EROOT 0x0C /* root LP optimum not provided */
|
alpar@1
|
247 |
#define GLP_ESTOP 0x0D /* search terminated by application */
|
alpar@1
|
248 |
#define GLP_EMIPGAP 0x0E /* relative mip gap tolerance reached */
|
alpar@1
|
249 |
#define GLP_ENOFEAS 0x0F /* no primal/dual feasible solution */
|
alpar@1
|
250 |
#define GLP_ENOCVG 0x10 /* no convergence */
|
alpar@1
|
251 |
#define GLP_EINSTAB 0x11 /* numerical instability */
|
alpar@1
|
252 |
#define GLP_EDATA 0x12 /* invalid data */
|
alpar@1
|
253 |
#define GLP_ERANGE 0x13 /* result out of range */
|
alpar@1
|
254 |
|
alpar@1
|
255 |
/* condition indicator: */
|
alpar@1
|
256 |
#define GLP_KKT_PE 1 /* primal equalities */
|
alpar@1
|
257 |
#define GLP_KKT_PB 2 /* primal bounds */
|
alpar@1
|
258 |
#define GLP_KKT_DE 3 /* dual equalities */
|
alpar@1
|
259 |
#define GLP_KKT_DB 4 /* dual bounds */
|
alpar@1
|
260 |
#define GLP_KKT_CS 5 /* complementary slackness */
|
alpar@1
|
261 |
|
alpar@1
|
262 |
/* MPS file format: */
|
alpar@1
|
263 |
#define GLP_MPS_DECK 1 /* fixed (ancient) */
|
alpar@1
|
264 |
#define GLP_MPS_FILE 2 /* free (modern) */
|
alpar@1
|
265 |
|
alpar@1
|
266 |
typedef struct
|
alpar@1
|
267 |
{ /* MPS format control parameters */
|
alpar@1
|
268 |
int blank;
|
alpar@1
|
269 |
/* character code to replace blanks in symbolic names */
|
alpar@1
|
270 |
char *obj_name;
|
alpar@1
|
271 |
/* objective row name */
|
alpar@1
|
272 |
double tol_mps;
|
alpar@1
|
273 |
/* zero tolerance for MPS data */
|
alpar@1
|
274 |
double foo_bar[17];
|
alpar@1
|
275 |
/* (reserved for use in the future) */
|
alpar@1
|
276 |
} glp_mpscp;
|
alpar@1
|
277 |
|
alpar@1
|
278 |
typedef struct
|
alpar@1
|
279 |
{ /* CPLEX LP format control parameters */
|
alpar@1
|
280 |
double foo_bar[20];
|
alpar@1
|
281 |
/* (reserved for use in the future) */
|
alpar@1
|
282 |
} glp_cpxcp;
|
alpar@1
|
283 |
|
alpar@1
|
284 |
#ifndef GLP_TRAN_DEFINED
|
alpar@1
|
285 |
#define GLP_TRAN_DEFINED
|
alpar@1
|
286 |
typedef struct { double _opaque_tran[100]; } glp_tran;
|
alpar@1
|
287 |
/* MathProg translator workspace */
|
alpar@1
|
288 |
#endif
|
alpar@1
|
289 |
|
alpar@1
|
290 |
glp_prob *glp_create_prob(void);
|
alpar@1
|
291 |
/* create problem object */
|
alpar@1
|
292 |
|
alpar@1
|
293 |
void glp_set_prob_name(glp_prob *P, const char *name);
|
alpar@1
|
294 |
/* assign (change) problem name */
|
alpar@1
|
295 |
|
alpar@1
|
296 |
void glp_set_obj_name(glp_prob *P, const char *name);
|
alpar@1
|
297 |
/* assign (change) objective function name */
|
alpar@1
|
298 |
|
alpar@1
|
299 |
void glp_set_obj_dir(glp_prob *P, int dir);
|
alpar@1
|
300 |
/* set (change) optimization direction flag */
|
alpar@1
|
301 |
|
alpar@1
|
302 |
int glp_add_rows(glp_prob *P, int nrs);
|
alpar@1
|
303 |
/* add new rows to problem object */
|
alpar@1
|
304 |
|
alpar@1
|
305 |
int glp_add_cols(glp_prob *P, int ncs);
|
alpar@1
|
306 |
/* add new columns to problem object */
|
alpar@1
|
307 |
|
alpar@1
|
308 |
void glp_set_row_name(glp_prob *P, int i, const char *name);
|
alpar@1
|
309 |
/* assign (change) row name */
|
alpar@1
|
310 |
|
alpar@1
|
311 |
void glp_set_col_name(glp_prob *P, int j, const char *name);
|
alpar@1
|
312 |
/* assign (change) column name */
|
alpar@1
|
313 |
|
alpar@1
|
314 |
void glp_set_row_bnds(glp_prob *P, int i, int type, double lb,
|
alpar@1
|
315 |
double ub);
|
alpar@1
|
316 |
/* set (change) row bounds */
|
alpar@1
|
317 |
|
alpar@1
|
318 |
void glp_set_col_bnds(glp_prob *P, int j, int type, double lb,
|
alpar@1
|
319 |
double ub);
|
alpar@1
|
320 |
/* set (change) column bounds */
|
alpar@1
|
321 |
|
alpar@1
|
322 |
void glp_set_obj_coef(glp_prob *P, int j, double coef);
|
alpar@1
|
323 |
/* set (change) obj. coefficient or constant term */
|
alpar@1
|
324 |
|
alpar@1
|
325 |
void glp_set_mat_row(glp_prob *P, int i, int len, const int ind[],
|
alpar@1
|
326 |
const double val[]);
|
alpar@1
|
327 |
/* set (replace) row of the constraint matrix */
|
alpar@1
|
328 |
|
alpar@1
|
329 |
void glp_set_mat_col(glp_prob *P, int j, int len, const int ind[],
|
alpar@1
|
330 |
const double val[]);
|
alpar@1
|
331 |
/* set (replace) column of the constraint matrix */
|
alpar@1
|
332 |
|
alpar@1
|
333 |
void glp_load_matrix(glp_prob *P, int ne, const int ia[],
|
alpar@1
|
334 |
const int ja[], const double ar[]);
|
alpar@1
|
335 |
/* load (replace) the whole constraint matrix */
|
alpar@1
|
336 |
|
alpar@1
|
337 |
int glp_check_dup(int m, int n, int ne, const int ia[], const int ja[]);
|
alpar@1
|
338 |
/* check for duplicate elements in sparse matrix */
|
alpar@1
|
339 |
|
alpar@1
|
340 |
void glp_sort_matrix(glp_prob *P);
|
alpar@1
|
341 |
/* sort elements of the constraint matrix */
|
alpar@1
|
342 |
|
alpar@1
|
343 |
void glp_del_rows(glp_prob *P, int nrs, const int num[]);
|
alpar@1
|
344 |
/* delete specified rows from problem object */
|
alpar@1
|
345 |
|
alpar@1
|
346 |
void glp_del_cols(glp_prob *P, int ncs, const int num[]);
|
alpar@1
|
347 |
/* delete specified columns from problem object */
|
alpar@1
|
348 |
|
alpar@1
|
349 |
void glp_copy_prob(glp_prob *dest, glp_prob *prob, int names);
|
alpar@1
|
350 |
/* copy problem object content */
|
alpar@1
|
351 |
|
alpar@1
|
352 |
void glp_erase_prob(glp_prob *P);
|
alpar@1
|
353 |
/* erase problem object content */
|
alpar@1
|
354 |
|
alpar@1
|
355 |
void glp_delete_prob(glp_prob *P);
|
alpar@1
|
356 |
/* delete problem object */
|
alpar@1
|
357 |
|
alpar@1
|
358 |
const char *glp_get_prob_name(glp_prob *P);
|
alpar@1
|
359 |
/* retrieve problem name */
|
alpar@1
|
360 |
|
alpar@1
|
361 |
const char *glp_get_obj_name(glp_prob *P);
|
alpar@1
|
362 |
/* retrieve objective function name */
|
alpar@1
|
363 |
|
alpar@1
|
364 |
int glp_get_obj_dir(glp_prob *P);
|
alpar@1
|
365 |
/* retrieve optimization direction flag */
|
alpar@1
|
366 |
|
alpar@1
|
367 |
int glp_get_num_rows(glp_prob *P);
|
alpar@1
|
368 |
/* retrieve number of rows */
|
alpar@1
|
369 |
|
alpar@1
|
370 |
int glp_get_num_cols(glp_prob *P);
|
alpar@1
|
371 |
/* retrieve number of columns */
|
alpar@1
|
372 |
|
alpar@1
|
373 |
const char *glp_get_row_name(glp_prob *P, int i);
|
alpar@1
|
374 |
/* retrieve row name */
|
alpar@1
|
375 |
|
alpar@1
|
376 |
const char *glp_get_col_name(glp_prob *P, int j);
|
alpar@1
|
377 |
/* retrieve column name */
|
alpar@1
|
378 |
|
alpar@1
|
379 |
int glp_get_row_type(glp_prob *P, int i);
|
alpar@1
|
380 |
/* retrieve row type */
|
alpar@1
|
381 |
|
alpar@1
|
382 |
double glp_get_row_lb(glp_prob *P, int i);
|
alpar@1
|
383 |
/* retrieve row lower bound */
|
alpar@1
|
384 |
|
alpar@1
|
385 |
double glp_get_row_ub(glp_prob *P, int i);
|
alpar@1
|
386 |
/* retrieve row upper bound */
|
alpar@1
|
387 |
|
alpar@1
|
388 |
int glp_get_col_type(glp_prob *P, int j);
|
alpar@1
|
389 |
/* retrieve column type */
|
alpar@1
|
390 |
|
alpar@1
|
391 |
double glp_get_col_lb(glp_prob *P, int j);
|
alpar@1
|
392 |
/* retrieve column lower bound */
|
alpar@1
|
393 |
|
alpar@1
|
394 |
double glp_get_col_ub(glp_prob *P, int j);
|
alpar@1
|
395 |
/* retrieve column upper bound */
|
alpar@1
|
396 |
|
alpar@1
|
397 |
double glp_get_obj_coef(glp_prob *P, int j);
|
alpar@1
|
398 |
/* retrieve obj. coefficient or constant term */
|
alpar@1
|
399 |
|
alpar@1
|
400 |
int glp_get_num_nz(glp_prob *P);
|
alpar@1
|
401 |
/* retrieve number of constraint coefficients */
|
alpar@1
|
402 |
|
alpar@1
|
403 |
int glp_get_mat_row(glp_prob *P, int i, int ind[], double val[]);
|
alpar@1
|
404 |
/* retrieve row of the constraint matrix */
|
alpar@1
|
405 |
|
alpar@1
|
406 |
int glp_get_mat_col(glp_prob *P, int j, int ind[], double val[]);
|
alpar@1
|
407 |
/* retrieve column of the constraint matrix */
|
alpar@1
|
408 |
|
alpar@1
|
409 |
void glp_create_index(glp_prob *P);
|
alpar@1
|
410 |
/* create the name index */
|
alpar@1
|
411 |
|
alpar@1
|
412 |
int glp_find_row(glp_prob *P, const char *name);
|
alpar@1
|
413 |
/* find row by its name */
|
alpar@1
|
414 |
|
alpar@1
|
415 |
int glp_find_col(glp_prob *P, const char *name);
|
alpar@1
|
416 |
/* find column by its name */
|
alpar@1
|
417 |
|
alpar@1
|
418 |
void glp_delete_index(glp_prob *P);
|
alpar@1
|
419 |
/* delete the name index */
|
alpar@1
|
420 |
|
alpar@1
|
421 |
void glp_set_rii(glp_prob *P, int i, double rii);
|
alpar@1
|
422 |
/* set (change) row scale factor */
|
alpar@1
|
423 |
|
alpar@1
|
424 |
void glp_set_sjj(glp_prob *P, int j, double sjj);
|
alpar@1
|
425 |
/* set (change) column scale factor */
|
alpar@1
|
426 |
|
alpar@1
|
427 |
double glp_get_rii(glp_prob *P, int i);
|
alpar@1
|
428 |
/* retrieve row scale factor */
|
alpar@1
|
429 |
|
alpar@1
|
430 |
double glp_get_sjj(glp_prob *P, int j);
|
alpar@1
|
431 |
/* retrieve column scale factor */
|
alpar@1
|
432 |
|
alpar@1
|
433 |
void glp_scale_prob(glp_prob *P, int flags);
|
alpar@1
|
434 |
/* scale problem data */
|
alpar@1
|
435 |
|
alpar@1
|
436 |
void glp_unscale_prob(glp_prob *P);
|
alpar@1
|
437 |
/* unscale problem data */
|
alpar@1
|
438 |
|
alpar@1
|
439 |
void glp_set_row_stat(glp_prob *P, int i, int stat);
|
alpar@1
|
440 |
/* set (change) row status */
|
alpar@1
|
441 |
|
alpar@1
|
442 |
void glp_set_col_stat(glp_prob *P, int j, int stat);
|
alpar@1
|
443 |
/* set (change) column status */
|
alpar@1
|
444 |
|
alpar@1
|
445 |
void glp_std_basis(glp_prob *P);
|
alpar@1
|
446 |
/* construct standard initial LP basis */
|
alpar@1
|
447 |
|
alpar@1
|
448 |
void glp_adv_basis(glp_prob *P, int flags);
|
alpar@1
|
449 |
/* construct advanced initial LP basis */
|
alpar@1
|
450 |
|
alpar@1
|
451 |
void glp_cpx_basis(glp_prob *P);
|
alpar@1
|
452 |
/* construct Bixby's initial LP basis */
|
alpar@1
|
453 |
|
alpar@1
|
454 |
int glp_simplex(glp_prob *P, const glp_smcp *parm);
|
alpar@1
|
455 |
/* solve LP problem with the simplex method */
|
alpar@1
|
456 |
|
alpar@1
|
457 |
int glp_exact(glp_prob *P, const glp_smcp *parm);
|
alpar@1
|
458 |
/* solve LP problem in exact arithmetic */
|
alpar@1
|
459 |
|
alpar@1
|
460 |
void glp_init_smcp(glp_smcp *parm);
|
alpar@1
|
461 |
/* initialize simplex method control parameters */
|
alpar@1
|
462 |
|
alpar@1
|
463 |
int glp_get_status(glp_prob *P);
|
alpar@1
|
464 |
/* retrieve generic status of basic solution */
|
alpar@1
|
465 |
|
alpar@1
|
466 |
int glp_get_prim_stat(glp_prob *P);
|
alpar@1
|
467 |
/* retrieve status of primal basic solution */
|
alpar@1
|
468 |
|
alpar@1
|
469 |
int glp_get_dual_stat(glp_prob *P);
|
alpar@1
|
470 |
/* retrieve status of dual basic solution */
|
alpar@1
|
471 |
|
alpar@1
|
472 |
double glp_get_obj_val(glp_prob *P);
|
alpar@1
|
473 |
/* retrieve objective value (basic solution) */
|
alpar@1
|
474 |
|
alpar@1
|
475 |
int glp_get_row_stat(glp_prob *P, int i);
|
alpar@1
|
476 |
/* retrieve row status */
|
alpar@1
|
477 |
|
alpar@1
|
478 |
double glp_get_row_prim(glp_prob *P, int i);
|
alpar@1
|
479 |
/* retrieve row primal value (basic solution) */
|
alpar@1
|
480 |
|
alpar@1
|
481 |
double glp_get_row_dual(glp_prob *P, int i);
|
alpar@1
|
482 |
/* retrieve row dual value (basic solution) */
|
alpar@1
|
483 |
|
alpar@1
|
484 |
int glp_get_col_stat(glp_prob *P, int j);
|
alpar@1
|
485 |
/* retrieve column status */
|
alpar@1
|
486 |
|
alpar@1
|
487 |
double glp_get_col_prim(glp_prob *P, int j);
|
alpar@1
|
488 |
/* retrieve column primal value (basic solution) */
|
alpar@1
|
489 |
|
alpar@1
|
490 |
double glp_get_col_dual(glp_prob *P, int j);
|
alpar@1
|
491 |
/* retrieve column dual value (basic solution) */
|
alpar@1
|
492 |
|
alpar@1
|
493 |
int glp_get_unbnd_ray(glp_prob *P);
|
alpar@1
|
494 |
/* determine variable causing unboundedness */
|
alpar@1
|
495 |
|
alpar@1
|
496 |
int glp_interior(glp_prob *P, const glp_iptcp *parm);
|
alpar@1
|
497 |
/* solve LP problem with the interior-point method */
|
alpar@1
|
498 |
|
alpar@1
|
499 |
void glp_init_iptcp(glp_iptcp *parm);
|
alpar@1
|
500 |
/* initialize interior-point solver control parameters */
|
alpar@1
|
501 |
|
alpar@1
|
502 |
int glp_ipt_status(glp_prob *P);
|
alpar@1
|
503 |
/* retrieve status of interior-point solution */
|
alpar@1
|
504 |
|
alpar@1
|
505 |
double glp_ipt_obj_val(glp_prob *P);
|
alpar@1
|
506 |
/* retrieve objective value (interior point) */
|
alpar@1
|
507 |
|
alpar@1
|
508 |
double glp_ipt_row_prim(glp_prob *P, int i);
|
alpar@1
|
509 |
/* retrieve row primal value (interior point) */
|
alpar@1
|
510 |
|
alpar@1
|
511 |
double glp_ipt_row_dual(glp_prob *P, int i);
|
alpar@1
|
512 |
/* retrieve row dual value (interior point) */
|
alpar@1
|
513 |
|
alpar@1
|
514 |
double glp_ipt_col_prim(glp_prob *P, int j);
|
alpar@1
|
515 |
/* retrieve column primal value (interior point) */
|
alpar@1
|
516 |
|
alpar@1
|
517 |
double glp_ipt_col_dual(glp_prob *P, int j);
|
alpar@1
|
518 |
/* retrieve column dual value (interior point) */
|
alpar@1
|
519 |
|
alpar@1
|
520 |
void glp_set_col_kind(glp_prob *P, int j, int kind);
|
alpar@1
|
521 |
/* set (change) column kind */
|
alpar@1
|
522 |
|
alpar@1
|
523 |
int glp_get_col_kind(glp_prob *P, int j);
|
alpar@1
|
524 |
/* retrieve column kind */
|
alpar@1
|
525 |
|
alpar@1
|
526 |
int glp_get_num_int(glp_prob *P);
|
alpar@1
|
527 |
/* retrieve number of integer columns */
|
alpar@1
|
528 |
|
alpar@1
|
529 |
int glp_get_num_bin(glp_prob *P);
|
alpar@1
|
530 |
/* retrieve number of binary columns */
|
alpar@1
|
531 |
|
alpar@1
|
532 |
int glp_intopt(glp_prob *P, const glp_iocp *parm);
|
alpar@1
|
533 |
/* solve MIP problem with the branch-and-bound method */
|
alpar@1
|
534 |
|
alpar@1
|
535 |
void glp_init_iocp(glp_iocp *parm);
|
alpar@1
|
536 |
/* initialize integer optimizer control parameters */
|
alpar@1
|
537 |
|
alpar@1
|
538 |
int glp_mip_status(glp_prob *P);
|
alpar@1
|
539 |
/* retrieve status of MIP solution */
|
alpar@1
|
540 |
|
alpar@1
|
541 |
double glp_mip_obj_val(glp_prob *P);
|
alpar@1
|
542 |
/* retrieve objective value (MIP solution) */
|
alpar@1
|
543 |
|
alpar@1
|
544 |
double glp_mip_row_val(glp_prob *P, int i);
|
alpar@1
|
545 |
/* retrieve row value (MIP solution) */
|
alpar@1
|
546 |
|
alpar@1
|
547 |
double glp_mip_col_val(glp_prob *P, int j);
|
alpar@1
|
548 |
/* retrieve column value (MIP solution) */
|
alpar@1
|
549 |
|
alpar@1
|
550 |
int glp_print_sol(glp_prob *P, const char *fname);
|
alpar@1
|
551 |
/* write basic solution in printable format */
|
alpar@1
|
552 |
|
alpar@1
|
553 |
int glp_read_sol(glp_prob *P, const char *fname);
|
alpar@1
|
554 |
/* read basic solution from text file */
|
alpar@1
|
555 |
|
alpar@1
|
556 |
int glp_write_sol(glp_prob *P, const char *fname);
|
alpar@1
|
557 |
/* write basic solution to text file */
|
alpar@1
|
558 |
|
alpar@1
|
559 |
int glp_print_ranges(glp_prob *P, int len, const int list[],
|
alpar@1
|
560 |
int flags, const char *fname);
|
alpar@1
|
561 |
/* print sensitivity analysis report */
|
alpar@1
|
562 |
|
alpar@1
|
563 |
int glp_print_ipt(glp_prob *P, const char *fname);
|
alpar@1
|
564 |
/* write interior-point solution in printable format */
|
alpar@1
|
565 |
|
alpar@1
|
566 |
int glp_read_ipt(glp_prob *P, const char *fname);
|
alpar@1
|
567 |
/* read interior-point solution from text file */
|
alpar@1
|
568 |
|
alpar@1
|
569 |
int glp_write_ipt(glp_prob *P, const char *fname);
|
alpar@1
|
570 |
/* write interior-point solution to text file */
|
alpar@1
|
571 |
|
alpar@1
|
572 |
int glp_print_mip(glp_prob *P, const char *fname);
|
alpar@1
|
573 |
/* write MIP solution in printable format */
|
alpar@1
|
574 |
|
alpar@1
|
575 |
int glp_read_mip(glp_prob *P, const char *fname);
|
alpar@1
|
576 |
/* read MIP solution from text file */
|
alpar@1
|
577 |
|
alpar@1
|
578 |
int glp_write_mip(glp_prob *P, const char *fname);
|
alpar@1
|
579 |
/* write MIP solution to text file */
|
alpar@1
|
580 |
|
alpar@1
|
581 |
int glp_bf_exists(glp_prob *P);
|
alpar@1
|
582 |
/* check if the basis factorization exists */
|
alpar@1
|
583 |
|
alpar@1
|
584 |
int glp_factorize(glp_prob *P);
|
alpar@1
|
585 |
/* compute the basis factorization */
|
alpar@1
|
586 |
|
alpar@1
|
587 |
int glp_bf_updated(glp_prob *P);
|
alpar@1
|
588 |
/* check if the basis factorization has been updated */
|
alpar@1
|
589 |
|
alpar@1
|
590 |
void glp_get_bfcp(glp_prob *P, glp_bfcp *parm);
|
alpar@1
|
591 |
/* retrieve basis factorization control parameters */
|
alpar@1
|
592 |
|
alpar@1
|
593 |
void glp_set_bfcp(glp_prob *P, const glp_bfcp *parm);
|
alpar@1
|
594 |
/* change basis factorization control parameters */
|
alpar@1
|
595 |
|
alpar@1
|
596 |
int glp_get_bhead(glp_prob *P, int k);
|
alpar@1
|
597 |
/* retrieve the basis header information */
|
alpar@1
|
598 |
|
alpar@1
|
599 |
int glp_get_row_bind(glp_prob *P, int i);
|
alpar@1
|
600 |
/* retrieve row index in the basis header */
|
alpar@1
|
601 |
|
alpar@1
|
602 |
int glp_get_col_bind(glp_prob *P, int j);
|
alpar@1
|
603 |
/* retrieve column index in the basis header */
|
alpar@1
|
604 |
|
alpar@1
|
605 |
void glp_ftran(glp_prob *P, double x[]);
|
alpar@1
|
606 |
/* perform forward transformation (solve system B*x = b) */
|
alpar@1
|
607 |
|
alpar@1
|
608 |
void glp_btran(glp_prob *P, double x[]);
|
alpar@1
|
609 |
/* perform backward transformation (solve system B'*x = b) */
|
alpar@1
|
610 |
|
alpar@1
|
611 |
int glp_warm_up(glp_prob *P);
|
alpar@1
|
612 |
/* "warm up" LP basis */
|
alpar@1
|
613 |
|
alpar@1
|
614 |
int glp_eval_tab_row(glp_prob *P, int k, int ind[], double val[]);
|
alpar@1
|
615 |
/* compute row of the simplex tableau */
|
alpar@1
|
616 |
|
alpar@1
|
617 |
int glp_eval_tab_col(glp_prob *P, int k, int ind[], double val[]);
|
alpar@1
|
618 |
/* compute column of the simplex tableau */
|
alpar@1
|
619 |
|
alpar@1
|
620 |
int glp_transform_row(glp_prob *P, int len, int ind[], double val[]);
|
alpar@1
|
621 |
/* transform explicitly specified row */
|
alpar@1
|
622 |
|
alpar@1
|
623 |
int glp_transform_col(glp_prob *P, int len, int ind[], double val[]);
|
alpar@1
|
624 |
/* transform explicitly specified column */
|
alpar@1
|
625 |
|
alpar@1
|
626 |
int glp_prim_rtest(glp_prob *P, int len, const int ind[],
|
alpar@1
|
627 |
const double val[], int dir, double eps);
|
alpar@1
|
628 |
/* perform primal ratio test */
|
alpar@1
|
629 |
|
alpar@1
|
630 |
int glp_dual_rtest(glp_prob *P, int len, const int ind[],
|
alpar@1
|
631 |
const double val[], int dir, double eps);
|
alpar@1
|
632 |
/* perform dual ratio test */
|
alpar@1
|
633 |
|
alpar@1
|
634 |
void glp_analyze_bound(glp_prob *P, int k, double *value1, int *var1,
|
alpar@1
|
635 |
double *value2, int *var2);
|
alpar@1
|
636 |
/* analyze active bound of non-basic variable */
|
alpar@1
|
637 |
|
alpar@1
|
638 |
void glp_analyze_coef(glp_prob *P, int k, double *coef1, int *var1,
|
alpar@1
|
639 |
double *value1, double *coef2, int *var2, double *value2);
|
alpar@1
|
640 |
/* analyze objective coefficient at basic variable */
|
alpar@1
|
641 |
|
alpar@1
|
642 |
int glp_ios_reason(glp_tree *T);
|
alpar@1
|
643 |
/* determine reason for calling the callback routine */
|
alpar@1
|
644 |
|
alpar@1
|
645 |
glp_prob *glp_ios_get_prob(glp_tree *T);
|
alpar@1
|
646 |
/* access the problem object */
|
alpar@1
|
647 |
|
alpar@1
|
648 |
void glp_ios_tree_size(glp_tree *T, int *a_cnt, int *n_cnt,
|
alpar@1
|
649 |
int *t_cnt);
|
alpar@1
|
650 |
/* determine size of the branch-and-bound tree */
|
alpar@1
|
651 |
|
alpar@1
|
652 |
int glp_ios_curr_node(glp_tree *T);
|
alpar@1
|
653 |
/* determine current active subproblem */
|
alpar@1
|
654 |
|
alpar@1
|
655 |
int glp_ios_next_node(glp_tree *T, int p);
|
alpar@1
|
656 |
/* determine next active subproblem */
|
alpar@1
|
657 |
|
alpar@1
|
658 |
int glp_ios_prev_node(glp_tree *T, int p);
|
alpar@1
|
659 |
/* determine previous active subproblem */
|
alpar@1
|
660 |
|
alpar@1
|
661 |
int glp_ios_up_node(glp_tree *T, int p);
|
alpar@1
|
662 |
/* determine parent subproblem */
|
alpar@1
|
663 |
|
alpar@1
|
664 |
int glp_ios_node_level(glp_tree *T, int p);
|
alpar@1
|
665 |
/* determine subproblem level */
|
alpar@1
|
666 |
|
alpar@1
|
667 |
double glp_ios_node_bound(glp_tree *T, int p);
|
alpar@1
|
668 |
/* determine subproblem local bound */
|
alpar@1
|
669 |
|
alpar@1
|
670 |
int glp_ios_best_node(glp_tree *T);
|
alpar@1
|
671 |
/* find active subproblem with best local bound */
|
alpar@1
|
672 |
|
alpar@1
|
673 |
double glp_ios_mip_gap(glp_tree *T);
|
alpar@1
|
674 |
/* compute relative MIP gap */
|
alpar@1
|
675 |
|
alpar@1
|
676 |
void *glp_ios_node_data(glp_tree *T, int p);
|
alpar@1
|
677 |
/* access subproblem application-specific data */
|
alpar@1
|
678 |
|
alpar@1
|
679 |
void glp_ios_row_attr(glp_tree *T, int i, glp_attr *attr);
|
alpar@1
|
680 |
/* retrieve additional row attributes */
|
alpar@1
|
681 |
|
alpar@1
|
682 |
int glp_ios_pool_size(glp_tree *T);
|
alpar@1
|
683 |
/* determine current size of the cut pool */
|
alpar@1
|
684 |
|
alpar@1
|
685 |
int glp_ios_add_row(glp_tree *T,
|
alpar@1
|
686 |
const char *name, int klass, int flags, int len, const int ind[],
|
alpar@1
|
687 |
const double val[], int type, double rhs);
|
alpar@1
|
688 |
/* add row (constraint) to the cut pool */
|
alpar@1
|
689 |
|
alpar@1
|
690 |
void glp_ios_del_row(glp_tree *T, int i);
|
alpar@1
|
691 |
/* remove row (constraint) from the cut pool */
|
alpar@1
|
692 |
|
alpar@1
|
693 |
void glp_ios_clear_pool(glp_tree *T);
|
alpar@1
|
694 |
/* remove all rows (constraints) from the cut pool */
|
alpar@1
|
695 |
|
alpar@1
|
696 |
int glp_ios_can_branch(glp_tree *T, int j);
|
alpar@1
|
697 |
/* check if can branch upon specified variable */
|
alpar@1
|
698 |
|
alpar@1
|
699 |
void glp_ios_branch_upon(glp_tree *T, int j, int sel);
|
alpar@1
|
700 |
/* choose variable to branch upon */
|
alpar@1
|
701 |
|
alpar@1
|
702 |
void glp_ios_select_node(glp_tree *T, int p);
|
alpar@1
|
703 |
/* select subproblem to continue the search */
|
alpar@1
|
704 |
|
alpar@1
|
705 |
int glp_ios_heur_sol(glp_tree *T, const double x[]);
|
alpar@1
|
706 |
/* provide solution found by heuristic */
|
alpar@1
|
707 |
|
alpar@1
|
708 |
void glp_ios_terminate(glp_tree *T);
|
alpar@1
|
709 |
/* terminate the solution process */
|
alpar@1
|
710 |
|
alpar@1
|
711 |
void glp_init_mpscp(glp_mpscp *parm);
|
alpar@1
|
712 |
/* initialize MPS format control parameters */
|
alpar@1
|
713 |
|
alpar@1
|
714 |
int glp_read_mps(glp_prob *P, int fmt, const glp_mpscp *parm,
|
alpar@1
|
715 |
const char *fname);
|
alpar@1
|
716 |
/* read problem data in MPS format */
|
alpar@1
|
717 |
|
alpar@1
|
718 |
int glp_write_mps(glp_prob *P, int fmt, const glp_mpscp *parm,
|
alpar@1
|
719 |
const char *fname);
|
alpar@1
|
720 |
/* write problem data in MPS format */
|
alpar@1
|
721 |
|
alpar@1
|
722 |
void glp_init_cpxcp(glp_cpxcp *parm);
|
alpar@1
|
723 |
/* initialize CPLEX LP format control parameters */
|
alpar@1
|
724 |
|
alpar@1
|
725 |
int glp_read_lp(glp_prob *P, const glp_cpxcp *parm, const char *fname);
|
alpar@1
|
726 |
/* read problem data in CPLEX LP format */
|
alpar@1
|
727 |
|
alpar@1
|
728 |
int glp_write_lp(glp_prob *P, const glp_cpxcp *parm, const char *fname);
|
alpar@1
|
729 |
/* write problem data in CPLEX LP format */
|
alpar@1
|
730 |
|
alpar@1
|
731 |
int glp_read_prob(glp_prob *P, int flags, const char *fname);
|
alpar@1
|
732 |
/* read problem data in GLPK format */
|
alpar@1
|
733 |
|
alpar@1
|
734 |
int glp_write_prob(glp_prob *P, int flags, const char *fname);
|
alpar@1
|
735 |
/* write problem data in GLPK format */
|
alpar@1
|
736 |
|
alpar@1
|
737 |
glp_tran *glp_mpl_alloc_wksp(void);
|
alpar@1
|
738 |
/* allocate the MathProg translator workspace */
|
alpar@1
|
739 |
|
alpar@1
|
740 |
int glp_mpl_read_model(glp_tran *tran, const char *fname, int skip);
|
alpar@1
|
741 |
/* read and translate model section */
|
alpar@1
|
742 |
|
alpar@1
|
743 |
int glp_mpl_read_data(glp_tran *tran, const char *fname);
|
alpar@1
|
744 |
/* read and translate data section */
|
alpar@1
|
745 |
|
alpar@1
|
746 |
int glp_mpl_generate(glp_tran *tran, const char *fname);
|
alpar@1
|
747 |
/* generate the model */
|
alpar@1
|
748 |
|
alpar@1
|
749 |
void glp_mpl_build_prob(glp_tran *tran, glp_prob *prob);
|
alpar@1
|
750 |
/* build LP/MIP problem instance from the model */
|
alpar@1
|
751 |
|
alpar@1
|
752 |
int glp_mpl_postsolve(glp_tran *tran, glp_prob *prob, int sol);
|
alpar@1
|
753 |
/* postsolve the model */
|
alpar@1
|
754 |
|
alpar@1
|
755 |
void glp_mpl_free_wksp(glp_tran *tran);
|
alpar@1
|
756 |
/* free the MathProg translator workspace */
|
alpar@1
|
757 |
|
alpar@1
|
758 |
int glp_main(int argc, const char *argv[]);
|
alpar@1
|
759 |
/* stand-alone LP/MIP solver */
|
alpar@1
|
760 |
|
alpar@1
|
761 |
/**********************************************************************/
|
alpar@1
|
762 |
|
alpar@1
|
763 |
#ifndef GLP_LONG_DEFINED
|
alpar@1
|
764 |
#define GLP_LONG_DEFINED
|
alpar@1
|
765 |
typedef struct { int lo, hi; } glp_long;
|
alpar@1
|
766 |
/* long integer data type */
|
alpar@1
|
767 |
#endif
|
alpar@1
|
768 |
|
alpar@1
|
769 |
int glp_init_env(void);
|
alpar@1
|
770 |
/* initialize GLPK environment */
|
alpar@1
|
771 |
|
alpar@1
|
772 |
const char *glp_version(void);
|
alpar@1
|
773 |
/* determine library version */
|
alpar@1
|
774 |
|
alpar@1
|
775 |
int glp_free_env(void);
|
alpar@1
|
776 |
/* free GLPK environment */
|
alpar@1
|
777 |
|
alpar@1
|
778 |
void glp_printf(const char *fmt, ...);
|
alpar@1
|
779 |
/* write formatted output to terminal */
|
alpar@1
|
780 |
|
alpar@1
|
781 |
void glp_vprintf(const char *fmt, va_list arg);
|
alpar@1
|
782 |
/* write formatted output to terminal */
|
alpar@1
|
783 |
|
alpar@1
|
784 |
int glp_term_out(int flag);
|
alpar@1
|
785 |
/* enable/disable terminal output */
|
alpar@1
|
786 |
|
alpar@1
|
787 |
void glp_term_hook(int (*func)(void *info, const char *s), void *info);
|
alpar@1
|
788 |
/* install hook to intercept terminal output */
|
alpar@1
|
789 |
|
alpar@1
|
790 |
int glp_open_tee(const char *fname);
|
alpar@1
|
791 |
/* start copying terminal output to text file */
|
alpar@1
|
792 |
|
alpar@1
|
793 |
int glp_close_tee(void);
|
alpar@1
|
794 |
/* stop copying terminal output to text file */
|
alpar@1
|
795 |
|
alpar@1
|
796 |
#ifndef GLP_ERROR_DEFINED
|
alpar@1
|
797 |
#define GLP_ERROR_DEFINED
|
alpar@1
|
798 |
typedef void (*_glp_error)(const char *fmt, ...);
|
alpar@1
|
799 |
#endif
|
alpar@1
|
800 |
|
alpar@1
|
801 |
#define glp_error glp_error_(__FILE__, __LINE__)
|
alpar@1
|
802 |
_glp_error glp_error_(const char *file, int line);
|
alpar@1
|
803 |
/* display error message and terminate execution */
|
alpar@1
|
804 |
|
alpar@1
|
805 |
#define glp_assert(expr) \
|
alpar@1
|
806 |
((void)((expr) || (glp_assert_(#expr, __FILE__, __LINE__), 1)))
|
alpar@1
|
807 |
void glp_assert_(const char *expr, const char *file, int line);
|
alpar@1
|
808 |
/* check for logical condition */
|
alpar@1
|
809 |
|
alpar@1
|
810 |
void glp_error_hook(void (*func)(void *info), void *info);
|
alpar@1
|
811 |
/* install hook to intercept abnormal termination */
|
alpar@1
|
812 |
|
alpar@1
|
813 |
void *glp_malloc(int size);
|
alpar@1
|
814 |
/* allocate memory block */
|
alpar@1
|
815 |
|
alpar@1
|
816 |
void *glp_calloc(int n, int size);
|
alpar@1
|
817 |
/* allocate memory block */
|
alpar@1
|
818 |
|
alpar@1
|
819 |
void glp_free(void *ptr);
|
alpar@1
|
820 |
/* free memory block */
|
alpar@1
|
821 |
|
alpar@1
|
822 |
void glp_mem_limit(int limit);
|
alpar@1
|
823 |
/* set memory usage limit */
|
alpar@1
|
824 |
|
alpar@1
|
825 |
void glp_mem_usage(int *count, int *cpeak, glp_long *total,
|
alpar@1
|
826 |
glp_long *tpeak);
|
alpar@1
|
827 |
/* get memory usage information */
|
alpar@1
|
828 |
|
alpar@1
|
829 |
glp_long glp_time(void);
|
alpar@1
|
830 |
/* determine current universal time */
|
alpar@1
|
831 |
|
alpar@1
|
832 |
double glp_difftime(glp_long t1, glp_long t0);
|
alpar@1
|
833 |
/* compute difference between two time values */
|
alpar@1
|
834 |
|
alpar@1
|
835 |
/**********************************************************************/
|
alpar@1
|
836 |
|
alpar@1
|
837 |
#ifndef GLP_DATA_DEFINED
|
alpar@1
|
838 |
#define GLP_DATA_DEFINED
|
alpar@1
|
839 |
typedef struct { double _opaque_data[100]; } glp_data;
|
alpar@1
|
840 |
/* plain data file */
|
alpar@1
|
841 |
#endif
|
alpar@1
|
842 |
|
alpar@1
|
843 |
glp_data *glp_sdf_open_file(const char *fname);
|
alpar@1
|
844 |
/* open plain data file */
|
alpar@1
|
845 |
|
alpar@1
|
846 |
void glp_sdf_set_jump(glp_data *data, void *jump);
|
alpar@1
|
847 |
/* set up error handling */
|
alpar@1
|
848 |
|
alpar@1
|
849 |
void glp_sdf_error(glp_data *data, const char *fmt, ...);
|
alpar@1
|
850 |
/* print error message */
|
alpar@1
|
851 |
|
alpar@1
|
852 |
void glp_sdf_warning(glp_data *data, const char *fmt, ...);
|
alpar@1
|
853 |
/* print warning message */
|
alpar@1
|
854 |
|
alpar@1
|
855 |
int glp_sdf_read_int(glp_data *data);
|
alpar@1
|
856 |
/* read integer number */
|
alpar@1
|
857 |
|
alpar@1
|
858 |
double glp_sdf_read_num(glp_data *data);
|
alpar@1
|
859 |
/* read floating-point number */
|
alpar@1
|
860 |
|
alpar@1
|
861 |
const char *glp_sdf_read_item(glp_data *data);
|
alpar@1
|
862 |
/* read data item */
|
alpar@1
|
863 |
|
alpar@1
|
864 |
const char *glp_sdf_read_text(glp_data *data);
|
alpar@1
|
865 |
/* read text until end of line */
|
alpar@1
|
866 |
|
alpar@1
|
867 |
int glp_sdf_line(glp_data *data);
|
alpar@1
|
868 |
/* determine current line number */
|
alpar@1
|
869 |
|
alpar@1
|
870 |
void glp_sdf_close_file(glp_data *data);
|
alpar@1
|
871 |
/* close plain data file */
|
alpar@1
|
872 |
|
alpar@1
|
873 |
/**********************************************************************/
|
alpar@1
|
874 |
|
alpar@1
|
875 |
typedef struct _glp_graph glp_graph;
|
alpar@1
|
876 |
typedef struct _glp_vertex glp_vertex;
|
alpar@1
|
877 |
typedef struct _glp_arc glp_arc;
|
alpar@1
|
878 |
|
alpar@1
|
879 |
struct _glp_graph
|
alpar@1
|
880 |
{ /* graph descriptor */
|
alpar@1
|
881 |
void *pool; /* DMP *pool; */
|
alpar@1
|
882 |
/* memory pool to store graph components */
|
alpar@1
|
883 |
char *name;
|
alpar@1
|
884 |
/* graph name (1 to 255 chars); NULL means no name is assigned
|
alpar@1
|
885 |
to the graph */
|
alpar@1
|
886 |
int nv_max;
|
alpar@1
|
887 |
/* length of the vertex list (enlarged automatically) */
|
alpar@1
|
888 |
int nv;
|
alpar@1
|
889 |
/* number of vertices in the graph, 0 <= nv <= nv_max */
|
alpar@1
|
890 |
int na;
|
alpar@1
|
891 |
/* number of arcs in the graph, na >= 0 */
|
alpar@1
|
892 |
glp_vertex **v; /* glp_vertex *v[1+nv_max]; */
|
alpar@1
|
893 |
/* v[i], 1 <= i <= nv, is a pointer to i-th vertex */
|
alpar@1
|
894 |
void *index; /* AVL *index; */
|
alpar@1
|
895 |
/* vertex index to find vertices by their names; NULL means the
|
alpar@1
|
896 |
index does not exist */
|
alpar@1
|
897 |
int v_size;
|
alpar@1
|
898 |
/* size of data associated with each vertex (0 to 256 bytes) */
|
alpar@1
|
899 |
int a_size;
|
alpar@1
|
900 |
/* size of data associated with each arc (0 to 256 bytes) */
|
alpar@1
|
901 |
};
|
alpar@1
|
902 |
|
alpar@1
|
903 |
struct _glp_vertex
|
alpar@1
|
904 |
{ /* vertex descriptor */
|
alpar@1
|
905 |
int i;
|
alpar@1
|
906 |
/* vertex ordinal number, 1 <= i <= nv */
|
alpar@1
|
907 |
char *name;
|
alpar@1
|
908 |
/* vertex name (1 to 255 chars); NULL means no name is assigned
|
alpar@1
|
909 |
to the vertex */
|
alpar@1
|
910 |
void *entry; /* AVLNODE *entry; */
|
alpar@1
|
911 |
/* pointer to corresponding entry in the vertex index; NULL means
|
alpar@1
|
912 |
that either the index does not exist or the vertex has no name
|
alpar@1
|
913 |
assigned */
|
alpar@1
|
914 |
void *data;
|
alpar@1
|
915 |
/* pointer to data associated with the vertex */
|
alpar@1
|
916 |
void *temp;
|
alpar@1
|
917 |
/* working pointer */
|
alpar@1
|
918 |
glp_arc *in;
|
alpar@1
|
919 |
/* pointer to the (unordered) list of incoming arcs */
|
alpar@1
|
920 |
glp_arc *out;
|
alpar@1
|
921 |
/* pointer to the (unordered) list of outgoing arcs */
|
alpar@1
|
922 |
};
|
alpar@1
|
923 |
|
alpar@1
|
924 |
struct _glp_arc
|
alpar@1
|
925 |
{ /* arc descriptor */
|
alpar@1
|
926 |
glp_vertex *tail;
|
alpar@1
|
927 |
/* pointer to the tail endpoint */
|
alpar@1
|
928 |
glp_vertex *head;
|
alpar@1
|
929 |
/* pointer to the head endpoint */
|
alpar@1
|
930 |
void *data;
|
alpar@1
|
931 |
/* pointer to data associated with the arc */
|
alpar@1
|
932 |
void *temp;
|
alpar@1
|
933 |
/* working pointer */
|
alpar@1
|
934 |
glp_arc *t_prev;
|
alpar@1
|
935 |
/* pointer to previous arc having the same tail endpoint */
|
alpar@1
|
936 |
glp_arc *t_next;
|
alpar@1
|
937 |
/* pointer to next arc having the same tail endpoint */
|
alpar@1
|
938 |
glp_arc *h_prev;
|
alpar@1
|
939 |
/* pointer to previous arc having the same head endpoint */
|
alpar@1
|
940 |
glp_arc *h_next;
|
alpar@1
|
941 |
/* pointer to next arc having the same head endpoint */
|
alpar@1
|
942 |
};
|
alpar@1
|
943 |
|
alpar@1
|
944 |
glp_graph *glp_create_graph(int v_size, int a_size);
|
alpar@1
|
945 |
/* create graph */
|
alpar@1
|
946 |
|
alpar@1
|
947 |
void glp_set_graph_name(glp_graph *G, const char *name);
|
alpar@1
|
948 |
/* assign (change) graph name */
|
alpar@1
|
949 |
|
alpar@1
|
950 |
int glp_add_vertices(glp_graph *G, int nadd);
|
alpar@1
|
951 |
/* add new vertices to graph */
|
alpar@1
|
952 |
|
alpar@1
|
953 |
void glp_set_vertex_name(glp_graph *G, int i, const char *name);
|
alpar@1
|
954 |
/* assign (change) vertex name */
|
alpar@1
|
955 |
|
alpar@1
|
956 |
glp_arc *glp_add_arc(glp_graph *G, int i, int j);
|
alpar@1
|
957 |
/* add new arc to graph */
|
alpar@1
|
958 |
|
alpar@1
|
959 |
void glp_del_vertices(glp_graph *G, int ndel, const int num[]);
|
alpar@1
|
960 |
/* delete vertices from graph */
|
alpar@1
|
961 |
|
alpar@1
|
962 |
void glp_del_arc(glp_graph *G, glp_arc *a);
|
alpar@1
|
963 |
/* delete arc from graph */
|
alpar@1
|
964 |
|
alpar@1
|
965 |
void glp_erase_graph(glp_graph *G, int v_size, int a_size);
|
alpar@1
|
966 |
/* erase graph content */
|
alpar@1
|
967 |
|
alpar@1
|
968 |
void glp_delete_graph(glp_graph *G);
|
alpar@1
|
969 |
/* delete graph */
|
alpar@1
|
970 |
|
alpar@1
|
971 |
void glp_create_v_index(glp_graph *G);
|
alpar@1
|
972 |
/* create vertex name index */
|
alpar@1
|
973 |
|
alpar@1
|
974 |
int glp_find_vertex(glp_graph *G, const char *name);
|
alpar@1
|
975 |
/* find vertex by its name */
|
alpar@1
|
976 |
|
alpar@1
|
977 |
void glp_delete_v_index(glp_graph *G);
|
alpar@1
|
978 |
/* delete vertex name index */
|
alpar@1
|
979 |
|
alpar@1
|
980 |
int glp_read_graph(glp_graph *G, const char *fname);
|
alpar@1
|
981 |
/* read graph from plain text file */
|
alpar@1
|
982 |
|
alpar@1
|
983 |
int glp_write_graph(glp_graph *G, const char *fname);
|
alpar@1
|
984 |
/* write graph to plain text file */
|
alpar@1
|
985 |
|
alpar@1
|
986 |
void glp_mincost_lp(glp_prob *P, glp_graph *G, int names, int v_rhs,
|
alpar@1
|
987 |
int a_low, int a_cap, int a_cost);
|
alpar@1
|
988 |
/* convert minimum cost flow problem to LP */
|
alpar@1
|
989 |
|
alpar@1
|
990 |
int glp_mincost_okalg(glp_graph *G, int v_rhs, int a_low, int a_cap,
|
alpar@1
|
991 |
int a_cost, double *sol, int a_x, int v_pi);
|
alpar@1
|
992 |
/* find minimum-cost flow with out-of-kilter algorithm */
|
alpar@1
|
993 |
|
alpar@1
|
994 |
void glp_maxflow_lp(glp_prob *P, glp_graph *G, int names, int s,
|
alpar@1
|
995 |
int t, int a_cap);
|
alpar@1
|
996 |
/* convert maximum flow problem to LP */
|
alpar@1
|
997 |
|
alpar@1
|
998 |
int glp_maxflow_ffalg(glp_graph *G, int s, int t, int a_cap,
|
alpar@1
|
999 |
double *sol, int a_x, int v_cut);
|
alpar@1
|
1000 |
/* find maximal flow with Ford-Fulkerson algorithm */
|
alpar@1
|
1001 |
|
alpar@1
|
1002 |
int glp_check_asnprob(glp_graph *G, int v_set);
|
alpar@1
|
1003 |
/* check correctness of assignment problem data */
|
alpar@1
|
1004 |
|
alpar@1
|
1005 |
/* assignment problem formulation: */
|
alpar@1
|
1006 |
#define GLP_ASN_MIN 1 /* perfect matching (minimization) */
|
alpar@1
|
1007 |
#define GLP_ASN_MAX 2 /* perfect matching (maximization) */
|
alpar@1
|
1008 |
#define GLP_ASN_MMP 3 /* maximum matching */
|
alpar@1
|
1009 |
|
alpar@1
|
1010 |
int glp_asnprob_lp(glp_prob *P, int form, glp_graph *G, int names,
|
alpar@1
|
1011 |
int v_set, int a_cost);
|
alpar@1
|
1012 |
/* convert assignment problem to LP */
|
alpar@1
|
1013 |
|
alpar@1
|
1014 |
int glp_asnprob_okalg(int form, glp_graph *G, int v_set, int a_cost,
|
alpar@1
|
1015 |
double *sol, int a_x);
|
alpar@1
|
1016 |
/* solve assignment problem with out-of-kilter algorithm */
|
alpar@1
|
1017 |
|
alpar@1
|
1018 |
int glp_asnprob_hall(glp_graph *G, int v_set, int a_x);
|
alpar@1
|
1019 |
/* find bipartite matching of maximum cardinality */
|
alpar@1
|
1020 |
|
alpar@1
|
1021 |
double glp_cpp(glp_graph *G, int v_t, int v_es, int v_ls);
|
alpar@1
|
1022 |
/* solve critical path problem */
|
alpar@1
|
1023 |
|
alpar@1
|
1024 |
int glp_read_mincost(glp_graph *G, int v_rhs, int a_low, int a_cap,
|
alpar@1
|
1025 |
int a_cost, const char *fname);
|
alpar@1
|
1026 |
/* read min-cost flow problem data in DIMACS format */
|
alpar@1
|
1027 |
|
alpar@1
|
1028 |
int glp_write_mincost(glp_graph *G, int v_rhs, int a_low, int a_cap,
|
alpar@1
|
1029 |
int a_cost, const char *fname);
|
alpar@1
|
1030 |
/* write min-cost flow problem data in DIMACS format */
|
alpar@1
|
1031 |
|
alpar@1
|
1032 |
int glp_read_maxflow(glp_graph *G, int *s, int *t, int a_cap,
|
alpar@1
|
1033 |
const char *fname);
|
alpar@1
|
1034 |
/* read maximum flow problem data in DIMACS format */
|
alpar@1
|
1035 |
|
alpar@1
|
1036 |
int glp_write_maxflow(glp_graph *G, int s, int t, int a_cap,
|
alpar@1
|
1037 |
const char *fname);
|
alpar@1
|
1038 |
/* write maximum flow problem data in DIMACS format */
|
alpar@1
|
1039 |
|
alpar@1
|
1040 |
int glp_read_asnprob(glp_graph *G, int v_set, int a_cost, const char
|
alpar@1
|
1041 |
*fname);
|
alpar@1
|
1042 |
/* read assignment problem data in DIMACS format */
|
alpar@1
|
1043 |
|
alpar@1
|
1044 |
int glp_write_asnprob(glp_graph *G, int v_set, int a_cost, const char
|
alpar@1
|
1045 |
*fname);
|
alpar@1
|
1046 |
/* write assignment problem data in DIMACS format */
|
alpar@1
|
1047 |
|
alpar@1
|
1048 |
int glp_read_ccdata(glp_graph *G, int v_wgt, const char *fname);
|
alpar@1
|
1049 |
/* read graph in DIMACS clique/coloring format */
|
alpar@1
|
1050 |
|
alpar@1
|
1051 |
int glp_write_ccdata(glp_graph *G, int v_wgt, const char *fname);
|
alpar@1
|
1052 |
/* write graph in DIMACS clique/coloring format */
|
alpar@1
|
1053 |
|
alpar@1
|
1054 |
int glp_netgen(glp_graph *G, int v_rhs, int a_cap, int a_cost,
|
alpar@1
|
1055 |
const int parm[1+15]);
|
alpar@1
|
1056 |
/* Klingman's network problem generator */
|
alpar@1
|
1057 |
|
alpar@1
|
1058 |
int glp_gridgen(glp_graph *G, int v_rhs, int a_cap, int a_cost,
|
alpar@1
|
1059 |
const int parm[1+14]);
|
alpar@1
|
1060 |
/* grid-like network problem generator */
|
alpar@1
|
1061 |
|
alpar@1
|
1062 |
int glp_rmfgen(glp_graph *G, int *s, int *t, int a_cap,
|
alpar@1
|
1063 |
const int parm[1+5]);
|
alpar@1
|
1064 |
/* Goldfarb's maximum flow problem generator */
|
alpar@1
|
1065 |
|
alpar@1
|
1066 |
int glp_weak_comp(glp_graph *G, int v_num);
|
alpar@1
|
1067 |
/* find all weakly connected components of graph */
|
alpar@1
|
1068 |
|
alpar@1
|
1069 |
int glp_strong_comp(glp_graph *G, int v_num);
|
alpar@1
|
1070 |
/* find all strongly connected components of graph */
|
alpar@1
|
1071 |
|
alpar@1
|
1072 |
int glp_top_sort(glp_graph *G, int v_num);
|
alpar@1
|
1073 |
/* topological sorting of acyclic digraph */
|
alpar@1
|
1074 |
|
alpar@1
|
1075 |
int glp_wclique_exact(glp_graph *G, int v_wgt, double *sol, int v_set);
|
alpar@1
|
1076 |
/* find maximum weight clique with exact algorithm */
|
alpar@1
|
1077 |
|
alpar@1
|
1078 |
/***********************************************************************
|
alpar@1
|
1079 |
* NOTE: All symbols defined below are obsolete and kept here only for
|
alpar@1
|
1080 |
* backward compatibility.
|
alpar@1
|
1081 |
***********************************************************************/
|
alpar@1
|
1082 |
|
alpar@1
|
1083 |
#define LPX glp_prob
|
alpar@1
|
1084 |
|
alpar@1
|
1085 |
/* problem class: */
|
alpar@1
|
1086 |
#define LPX_LP 100 /* linear programming (LP) */
|
alpar@1
|
1087 |
#define LPX_MIP 101 /* mixed integer programming (MIP) */
|
alpar@1
|
1088 |
|
alpar@1
|
1089 |
/* type of auxiliary/structural variable: */
|
alpar@1
|
1090 |
#define LPX_FR 110 /* free variable */
|
alpar@1
|
1091 |
#define LPX_LO 111 /* variable with lower bound */
|
alpar@1
|
1092 |
#define LPX_UP 112 /* variable with upper bound */
|
alpar@1
|
1093 |
#define LPX_DB 113 /* double-bounded variable */
|
alpar@1
|
1094 |
#define LPX_FX 114 /* fixed variable */
|
alpar@1
|
1095 |
|
alpar@1
|
1096 |
/* optimization direction flag: */
|
alpar@1
|
1097 |
#define LPX_MIN 120 /* minimization */
|
alpar@1
|
1098 |
#define LPX_MAX 121 /* maximization */
|
alpar@1
|
1099 |
|
alpar@1
|
1100 |
/* status of primal basic solution: */
|
alpar@1
|
1101 |
#define LPX_P_UNDEF 132 /* primal solution is undefined */
|
alpar@1
|
1102 |
#define LPX_P_FEAS 133 /* solution is primal feasible */
|
alpar@1
|
1103 |
#define LPX_P_INFEAS 134 /* solution is primal infeasible */
|
alpar@1
|
1104 |
#define LPX_P_NOFEAS 135 /* no primal feasible solution exists */
|
alpar@1
|
1105 |
|
alpar@1
|
1106 |
/* status of dual basic solution: */
|
alpar@1
|
1107 |
#define LPX_D_UNDEF 136 /* dual solution is undefined */
|
alpar@1
|
1108 |
#define LPX_D_FEAS 137 /* solution is dual feasible */
|
alpar@1
|
1109 |
#define LPX_D_INFEAS 138 /* solution is dual infeasible */
|
alpar@1
|
1110 |
#define LPX_D_NOFEAS 139 /* no dual feasible solution exists */
|
alpar@1
|
1111 |
|
alpar@1
|
1112 |
/* status of auxiliary/structural variable: */
|
alpar@1
|
1113 |
#define LPX_BS 140 /* basic variable */
|
alpar@1
|
1114 |
#define LPX_NL 141 /* non-basic variable on lower bound */
|
alpar@1
|
1115 |
#define LPX_NU 142 /* non-basic variable on upper bound */
|
alpar@1
|
1116 |
#define LPX_NF 143 /* non-basic free variable */
|
alpar@1
|
1117 |
#define LPX_NS 144 /* non-basic fixed variable */
|
alpar@1
|
1118 |
|
alpar@1
|
1119 |
/* status of interior-point solution: */
|
alpar@1
|
1120 |
#define LPX_T_UNDEF 150 /* interior solution is undefined */
|
alpar@1
|
1121 |
#define LPX_T_OPT 151 /* interior solution is optimal */
|
alpar@1
|
1122 |
|
alpar@1
|
1123 |
/* kind of structural variable: */
|
alpar@1
|
1124 |
#define LPX_CV 160 /* continuous variable */
|
alpar@1
|
1125 |
#define LPX_IV 161 /* integer variable */
|
alpar@1
|
1126 |
|
alpar@1
|
1127 |
/* status of integer solution: */
|
alpar@1
|
1128 |
#define LPX_I_UNDEF 170 /* integer solution is undefined */
|
alpar@1
|
1129 |
#define LPX_I_OPT 171 /* integer solution is optimal */
|
alpar@1
|
1130 |
#define LPX_I_FEAS 172 /* integer solution is feasible */
|
alpar@1
|
1131 |
#define LPX_I_NOFEAS 173 /* no integer solution exists */
|
alpar@1
|
1132 |
|
alpar@1
|
1133 |
/* status codes reported by the routine lpx_get_status: */
|
alpar@1
|
1134 |
#define LPX_OPT 180 /* optimal */
|
alpar@1
|
1135 |
#define LPX_FEAS 181 /* feasible */
|
alpar@1
|
1136 |
#define LPX_INFEAS 182 /* infeasible */
|
alpar@1
|
1137 |
#define LPX_NOFEAS 183 /* no feasible */
|
alpar@1
|
1138 |
#define LPX_UNBND 184 /* unbounded */
|
alpar@1
|
1139 |
#define LPX_UNDEF 185 /* undefined */
|
alpar@1
|
1140 |
|
alpar@1
|
1141 |
/* exit codes returned by solver routines: */
|
alpar@1
|
1142 |
#define LPX_E_OK 200 /* success */
|
alpar@1
|
1143 |
#define LPX_E_EMPTY 201 /* empty problem */
|
alpar@1
|
1144 |
#define LPX_E_BADB 202 /* invalid initial basis */
|
alpar@1
|
1145 |
#define LPX_E_INFEAS 203 /* infeasible initial solution */
|
alpar@1
|
1146 |
#define LPX_E_FAULT 204 /* unable to start the search */
|
alpar@1
|
1147 |
#define LPX_E_OBJLL 205 /* objective lower limit reached */
|
alpar@1
|
1148 |
#define LPX_E_OBJUL 206 /* objective upper limit reached */
|
alpar@1
|
1149 |
#define LPX_E_ITLIM 207 /* iterations limit exhausted */
|
alpar@1
|
1150 |
#define LPX_E_TMLIM 208 /* time limit exhausted */
|
alpar@1
|
1151 |
#define LPX_E_NOFEAS 209 /* no feasible solution */
|
alpar@1
|
1152 |
#define LPX_E_INSTAB 210 /* numerical instability */
|
alpar@1
|
1153 |
#define LPX_E_SING 211 /* problems with basis matrix */
|
alpar@1
|
1154 |
#define LPX_E_NOCONV 212 /* no convergence (interior) */
|
alpar@1
|
1155 |
#define LPX_E_NOPFS 213 /* no primal feas. sol. (LP presolver) */
|
alpar@1
|
1156 |
#define LPX_E_NODFS 214 /* no dual feas. sol. (LP presolver) */
|
alpar@1
|
1157 |
#define LPX_E_MIPGAP 215 /* relative mip gap tolerance reached */
|
alpar@1
|
1158 |
|
alpar@1
|
1159 |
/* control parameter identifiers: */
|
alpar@1
|
1160 |
#define LPX_K_MSGLEV 300 /* lp->msg_lev */
|
alpar@1
|
1161 |
#define LPX_K_SCALE 301 /* lp->scale */
|
alpar@1
|
1162 |
#define LPX_K_DUAL 302 /* lp->dual */
|
alpar@1
|
1163 |
#define LPX_K_PRICE 303 /* lp->price */
|
alpar@1
|
1164 |
#define LPX_K_RELAX 304 /* lp->relax */
|
alpar@1
|
1165 |
#define LPX_K_TOLBND 305 /* lp->tol_bnd */
|
alpar@1
|
1166 |
#define LPX_K_TOLDJ 306 /* lp->tol_dj */
|
alpar@1
|
1167 |
#define LPX_K_TOLPIV 307 /* lp->tol_piv */
|
alpar@1
|
1168 |
#define LPX_K_ROUND 308 /* lp->round */
|
alpar@1
|
1169 |
#define LPX_K_OBJLL 309 /* lp->obj_ll */
|
alpar@1
|
1170 |
#define LPX_K_OBJUL 310 /* lp->obj_ul */
|
alpar@1
|
1171 |
#define LPX_K_ITLIM 311 /* lp->it_lim */
|
alpar@1
|
1172 |
#define LPX_K_ITCNT 312 /* lp->it_cnt */
|
alpar@1
|
1173 |
#define LPX_K_TMLIM 313 /* lp->tm_lim */
|
alpar@1
|
1174 |
#define LPX_K_OUTFRQ 314 /* lp->out_frq */
|
alpar@1
|
1175 |
#define LPX_K_OUTDLY 315 /* lp->out_dly */
|
alpar@1
|
1176 |
#define LPX_K_BRANCH 316 /* lp->branch */
|
alpar@1
|
1177 |
#define LPX_K_BTRACK 317 /* lp->btrack */
|
alpar@1
|
1178 |
#define LPX_K_TOLINT 318 /* lp->tol_int */
|
alpar@1
|
1179 |
#define LPX_K_TOLOBJ 319 /* lp->tol_obj */
|
alpar@1
|
1180 |
#define LPX_K_MPSINFO 320 /* lp->mps_info */
|
alpar@1
|
1181 |
#define LPX_K_MPSOBJ 321 /* lp->mps_obj */
|
alpar@1
|
1182 |
#define LPX_K_MPSORIG 322 /* lp->mps_orig */
|
alpar@1
|
1183 |
#define LPX_K_MPSWIDE 323 /* lp->mps_wide */
|
alpar@1
|
1184 |
#define LPX_K_MPSFREE 324 /* lp->mps_free */
|
alpar@1
|
1185 |
#define LPX_K_MPSSKIP 325 /* lp->mps_skip */
|
alpar@1
|
1186 |
#define LPX_K_LPTORIG 326 /* lp->lpt_orig */
|
alpar@1
|
1187 |
#define LPX_K_PRESOL 327 /* lp->presol */
|
alpar@1
|
1188 |
#define LPX_K_BINARIZE 328 /* lp->binarize */
|
alpar@1
|
1189 |
#define LPX_K_USECUTS 329 /* lp->use_cuts */
|
alpar@1
|
1190 |
#define LPX_K_BFTYPE 330 /* lp->bfcp->type */
|
alpar@1
|
1191 |
#define LPX_K_MIPGAP 331 /* lp->mip_gap */
|
alpar@1
|
1192 |
|
alpar@1
|
1193 |
#define LPX_C_COVER 0x01 /* mixed cover cuts */
|
alpar@1
|
1194 |
#define LPX_C_CLIQUE 0x02 /* clique cuts */
|
alpar@1
|
1195 |
#define LPX_C_GOMORY 0x04 /* Gomory's mixed integer cuts */
|
alpar@1
|
1196 |
#define LPX_C_MIR 0x08 /* mixed integer rounding cuts */
|
alpar@1
|
1197 |
#define LPX_C_ALL 0xFF /* all cuts */
|
alpar@1
|
1198 |
|
alpar@1
|
1199 |
typedef struct
|
alpar@1
|
1200 |
{ /* this structure contains results reported by the routines which
|
alpar@1
|
1201 |
checks Karush-Kuhn-Tucker conditions (for details see comments
|
alpar@1
|
1202 |
to those routines) */
|
alpar@1
|
1203 |
/*--------------------------------------------------------------*/
|
alpar@1
|
1204 |
/* xR - A * xS = 0 (KKT.PE) */
|
alpar@1
|
1205 |
double pe_ae_max;
|
alpar@1
|
1206 |
/* largest absolute error */
|
alpar@1
|
1207 |
int pe_ae_row;
|
alpar@1
|
1208 |
/* number of row with largest absolute error */
|
alpar@1
|
1209 |
double pe_re_max;
|
alpar@1
|
1210 |
/* largest relative error */
|
alpar@1
|
1211 |
int pe_re_row;
|
alpar@1
|
1212 |
/* number of row with largest relative error */
|
alpar@1
|
1213 |
int pe_quality;
|
alpar@1
|
1214 |
/* quality of primal solution:
|
alpar@1
|
1215 |
'H' - high
|
alpar@1
|
1216 |
'M' - medium
|
alpar@1
|
1217 |
'L' - low
|
alpar@1
|
1218 |
'?' - primal solution is wrong */
|
alpar@1
|
1219 |
/*--------------------------------------------------------------*/
|
alpar@1
|
1220 |
/* l[k] <= x[k] <= u[k] (KKT.PB) */
|
alpar@1
|
1221 |
double pb_ae_max;
|
alpar@1
|
1222 |
/* largest absolute error */
|
alpar@1
|
1223 |
int pb_ae_ind;
|
alpar@1
|
1224 |
/* number of variable with largest absolute error */
|
alpar@1
|
1225 |
double pb_re_max;
|
alpar@1
|
1226 |
/* largest relative error */
|
alpar@1
|
1227 |
int pb_re_ind;
|
alpar@1
|
1228 |
/* number of variable with largest relative error */
|
alpar@1
|
1229 |
int pb_quality;
|
alpar@1
|
1230 |
/* quality of primal feasibility:
|
alpar@1
|
1231 |
'H' - high
|
alpar@1
|
1232 |
'M' - medium
|
alpar@1
|
1233 |
'L' - low
|
alpar@1
|
1234 |
'?' - primal solution is infeasible */
|
alpar@1
|
1235 |
/*--------------------------------------------------------------*/
|
alpar@1
|
1236 |
/* A' * (dR - cR) + (dS - cS) = 0 (KKT.DE) */
|
alpar@1
|
1237 |
double de_ae_max;
|
alpar@1
|
1238 |
/* largest absolute error */
|
alpar@1
|
1239 |
int de_ae_col;
|
alpar@1
|
1240 |
/* number of column with largest absolute error */
|
alpar@1
|
1241 |
double de_re_max;
|
alpar@1
|
1242 |
/* largest relative error */
|
alpar@1
|
1243 |
int de_re_col;
|
alpar@1
|
1244 |
/* number of column with largest relative error */
|
alpar@1
|
1245 |
int de_quality;
|
alpar@1
|
1246 |
/* quality of dual solution:
|
alpar@1
|
1247 |
'H' - high
|
alpar@1
|
1248 |
'M' - medium
|
alpar@1
|
1249 |
'L' - low
|
alpar@1
|
1250 |
'?' - dual solution is wrong */
|
alpar@1
|
1251 |
/*--------------------------------------------------------------*/
|
alpar@1
|
1252 |
/* d[k] >= 0 or d[k] <= 0 (KKT.DB) */
|
alpar@1
|
1253 |
double db_ae_max;
|
alpar@1
|
1254 |
/* largest absolute error */
|
alpar@1
|
1255 |
int db_ae_ind;
|
alpar@1
|
1256 |
/* number of variable with largest absolute error */
|
alpar@1
|
1257 |
double db_re_max;
|
alpar@1
|
1258 |
/* largest relative error */
|
alpar@1
|
1259 |
int db_re_ind;
|
alpar@1
|
1260 |
/* number of variable with largest relative error */
|
alpar@1
|
1261 |
int db_quality;
|
alpar@1
|
1262 |
/* quality of dual feasibility:
|
alpar@1
|
1263 |
'H' - high
|
alpar@1
|
1264 |
'M' - medium
|
alpar@1
|
1265 |
'L' - low
|
alpar@1
|
1266 |
'?' - dual solution is infeasible */
|
alpar@1
|
1267 |
/*--------------------------------------------------------------*/
|
alpar@1
|
1268 |
/* (x[k] - bound of x[k]) * d[k] = 0 (KKT.CS) */
|
alpar@1
|
1269 |
double cs_ae_max;
|
alpar@1
|
1270 |
/* largest absolute error */
|
alpar@1
|
1271 |
int cs_ae_ind;
|
alpar@1
|
1272 |
/* number of variable with largest absolute error */
|
alpar@1
|
1273 |
double cs_re_max;
|
alpar@1
|
1274 |
/* largest relative error */
|
alpar@1
|
1275 |
int cs_re_ind;
|
alpar@1
|
1276 |
/* number of variable with largest relative error */
|
alpar@1
|
1277 |
int cs_quality;
|
alpar@1
|
1278 |
/* quality of complementary slackness:
|
alpar@1
|
1279 |
'H' - high
|
alpar@1
|
1280 |
'M' - medium
|
alpar@1
|
1281 |
'L' - low
|
alpar@1
|
1282 |
'?' - primal and dual solutions are not complementary */
|
alpar@1
|
1283 |
} LPXKKT;
|
alpar@1
|
1284 |
|
alpar@1
|
1285 |
#define lpx_create_prob _glp_lpx_create_prob
|
alpar@1
|
1286 |
LPX *lpx_create_prob(void);
|
alpar@1
|
1287 |
/* create problem object */
|
alpar@1
|
1288 |
|
alpar@1
|
1289 |
#define lpx_set_prob_name _glp_lpx_set_prob_name
|
alpar@1
|
1290 |
void lpx_set_prob_name(LPX *lp, const char *name);
|
alpar@1
|
1291 |
/* assign (change) problem name */
|
alpar@1
|
1292 |
|
alpar@1
|
1293 |
#define lpx_set_obj_name _glp_lpx_set_obj_name
|
alpar@1
|
1294 |
void lpx_set_obj_name(LPX *lp, const char *name);
|
alpar@1
|
1295 |
/* assign (change) objective function name */
|
alpar@1
|
1296 |
|
alpar@1
|
1297 |
#define lpx_set_obj_dir _glp_lpx_set_obj_dir
|
alpar@1
|
1298 |
void lpx_set_obj_dir(LPX *lp, int dir);
|
alpar@1
|
1299 |
/* set (change) optimization direction flag */
|
alpar@1
|
1300 |
|
alpar@1
|
1301 |
#define lpx_add_rows _glp_lpx_add_rows
|
alpar@1
|
1302 |
int lpx_add_rows(LPX *lp, int nrs);
|
alpar@1
|
1303 |
/* add new rows to problem object */
|
alpar@1
|
1304 |
|
alpar@1
|
1305 |
#define lpx_add_cols _glp_lpx_add_cols
|
alpar@1
|
1306 |
int lpx_add_cols(LPX *lp, int ncs);
|
alpar@1
|
1307 |
/* add new columns to problem object */
|
alpar@1
|
1308 |
|
alpar@1
|
1309 |
#define lpx_set_row_name _glp_lpx_set_row_name
|
alpar@1
|
1310 |
void lpx_set_row_name(LPX *lp, int i, const char *name);
|
alpar@1
|
1311 |
/* assign (change) row name */
|
alpar@1
|
1312 |
|
alpar@1
|
1313 |
#define lpx_set_col_name _glp_lpx_set_col_name
|
alpar@1
|
1314 |
void lpx_set_col_name(LPX *lp, int j, const char *name);
|
alpar@1
|
1315 |
/* assign (change) column name */
|
alpar@1
|
1316 |
|
alpar@1
|
1317 |
#define lpx_set_row_bnds _glp_lpx_set_row_bnds
|
alpar@1
|
1318 |
void lpx_set_row_bnds(LPX *lp, int i, int type, double lb, double ub);
|
alpar@1
|
1319 |
/* set (change) row bounds */
|
alpar@1
|
1320 |
|
alpar@1
|
1321 |
#define lpx_set_col_bnds _glp_lpx_set_col_bnds
|
alpar@1
|
1322 |
void lpx_set_col_bnds(LPX *lp, int j, int type, double lb, double ub);
|
alpar@1
|
1323 |
/* set (change) column bounds */
|
alpar@1
|
1324 |
|
alpar@1
|
1325 |
#define lpx_set_obj_coef _glp_lpx_set_obj_coef
|
alpar@1
|
1326 |
void lpx_set_obj_coef(glp_prob *lp, int j, double coef);
|
alpar@1
|
1327 |
/* set (change) obj. coefficient or constant term */
|
alpar@1
|
1328 |
|
alpar@1
|
1329 |
#define lpx_set_mat_row _glp_lpx_set_mat_row
|
alpar@1
|
1330 |
void lpx_set_mat_row(LPX *lp, int i, int len, const int ind[],
|
alpar@1
|
1331 |
const double val[]);
|
alpar@1
|
1332 |
/* set (replace) row of the constraint matrix */
|
alpar@1
|
1333 |
|
alpar@1
|
1334 |
#define lpx_set_mat_col _glp_lpx_set_mat_col
|
alpar@1
|
1335 |
void lpx_set_mat_col(LPX *lp, int j, int len, const int ind[],
|
alpar@1
|
1336 |
const double val[]);
|
alpar@1
|
1337 |
/* set (replace) column of the constraint matrix */
|
alpar@1
|
1338 |
|
alpar@1
|
1339 |
#define lpx_load_matrix _glp_lpx_load_matrix
|
alpar@1
|
1340 |
void lpx_load_matrix(LPX *lp, int ne, const int ia[], const int ja[],
|
alpar@1
|
1341 |
const double ar[]);
|
alpar@1
|
1342 |
/* load (replace) the whole constraint matrix */
|
alpar@1
|
1343 |
|
alpar@1
|
1344 |
#define lpx_del_rows _glp_lpx_del_rows
|
alpar@1
|
1345 |
void lpx_del_rows(LPX *lp, int nrs, const int num[]);
|
alpar@1
|
1346 |
/* delete specified rows from problem object */
|
alpar@1
|
1347 |
|
alpar@1
|
1348 |
#define lpx_del_cols _glp_lpx_del_cols
|
alpar@1
|
1349 |
void lpx_del_cols(LPX *lp, int ncs, const int num[]);
|
alpar@1
|
1350 |
/* delete specified columns from problem object */
|
alpar@1
|
1351 |
|
alpar@1
|
1352 |
#define lpx_delete_prob _glp_lpx_delete_prob
|
alpar@1
|
1353 |
void lpx_delete_prob(LPX *lp);
|
alpar@1
|
1354 |
/* delete problem object */
|
alpar@1
|
1355 |
|
alpar@1
|
1356 |
#define lpx_get_prob_name _glp_lpx_get_prob_name
|
alpar@1
|
1357 |
const char *lpx_get_prob_name(LPX *lp);
|
alpar@1
|
1358 |
/* retrieve problem name */
|
alpar@1
|
1359 |
|
alpar@1
|
1360 |
#define lpx_get_obj_name _glp_lpx_get_obj_name
|
alpar@1
|
1361 |
const char *lpx_get_obj_name(LPX *lp);
|
alpar@1
|
1362 |
/* retrieve objective function name */
|
alpar@1
|
1363 |
|
alpar@1
|
1364 |
#define lpx_get_obj_dir _glp_lpx_get_obj_dir
|
alpar@1
|
1365 |
int lpx_get_obj_dir(LPX *lp);
|
alpar@1
|
1366 |
/* retrieve optimization direction flag */
|
alpar@1
|
1367 |
|
alpar@1
|
1368 |
#define lpx_get_num_rows _glp_lpx_get_num_rows
|
alpar@1
|
1369 |
int lpx_get_num_rows(LPX *lp);
|
alpar@1
|
1370 |
/* retrieve number of rows */
|
alpar@1
|
1371 |
|
alpar@1
|
1372 |
#define lpx_get_num_cols _glp_lpx_get_num_cols
|
alpar@1
|
1373 |
int lpx_get_num_cols(LPX *lp);
|
alpar@1
|
1374 |
/* retrieve number of columns */
|
alpar@1
|
1375 |
|
alpar@1
|
1376 |
#define lpx_get_row_name _glp_lpx_get_row_name
|
alpar@1
|
1377 |
const char *lpx_get_row_name(LPX *lp, int i);
|
alpar@1
|
1378 |
/* retrieve row name */
|
alpar@1
|
1379 |
|
alpar@1
|
1380 |
#define lpx_get_col_name _glp_lpx_get_col_name
|
alpar@1
|
1381 |
const char *lpx_get_col_name(LPX *lp, int j);
|
alpar@1
|
1382 |
/* retrieve column name */
|
alpar@1
|
1383 |
|
alpar@1
|
1384 |
#define lpx_get_row_type _glp_lpx_get_row_type
|
alpar@1
|
1385 |
int lpx_get_row_type(LPX *lp, int i);
|
alpar@1
|
1386 |
/* retrieve row type */
|
alpar@1
|
1387 |
|
alpar@1
|
1388 |
#define lpx_get_row_lb _glp_lpx_get_row_lb
|
alpar@1
|
1389 |
double lpx_get_row_lb(LPX *lp, int i);
|
alpar@1
|
1390 |
/* retrieve row lower bound */
|
alpar@1
|
1391 |
|
alpar@1
|
1392 |
#define lpx_get_row_ub _glp_lpx_get_row_ub
|
alpar@1
|
1393 |
double lpx_get_row_ub(LPX *lp, int i);
|
alpar@1
|
1394 |
/* retrieve row upper bound */
|
alpar@1
|
1395 |
|
alpar@1
|
1396 |
#define lpx_get_row_bnds _glp_lpx_get_row_bnds
|
alpar@1
|
1397 |
void lpx_get_row_bnds(LPX *lp, int i, int *typx, double *lb,
|
alpar@1
|
1398 |
double *ub);
|
alpar@1
|
1399 |
/* retrieve row bounds */
|
alpar@1
|
1400 |
|
alpar@1
|
1401 |
#define lpx_get_col_type _glp_lpx_get_col_type
|
alpar@1
|
1402 |
int lpx_get_col_type(LPX *lp, int j);
|
alpar@1
|
1403 |
/* retrieve column type */
|
alpar@1
|
1404 |
|
alpar@1
|
1405 |
#define lpx_get_col_lb _glp_lpx_get_col_lb
|
alpar@1
|
1406 |
double lpx_get_col_lb(LPX *lp, int j);
|
alpar@1
|
1407 |
/* retrieve column lower bound */
|
alpar@1
|
1408 |
|
alpar@1
|
1409 |
#define lpx_get_col_ub _glp_lpx_get_col_ub
|
alpar@1
|
1410 |
double lpx_get_col_ub(LPX *lp, int j);
|
alpar@1
|
1411 |
/* retrieve column upper bound */
|
alpar@1
|
1412 |
|
alpar@1
|
1413 |
#define lpx_get_col_bnds _glp_lpx_get_col_bnds
|
alpar@1
|
1414 |
void lpx_get_col_bnds(LPX *lp, int j, int *typx, double *lb,
|
alpar@1
|
1415 |
double *ub);
|
alpar@1
|
1416 |
/* retrieve column bounds */
|
alpar@1
|
1417 |
|
alpar@1
|
1418 |
#define lpx_get_obj_coef _glp_lpx_get_obj_coef
|
alpar@1
|
1419 |
double lpx_get_obj_coef(LPX *lp, int j);
|
alpar@1
|
1420 |
/* retrieve obj. coefficient or constant term */
|
alpar@1
|
1421 |
|
alpar@1
|
1422 |
#define lpx_get_num_nz _glp_lpx_get_num_nz
|
alpar@1
|
1423 |
int lpx_get_num_nz(LPX *lp);
|
alpar@1
|
1424 |
/* retrieve number of constraint coefficients */
|
alpar@1
|
1425 |
|
alpar@1
|
1426 |
#define lpx_get_mat_row _glp_lpx_get_mat_row
|
alpar@1
|
1427 |
int lpx_get_mat_row(LPX *lp, int i, int ind[], double val[]);
|
alpar@1
|
1428 |
/* retrieve row of the constraint matrix */
|
alpar@1
|
1429 |
|
alpar@1
|
1430 |
#define lpx_get_mat_col _glp_lpx_get_mat_col
|
alpar@1
|
1431 |
int lpx_get_mat_col(LPX *lp, int j, int ind[], double val[]);
|
alpar@1
|
1432 |
/* retrieve column of the constraint matrix */
|
alpar@1
|
1433 |
|
alpar@1
|
1434 |
#define lpx_create_index _glp_lpx_create_index
|
alpar@1
|
1435 |
void lpx_create_index(LPX *lp);
|
alpar@1
|
1436 |
/* create the name index */
|
alpar@1
|
1437 |
|
alpar@1
|
1438 |
#define lpx_find_row _glp_lpx_find_row
|
alpar@1
|
1439 |
int lpx_find_row(LPX *lp, const char *name);
|
alpar@1
|
1440 |
/* find row by its name */
|
alpar@1
|
1441 |
|
alpar@1
|
1442 |
#define lpx_find_col _glp_lpx_find_col
|
alpar@1
|
1443 |
int lpx_find_col(LPX *lp, const char *name);
|
alpar@1
|
1444 |
/* find column by its name */
|
alpar@1
|
1445 |
|
alpar@1
|
1446 |
#define lpx_delete_index _glp_lpx_delete_index
|
alpar@1
|
1447 |
void lpx_delete_index(LPX *lp);
|
alpar@1
|
1448 |
/* delete the name index */
|
alpar@1
|
1449 |
|
alpar@1
|
1450 |
#define lpx_scale_prob _glp_lpx_scale_prob
|
alpar@1
|
1451 |
void lpx_scale_prob(LPX *lp);
|
alpar@1
|
1452 |
/* scale problem data */
|
alpar@1
|
1453 |
|
alpar@1
|
1454 |
#define lpx_unscale_prob _glp_lpx_unscale_prob
|
alpar@1
|
1455 |
void lpx_unscale_prob(LPX *lp);
|
alpar@1
|
1456 |
/* unscale problem data */
|
alpar@1
|
1457 |
|
alpar@1
|
1458 |
#define lpx_set_row_stat _glp_lpx_set_row_stat
|
alpar@1
|
1459 |
void lpx_set_row_stat(LPX *lp, int i, int stat);
|
alpar@1
|
1460 |
/* set (change) row status */
|
alpar@1
|
1461 |
|
alpar@1
|
1462 |
#define lpx_set_col_stat _glp_lpx_set_col_stat
|
alpar@1
|
1463 |
void lpx_set_col_stat(LPX *lp, int j, int stat);
|
alpar@1
|
1464 |
/* set (change) column status */
|
alpar@1
|
1465 |
|
alpar@1
|
1466 |
#define lpx_std_basis _glp_lpx_std_basis
|
alpar@1
|
1467 |
void lpx_std_basis(LPX *lp);
|
alpar@1
|
1468 |
/* construct standard initial LP basis */
|
alpar@1
|
1469 |
|
alpar@1
|
1470 |
#define lpx_adv_basis _glp_lpx_adv_basis
|
alpar@1
|
1471 |
void lpx_adv_basis(LPX *lp);
|
alpar@1
|
1472 |
/* construct advanced initial LP basis */
|
alpar@1
|
1473 |
|
alpar@1
|
1474 |
#define lpx_cpx_basis _glp_lpx_cpx_basis
|
alpar@1
|
1475 |
void lpx_cpx_basis(LPX *lp);
|
alpar@1
|
1476 |
/* construct Bixby's initial LP basis */
|
alpar@1
|
1477 |
|
alpar@1
|
1478 |
#define lpx_simplex _glp_lpx_simplex
|
alpar@1
|
1479 |
int lpx_simplex(LPX *lp);
|
alpar@1
|
1480 |
/* easy-to-use driver to the simplex method */
|
alpar@1
|
1481 |
|
alpar@1
|
1482 |
#define lpx_exact _glp_lpx_exact
|
alpar@1
|
1483 |
int lpx_exact(LPX *lp);
|
alpar@1
|
1484 |
/* easy-to-use driver to the exact simplex method */
|
alpar@1
|
1485 |
|
alpar@1
|
1486 |
#define lpx_get_status _glp_lpx_get_status
|
alpar@1
|
1487 |
int lpx_get_status(LPX *lp);
|
alpar@1
|
1488 |
/* retrieve generic status of basic solution */
|
alpar@1
|
1489 |
|
alpar@1
|
1490 |
#define lpx_get_prim_stat _glp_lpx_get_prim_stat
|
alpar@1
|
1491 |
int lpx_get_prim_stat(LPX *lp);
|
alpar@1
|
1492 |
/* retrieve primal status of basic solution */
|
alpar@1
|
1493 |
|
alpar@1
|
1494 |
#define lpx_get_dual_stat _glp_lpx_get_dual_stat
|
alpar@1
|
1495 |
int lpx_get_dual_stat(LPX *lp);
|
alpar@1
|
1496 |
/* retrieve dual status of basic solution */
|
alpar@1
|
1497 |
|
alpar@1
|
1498 |
#define lpx_get_obj_val _glp_lpx_get_obj_val
|
alpar@1
|
1499 |
double lpx_get_obj_val(LPX *lp);
|
alpar@1
|
1500 |
/* retrieve objective value (basic solution) */
|
alpar@1
|
1501 |
|
alpar@1
|
1502 |
#define lpx_get_row_stat _glp_lpx_get_row_stat
|
alpar@1
|
1503 |
int lpx_get_row_stat(LPX *lp, int i);
|
alpar@1
|
1504 |
/* retrieve row status (basic solution) */
|
alpar@1
|
1505 |
|
alpar@1
|
1506 |
#define lpx_get_row_prim _glp_lpx_get_row_prim
|
alpar@1
|
1507 |
double lpx_get_row_prim(LPX *lp, int i);
|
alpar@1
|
1508 |
/* retrieve row primal value (basic solution) */
|
alpar@1
|
1509 |
|
alpar@1
|
1510 |
#define lpx_get_row_dual _glp_lpx_get_row_dual
|
alpar@1
|
1511 |
double lpx_get_row_dual(LPX *lp, int i);
|
alpar@1
|
1512 |
/* retrieve row dual value (basic solution) */
|
alpar@1
|
1513 |
|
alpar@1
|
1514 |
#define lpx_get_row_info _glp_lpx_get_row_info
|
alpar@1
|
1515 |
void lpx_get_row_info(LPX *lp, int i, int *tagx, double *vx,
|
alpar@1
|
1516 |
double *dx);
|
alpar@1
|
1517 |
/* obtain row solution information */
|
alpar@1
|
1518 |
|
alpar@1
|
1519 |
#define lpx_get_col_stat _glp_lpx_get_col_stat
|
alpar@1
|
1520 |
int lpx_get_col_stat(LPX *lp, int j);
|
alpar@1
|
1521 |
/* retrieve column status (basic solution) */
|
alpar@1
|
1522 |
|
alpar@1
|
1523 |
#define lpx_get_col_prim _glp_lpx_get_col_prim
|
alpar@1
|
1524 |
double lpx_get_col_prim(LPX *lp, int j);
|
alpar@1
|
1525 |
/* retrieve column primal value (basic solution) */
|
alpar@1
|
1526 |
|
alpar@1
|
1527 |
#define lpx_get_col_dual _glp_lpx_get_col_dual
|
alpar@1
|
1528 |
double lpx_get_col_dual(glp_prob *lp, int j);
|
alpar@1
|
1529 |
/* retrieve column dual value (basic solution) */
|
alpar@1
|
1530 |
|
alpar@1
|
1531 |
#define lpx_get_col_info _glp_lpx_get_col_info
|
alpar@1
|
1532 |
void lpx_get_col_info(LPX *lp, int j, int *tagx, double *vx,
|
alpar@1
|
1533 |
double *dx);
|
alpar@1
|
1534 |
/* obtain column solution information (obsolete) */
|
alpar@1
|
1535 |
|
alpar@1
|
1536 |
#define lpx_get_ray_info _glp_lpx_get_ray_info
|
alpar@1
|
1537 |
int lpx_get_ray_info(LPX *lp);
|
alpar@1
|
1538 |
/* determine what causes primal unboundness */
|
alpar@1
|
1539 |
|
alpar@1
|
1540 |
#define lpx_check_kkt _glp_lpx_check_kkt
|
alpar@1
|
1541 |
void lpx_check_kkt(LPX *lp, int scaled, LPXKKT *kkt);
|
alpar@1
|
1542 |
/* check Karush-Kuhn-Tucker conditions */
|
alpar@1
|
1543 |
|
alpar@1
|
1544 |
#define lpx_warm_up _glp_lpx_warm_up
|
alpar@1
|
1545 |
int lpx_warm_up(LPX *lp);
|
alpar@1
|
1546 |
/* "warm up" LP basis */
|
alpar@1
|
1547 |
|
alpar@1
|
1548 |
#define lpx_eval_tab_row _glp_lpx_eval_tab_row
|
alpar@1
|
1549 |
int lpx_eval_tab_row(LPX *lp, int k, int ind[], double val[]);
|
alpar@1
|
1550 |
/* compute row of the simplex table */
|
alpar@1
|
1551 |
|
alpar@1
|
1552 |
#define lpx_eval_tab_col _glp_lpx_eval_tab_col
|
alpar@1
|
1553 |
int lpx_eval_tab_col(LPX *lp, int k, int ind[], double val[]);
|
alpar@1
|
1554 |
/* compute column of the simplex table */
|
alpar@1
|
1555 |
|
alpar@1
|
1556 |
#define lpx_transform_row _glp_lpx_transform_row
|
alpar@1
|
1557 |
int lpx_transform_row(LPX *lp, int len, int ind[], double val[]);
|
alpar@1
|
1558 |
/* transform explicitly specified row */
|
alpar@1
|
1559 |
|
alpar@1
|
1560 |
#define lpx_transform_col _glp_lpx_transform_col
|
alpar@1
|
1561 |
int lpx_transform_col(LPX *lp, int len, int ind[], double val[]);
|
alpar@1
|
1562 |
/* transform explicitly specified column */
|
alpar@1
|
1563 |
|
alpar@1
|
1564 |
#define lpx_prim_ratio_test _glp_lpx_prim_ratio_test
|
alpar@1
|
1565 |
int lpx_prim_ratio_test(LPX *lp, int len, const int ind[],
|
alpar@1
|
1566 |
const double val[], int how, double tol);
|
alpar@1
|
1567 |
/* perform primal ratio test */
|
alpar@1
|
1568 |
|
alpar@1
|
1569 |
#define lpx_dual_ratio_test _glp_lpx_dual_ratio_test
|
alpar@1
|
1570 |
int lpx_dual_ratio_test(LPX *lp, int len, const int ind[],
|
alpar@1
|
1571 |
const double val[], int how, double tol);
|
alpar@1
|
1572 |
/* perform dual ratio test */
|
alpar@1
|
1573 |
|
alpar@1
|
1574 |
#define lpx_interior _glp_lpx_interior
|
alpar@1
|
1575 |
int lpx_interior(LPX *lp);
|
alpar@1
|
1576 |
/* easy-to-use driver to the interior point method */
|
alpar@1
|
1577 |
|
alpar@1
|
1578 |
#define lpx_ipt_status _glp_lpx_ipt_status
|
alpar@1
|
1579 |
int lpx_ipt_status(LPX *lp);
|
alpar@1
|
1580 |
/* retrieve status of interior-point solution */
|
alpar@1
|
1581 |
|
alpar@1
|
1582 |
#define lpx_ipt_obj_val _glp_lpx_ipt_obj_val
|
alpar@1
|
1583 |
double lpx_ipt_obj_val(LPX *lp);
|
alpar@1
|
1584 |
/* retrieve objective value (interior point) */
|
alpar@1
|
1585 |
|
alpar@1
|
1586 |
#define lpx_ipt_row_prim _glp_lpx_ipt_row_prim
|
alpar@1
|
1587 |
double lpx_ipt_row_prim(LPX *lp, int i);
|
alpar@1
|
1588 |
/* retrieve row primal value (interior point) */
|
alpar@1
|
1589 |
|
alpar@1
|
1590 |
#define lpx_ipt_row_dual _glp_lpx_ipt_row_dual
|
alpar@1
|
1591 |
double lpx_ipt_row_dual(LPX *lp, int i);
|
alpar@1
|
1592 |
/* retrieve row dual value (interior point) */
|
alpar@1
|
1593 |
|
alpar@1
|
1594 |
#define lpx_ipt_col_prim _glp_lpx_ipt_col_prim
|
alpar@1
|
1595 |
double lpx_ipt_col_prim(LPX *lp, int j);
|
alpar@1
|
1596 |
/* retrieve column primal value (interior point) */
|
alpar@1
|
1597 |
|
alpar@1
|
1598 |
#define lpx_ipt_col_dual _glp_lpx_ipt_col_dual
|
alpar@1
|
1599 |
double lpx_ipt_col_dual(LPX *lp, int j);
|
alpar@1
|
1600 |
/* retrieve column dual value (interior point) */
|
alpar@1
|
1601 |
|
alpar@1
|
1602 |
#define lpx_set_class _glp_lpx_set_class
|
alpar@1
|
1603 |
void lpx_set_class(LPX *lp, int klass);
|
alpar@1
|
1604 |
/* set problem class */
|
alpar@1
|
1605 |
|
alpar@1
|
1606 |
#define lpx_get_class _glp_lpx_get_class
|
alpar@1
|
1607 |
int lpx_get_class(LPX *lp);
|
alpar@1
|
1608 |
/* determine problem klass */
|
alpar@1
|
1609 |
|
alpar@1
|
1610 |
#define lpx_set_col_kind _glp_lpx_set_col_kind
|
alpar@1
|
1611 |
void lpx_set_col_kind(LPX *lp, int j, int kind);
|
alpar@1
|
1612 |
/* set (change) column kind */
|
alpar@1
|
1613 |
|
alpar@1
|
1614 |
#define lpx_get_col_kind _glp_lpx_get_col_kind
|
alpar@1
|
1615 |
int lpx_get_col_kind(LPX *lp, int j);
|
alpar@1
|
1616 |
/* retrieve column kind */
|
alpar@1
|
1617 |
|
alpar@1
|
1618 |
#define lpx_get_num_int _glp_lpx_get_num_int
|
alpar@1
|
1619 |
int lpx_get_num_int(LPX *lp);
|
alpar@1
|
1620 |
/* retrieve number of integer columns */
|
alpar@1
|
1621 |
|
alpar@1
|
1622 |
#define lpx_get_num_bin _glp_lpx_get_num_bin
|
alpar@1
|
1623 |
int lpx_get_num_bin(LPX *lp);
|
alpar@1
|
1624 |
/* retrieve number of binary columns */
|
alpar@1
|
1625 |
|
alpar@1
|
1626 |
#define lpx_integer _glp_lpx_integer
|
alpar@1
|
1627 |
int lpx_integer(LPX *lp);
|
alpar@1
|
1628 |
/* easy-to-use driver to the branch-and-bound method */
|
alpar@1
|
1629 |
|
alpar@1
|
1630 |
#define lpx_intopt _glp_lpx_intopt
|
alpar@1
|
1631 |
int lpx_intopt(LPX *lp);
|
alpar@1
|
1632 |
/* easy-to-use driver to the branch-and-bound method */
|
alpar@1
|
1633 |
|
alpar@1
|
1634 |
#define lpx_mip_status _glp_lpx_mip_status
|
alpar@1
|
1635 |
int lpx_mip_status(LPX *lp);
|
alpar@1
|
1636 |
/* retrieve status of MIP solution */
|
alpar@1
|
1637 |
|
alpar@1
|
1638 |
#define lpx_mip_obj_val _glp_lpx_mip_obj_val
|
alpar@1
|
1639 |
double lpx_mip_obj_val(LPX *lp);
|
alpar@1
|
1640 |
/* retrieve objective value (MIP solution) */
|
alpar@1
|
1641 |
|
alpar@1
|
1642 |
#define lpx_mip_row_val _glp_lpx_mip_row_val
|
alpar@1
|
1643 |
double lpx_mip_row_val(LPX *lp, int i);
|
alpar@1
|
1644 |
/* retrieve row value (MIP solution) */
|
alpar@1
|
1645 |
|
alpar@1
|
1646 |
#define lpx_mip_col_val _glp_lpx_mip_col_val
|
alpar@1
|
1647 |
double lpx_mip_col_val(LPX *lp, int j);
|
alpar@1
|
1648 |
/* retrieve column value (MIP solution) */
|
alpar@1
|
1649 |
|
alpar@1
|
1650 |
#define lpx_check_int _glp_lpx_check_int
|
alpar@1
|
1651 |
void lpx_check_int(LPX *lp, LPXKKT *kkt);
|
alpar@1
|
1652 |
/* check integer feasibility conditions */
|
alpar@1
|
1653 |
|
alpar@1
|
1654 |
#define lpx_reset_parms _glp_lpx_reset_parms
|
alpar@1
|
1655 |
void lpx_reset_parms(LPX *lp);
|
alpar@1
|
1656 |
/* reset control parameters to default values */
|
alpar@1
|
1657 |
|
alpar@1
|
1658 |
#define lpx_set_int_parm _glp_lpx_set_int_parm
|
alpar@1
|
1659 |
void lpx_set_int_parm(LPX *lp, int parm, int val);
|
alpar@1
|
1660 |
/* set (change) integer control parameter */
|
alpar@1
|
1661 |
|
alpar@1
|
1662 |
#define lpx_get_int_parm _glp_lpx_get_int_parm
|
alpar@1
|
1663 |
int lpx_get_int_parm(LPX *lp, int parm);
|
alpar@1
|
1664 |
/* query integer control parameter */
|
alpar@1
|
1665 |
|
alpar@1
|
1666 |
#define lpx_set_real_parm _glp_lpx_set_real_parm
|
alpar@1
|
1667 |
void lpx_set_real_parm(LPX *lp, int parm, double val);
|
alpar@1
|
1668 |
/* set (change) real control parameter */
|
alpar@1
|
1669 |
|
alpar@1
|
1670 |
#define lpx_get_real_parm _glp_lpx_get_real_parm
|
alpar@1
|
1671 |
double lpx_get_real_parm(LPX *lp, int parm);
|
alpar@1
|
1672 |
/* query real control parameter */
|
alpar@1
|
1673 |
|
alpar@1
|
1674 |
#define lpx_read_mps _glp_lpx_read_mps
|
alpar@1
|
1675 |
LPX *lpx_read_mps(const char *fname);
|
alpar@1
|
1676 |
/* read problem data in fixed MPS format */
|
alpar@1
|
1677 |
|
alpar@1
|
1678 |
#define lpx_write_mps _glp_lpx_write_mps
|
alpar@1
|
1679 |
int lpx_write_mps(LPX *lp, const char *fname);
|
alpar@1
|
1680 |
/* write problem data in fixed MPS format */
|
alpar@1
|
1681 |
|
alpar@1
|
1682 |
#define lpx_read_bas _glp_lpx_read_bas
|
alpar@1
|
1683 |
int lpx_read_bas(LPX *lp, const char *fname);
|
alpar@1
|
1684 |
/* read LP basis in fixed MPS format */
|
alpar@1
|
1685 |
|
alpar@1
|
1686 |
#define lpx_write_bas _glp_lpx_write_bas
|
alpar@1
|
1687 |
int lpx_write_bas(LPX *lp, const char *fname);
|
alpar@1
|
1688 |
/* write LP basis in fixed MPS format */
|
alpar@1
|
1689 |
|
alpar@1
|
1690 |
#define lpx_read_freemps _glp_lpx_read_freemps
|
alpar@1
|
1691 |
LPX *lpx_read_freemps(const char *fname);
|
alpar@1
|
1692 |
/* read problem data in free MPS format */
|
alpar@1
|
1693 |
|
alpar@1
|
1694 |
#define lpx_write_freemps _glp_lpx_write_freemps
|
alpar@1
|
1695 |
int lpx_write_freemps(LPX *lp, const char *fname);
|
alpar@1
|
1696 |
/* write problem data in free MPS format */
|
alpar@1
|
1697 |
|
alpar@1
|
1698 |
#define lpx_read_cpxlp _glp_lpx_read_cpxlp
|
alpar@1
|
1699 |
LPX *lpx_read_cpxlp(const char *fname);
|
alpar@1
|
1700 |
/* read problem data in CPLEX LP format */
|
alpar@1
|
1701 |
|
alpar@1
|
1702 |
#define lpx_write_cpxlp _glp_lpx_write_cpxlp
|
alpar@1
|
1703 |
int lpx_write_cpxlp(LPX *lp, const char *fname);
|
alpar@1
|
1704 |
/* write problem data in CPLEX LP format */
|
alpar@1
|
1705 |
|
alpar@1
|
1706 |
#define lpx_read_model _glp_lpx_read_model
|
alpar@1
|
1707 |
LPX *lpx_read_model(const char *model, const char *data,
|
alpar@1
|
1708 |
const char *output);
|
alpar@1
|
1709 |
/* read LP/MIP model written in GNU MathProg language */
|
alpar@1
|
1710 |
|
alpar@1
|
1711 |
#define lpx_print_prob _glp_lpx_print_prob
|
alpar@1
|
1712 |
int lpx_print_prob(LPX *lp, const char *fname);
|
alpar@1
|
1713 |
/* write problem data in plain text format */
|
alpar@1
|
1714 |
|
alpar@1
|
1715 |
#define lpx_print_sol _glp_lpx_print_sol
|
alpar@1
|
1716 |
int lpx_print_sol(LPX *lp, const char *fname);
|
alpar@1
|
1717 |
/* write LP problem solution in printable format */
|
alpar@1
|
1718 |
|
alpar@1
|
1719 |
#define lpx_print_sens_bnds _glp_lpx_print_sens_bnds
|
alpar@1
|
1720 |
int lpx_print_sens_bnds(LPX *lp, const char *fname);
|
alpar@1
|
1721 |
/* write bounds sensitivity information */
|
alpar@1
|
1722 |
|
alpar@1
|
1723 |
#define lpx_print_ips _glp_lpx_print_ips
|
alpar@1
|
1724 |
int lpx_print_ips(LPX *lp, const char *fname);
|
alpar@1
|
1725 |
/* write interior point solution in printable format */
|
alpar@1
|
1726 |
|
alpar@1
|
1727 |
#define lpx_print_mip _glp_lpx_print_mip
|
alpar@1
|
1728 |
int lpx_print_mip(LPX *lp, const char *fname);
|
alpar@1
|
1729 |
/* write MIP problem solution in printable format */
|
alpar@1
|
1730 |
|
alpar@1
|
1731 |
#define lpx_is_b_avail _glp_lpx_is_b_avail
|
alpar@1
|
1732 |
int lpx_is_b_avail(LPX *lp);
|
alpar@1
|
1733 |
/* check if LP basis is available */
|
alpar@1
|
1734 |
|
alpar@1
|
1735 |
#define lpx_write_pb _glp_lpx_write_pb
|
alpar@1
|
1736 |
int lpx_write_pb(LPX *lp, const char *fname, int normalized,
|
alpar@1
|
1737 |
int binarize);
|
alpar@1
|
1738 |
/* write problem data in (normalized) OPB format */
|
alpar@1
|
1739 |
|
alpar@1
|
1740 |
#define lpx_main _glp_lpx_main
|
alpar@1
|
1741 |
int lpx_main(int argc, const char *argv[]);
|
alpar@1
|
1742 |
/* stand-alone LP/MIP solver */
|
alpar@1
|
1743 |
|
alpar@1
|
1744 |
#ifdef __cplusplus
|
alpar@1
|
1745 |
}
|
alpar@1
|
1746 |
#endif
|
alpar@1
|
1747 |
|
alpar@1
|
1748 |
#endif
|
alpar@1
|
1749 |
|
alpar@1
|
1750 |
/* eof */
|