alpar@1
|
1 |
/* glpapi08.c (interior-point method routines) */
|
alpar@1
|
2 |
|
alpar@1
|
3 |
/***********************************************************************
|
alpar@1
|
4 |
* This code is part of GLPK (GNU Linear Programming Kit).
|
alpar@1
|
5 |
*
|
alpar@1
|
6 |
* Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
|
alpar@1
|
7 |
* 2009, 2010 Andrew Makhorin, Department for Applied Informatics,
|
alpar@1
|
8 |
* Moscow Aviation Institute, Moscow, Russia. All rights reserved.
|
alpar@1
|
9 |
* E-mail: <mao@gnu.org>.
|
alpar@1
|
10 |
*
|
alpar@1
|
11 |
* GLPK is free software: you can redistribute it and/or modify it
|
alpar@1
|
12 |
* under the terms of the GNU General Public License as published by
|
alpar@1
|
13 |
* the Free Software Foundation, either version 3 of the License, or
|
alpar@1
|
14 |
* (at your option) any later version.
|
alpar@1
|
15 |
*
|
alpar@1
|
16 |
* GLPK is distributed in the hope that it will be useful, but WITHOUT
|
alpar@1
|
17 |
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
alpar@1
|
18 |
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
|
alpar@1
|
19 |
* License for more details.
|
alpar@1
|
20 |
*
|
alpar@1
|
21 |
* You should have received a copy of the GNU General Public License
|
alpar@1
|
22 |
* along with GLPK. If not, see <http://www.gnu.org/licenses/>.
|
alpar@1
|
23 |
***********************************************************************/
|
alpar@1
|
24 |
|
alpar@1
|
25 |
#include "glpapi.h"
|
alpar@1
|
26 |
#include "glpipm.h"
|
alpar@1
|
27 |
#include "glpnpp.h"
|
alpar@1
|
28 |
|
alpar@1
|
29 |
/***********************************************************************
|
alpar@1
|
30 |
* NAME
|
alpar@1
|
31 |
*
|
alpar@1
|
32 |
* glp_interior - solve LP problem with the interior-point method
|
alpar@1
|
33 |
*
|
alpar@1
|
34 |
* SYNOPSIS
|
alpar@1
|
35 |
*
|
alpar@1
|
36 |
* int glp_interior(glp_prob *P, const glp_iptcp *parm);
|
alpar@1
|
37 |
*
|
alpar@1
|
38 |
* The routine glp_interior is a driver to the LP solver based on the
|
alpar@1
|
39 |
* interior-point method.
|
alpar@1
|
40 |
*
|
alpar@1
|
41 |
* The interior-point solver has a set of control parameters. Values of
|
alpar@1
|
42 |
* the control parameters can be passed in a structure glp_iptcp, which
|
alpar@1
|
43 |
* the parameter parm points to.
|
alpar@1
|
44 |
*
|
alpar@1
|
45 |
* Currently this routine implements an easy variant of the primal-dual
|
alpar@1
|
46 |
* interior-point method based on Mehrotra's technique.
|
alpar@1
|
47 |
*
|
alpar@1
|
48 |
* This routine transforms the original LP problem to an equivalent LP
|
alpar@1
|
49 |
* problem in the standard formulation (all constraints are equalities,
|
alpar@1
|
50 |
* all variables are non-negative), calls the routine ipm_main to solve
|
alpar@1
|
51 |
* the transformed problem, and then transforms an obtained solution to
|
alpar@1
|
52 |
* the solution of the original problem.
|
alpar@1
|
53 |
*
|
alpar@1
|
54 |
* RETURNS
|
alpar@1
|
55 |
*
|
alpar@1
|
56 |
* 0 The LP problem instance has been successfully solved. This code
|
alpar@1
|
57 |
* does not necessarily mean that the solver has found optimal
|
alpar@1
|
58 |
* solution. It only means that the solution process was successful.
|
alpar@1
|
59 |
*
|
alpar@1
|
60 |
* GLP_EFAIL
|
alpar@1
|
61 |
* The problem has no rows/columns.
|
alpar@1
|
62 |
*
|
alpar@1
|
63 |
* GLP_ENOCVG
|
alpar@1
|
64 |
* Very slow convergence or divergence.
|
alpar@1
|
65 |
*
|
alpar@1
|
66 |
* GLP_EITLIM
|
alpar@1
|
67 |
* Iteration limit exceeded.
|
alpar@1
|
68 |
*
|
alpar@1
|
69 |
* GLP_EINSTAB
|
alpar@1
|
70 |
* Numerical instability on solving Newtonian system. */
|
alpar@1
|
71 |
|
alpar@1
|
72 |
static void transform(NPP *npp)
|
alpar@1
|
73 |
{ /* transform LP to the standard formulation */
|
alpar@1
|
74 |
NPPROW *row, *prev_row;
|
alpar@1
|
75 |
NPPCOL *col, *prev_col;
|
alpar@1
|
76 |
for (row = npp->r_tail; row != NULL; row = prev_row)
|
alpar@1
|
77 |
{ prev_row = row->prev;
|
alpar@1
|
78 |
if (row->lb == -DBL_MAX && row->ub == +DBL_MAX)
|
alpar@1
|
79 |
npp_free_row(npp, row);
|
alpar@1
|
80 |
else if (row->lb == -DBL_MAX)
|
alpar@1
|
81 |
npp_leq_row(npp, row);
|
alpar@1
|
82 |
else if (row->ub == +DBL_MAX)
|
alpar@1
|
83 |
npp_geq_row(npp, row);
|
alpar@1
|
84 |
else if (row->lb != row->ub)
|
alpar@1
|
85 |
{ if (fabs(row->lb) < fabs(row->ub))
|
alpar@1
|
86 |
npp_geq_row(npp, row);
|
alpar@1
|
87 |
else
|
alpar@1
|
88 |
npp_leq_row(npp, row);
|
alpar@1
|
89 |
}
|
alpar@1
|
90 |
}
|
alpar@1
|
91 |
for (col = npp->c_tail; col != NULL; col = prev_col)
|
alpar@1
|
92 |
{ prev_col = col->prev;
|
alpar@1
|
93 |
if (col->lb == -DBL_MAX && col->ub == +DBL_MAX)
|
alpar@1
|
94 |
npp_free_col(npp, col);
|
alpar@1
|
95 |
else if (col->lb == -DBL_MAX)
|
alpar@1
|
96 |
npp_ubnd_col(npp, col);
|
alpar@1
|
97 |
else if (col->ub == +DBL_MAX)
|
alpar@1
|
98 |
{ if (col->lb != 0.0)
|
alpar@1
|
99 |
npp_lbnd_col(npp, col);
|
alpar@1
|
100 |
}
|
alpar@1
|
101 |
else if (col->lb != col->ub)
|
alpar@1
|
102 |
{ if (fabs(col->lb) < fabs(col->ub))
|
alpar@1
|
103 |
{ if (col->lb != 0.0)
|
alpar@1
|
104 |
npp_lbnd_col(npp, col);
|
alpar@1
|
105 |
}
|
alpar@1
|
106 |
else
|
alpar@1
|
107 |
npp_ubnd_col(npp, col);
|
alpar@1
|
108 |
npp_dbnd_col(npp, col);
|
alpar@1
|
109 |
}
|
alpar@1
|
110 |
else
|
alpar@1
|
111 |
npp_fixed_col(npp, col);
|
alpar@1
|
112 |
}
|
alpar@1
|
113 |
for (row = npp->r_head; row != NULL; row = row->next)
|
alpar@1
|
114 |
xassert(row->lb == row->ub);
|
alpar@1
|
115 |
for (col = npp->c_head; col != NULL; col = col->next)
|
alpar@1
|
116 |
xassert(col->lb == 0.0 && col->ub == +DBL_MAX);
|
alpar@1
|
117 |
return;
|
alpar@1
|
118 |
}
|
alpar@1
|
119 |
|
alpar@1
|
120 |
int glp_interior(glp_prob *P, const glp_iptcp *parm)
|
alpar@1
|
121 |
{ glp_iptcp _parm;
|
alpar@1
|
122 |
GLPROW *row;
|
alpar@1
|
123 |
GLPCOL *col;
|
alpar@1
|
124 |
NPP *npp = NULL;
|
alpar@1
|
125 |
glp_prob *prob = NULL;
|
alpar@1
|
126 |
int i, j, ret;
|
alpar@1
|
127 |
/* check control parameters */
|
alpar@1
|
128 |
if (parm == NULL)
|
alpar@1
|
129 |
glp_init_iptcp(&_parm), parm = &_parm;
|
alpar@1
|
130 |
if (!(parm->msg_lev == GLP_MSG_OFF ||
|
alpar@1
|
131 |
parm->msg_lev == GLP_MSG_ERR ||
|
alpar@1
|
132 |
parm->msg_lev == GLP_MSG_ON ||
|
alpar@1
|
133 |
parm->msg_lev == GLP_MSG_ALL))
|
alpar@1
|
134 |
xerror("glp_interior: msg_lev = %d; invalid parameter\n",
|
alpar@1
|
135 |
parm->msg_lev);
|
alpar@1
|
136 |
if (!(parm->ord_alg == GLP_ORD_NONE ||
|
alpar@1
|
137 |
parm->ord_alg == GLP_ORD_QMD ||
|
alpar@1
|
138 |
parm->ord_alg == GLP_ORD_AMD ||
|
alpar@1
|
139 |
parm->ord_alg == GLP_ORD_SYMAMD))
|
alpar@1
|
140 |
xerror("glp_interior: ord_alg = %d; invalid parameter\n",
|
alpar@1
|
141 |
parm->ord_alg);
|
alpar@1
|
142 |
/* interior-point solution is currently undefined */
|
alpar@1
|
143 |
P->ipt_stat = GLP_UNDEF;
|
alpar@1
|
144 |
P->ipt_obj = 0.0;
|
alpar@1
|
145 |
/* check bounds of double-bounded variables */
|
alpar@1
|
146 |
for (i = 1; i <= P->m; i++)
|
alpar@1
|
147 |
{ row = P->row[i];
|
alpar@1
|
148 |
if (row->type == GLP_DB && row->lb >= row->ub)
|
alpar@1
|
149 |
{ if (parm->msg_lev >= GLP_MSG_ERR)
|
alpar@1
|
150 |
xprintf("glp_interior: row %d: lb = %g, ub = %g; incorre"
|
alpar@1
|
151 |
"ct bounds\n", i, row->lb, row->ub);
|
alpar@1
|
152 |
ret = GLP_EBOUND;
|
alpar@1
|
153 |
goto done;
|
alpar@1
|
154 |
}
|
alpar@1
|
155 |
}
|
alpar@1
|
156 |
for (j = 1; j <= P->n; j++)
|
alpar@1
|
157 |
{ col = P->col[j];
|
alpar@1
|
158 |
if (col->type == GLP_DB && col->lb >= col->ub)
|
alpar@1
|
159 |
{ if (parm->msg_lev >= GLP_MSG_ERR)
|
alpar@1
|
160 |
xprintf("glp_interior: column %d: lb = %g, ub = %g; inco"
|
alpar@1
|
161 |
"rrect bounds\n", j, col->lb, col->ub);
|
alpar@1
|
162 |
ret = GLP_EBOUND;
|
alpar@1
|
163 |
goto done;
|
alpar@1
|
164 |
}
|
alpar@1
|
165 |
}
|
alpar@1
|
166 |
/* transform LP to the standard formulation */
|
alpar@1
|
167 |
if (parm->msg_lev >= GLP_MSG_ALL)
|
alpar@1
|
168 |
xprintf("Original LP has %d row(s), %d column(s), and %d non-z"
|
alpar@1
|
169 |
"ero(s)\n", P->m, P->n, P->nnz);
|
alpar@1
|
170 |
npp = npp_create_wksp();
|
alpar@1
|
171 |
npp_load_prob(npp, P, GLP_OFF, GLP_IPT, GLP_ON);
|
alpar@1
|
172 |
transform(npp);
|
alpar@1
|
173 |
prob = glp_create_prob();
|
alpar@1
|
174 |
npp_build_prob(npp, prob);
|
alpar@1
|
175 |
if (parm->msg_lev >= GLP_MSG_ALL)
|
alpar@1
|
176 |
xprintf("Working LP has %d row(s), %d column(s), and %d non-ze"
|
alpar@1
|
177 |
"ro(s)\n", prob->m, prob->n, prob->nnz);
|
alpar@1
|
178 |
#if 1
|
alpar@1
|
179 |
/* currently empty problem cannot be solved */
|
alpar@1
|
180 |
if (!(prob->m > 0 && prob->n > 0))
|
alpar@1
|
181 |
{ if (parm->msg_lev >= GLP_MSG_ERR)
|
alpar@1
|
182 |
xprintf("glp_interior: unable to solve empty problem\n");
|
alpar@1
|
183 |
ret = GLP_EFAIL;
|
alpar@1
|
184 |
goto done;
|
alpar@1
|
185 |
}
|
alpar@1
|
186 |
#endif
|
alpar@1
|
187 |
/* scale the resultant LP */
|
alpar@1
|
188 |
{ ENV *env = get_env_ptr();
|
alpar@1
|
189 |
int term_out = env->term_out;
|
alpar@1
|
190 |
env->term_out = GLP_OFF;
|
alpar@1
|
191 |
glp_scale_prob(prob, GLP_SF_EQ);
|
alpar@1
|
192 |
env->term_out = term_out;
|
alpar@1
|
193 |
}
|
alpar@1
|
194 |
/* warn about dense columns */
|
alpar@1
|
195 |
if (parm->msg_lev >= GLP_MSG_ON && prob->m >= 200)
|
alpar@1
|
196 |
{ int len, cnt = 0;
|
alpar@1
|
197 |
for (j = 1; j <= prob->n; j++)
|
alpar@1
|
198 |
{ len = glp_get_mat_col(prob, j, NULL, NULL);
|
alpar@1
|
199 |
if ((double)len >= 0.20 * (double)prob->m) cnt++;
|
alpar@1
|
200 |
}
|
alpar@1
|
201 |
if (cnt == 1)
|
alpar@1
|
202 |
xprintf("WARNING: PROBLEM HAS ONE DENSE COLUMN\n");
|
alpar@1
|
203 |
else if (cnt > 0)
|
alpar@1
|
204 |
xprintf("WARNING: PROBLEM HAS %d DENSE COLUMNS\n", cnt);
|
alpar@1
|
205 |
}
|
alpar@1
|
206 |
/* solve the transformed LP */
|
alpar@1
|
207 |
ret = ipm_solve(prob, parm);
|
alpar@1
|
208 |
/* postprocess solution from the transformed LP */
|
alpar@1
|
209 |
npp_postprocess(npp, prob);
|
alpar@1
|
210 |
/* and store solution to the original LP */
|
alpar@1
|
211 |
npp_unload_sol(npp, P);
|
alpar@1
|
212 |
done: /* free working program objects */
|
alpar@1
|
213 |
if (npp != NULL) npp_delete_wksp(npp);
|
alpar@1
|
214 |
if (prob != NULL) glp_delete_prob(prob);
|
alpar@1
|
215 |
/* return to the application program */
|
alpar@1
|
216 |
return ret;
|
alpar@1
|
217 |
}
|
alpar@1
|
218 |
|
alpar@1
|
219 |
/***********************************************************************
|
alpar@1
|
220 |
* NAME
|
alpar@1
|
221 |
*
|
alpar@1
|
222 |
* glp_init_iptcp - initialize interior-point solver control parameters
|
alpar@1
|
223 |
*
|
alpar@1
|
224 |
* SYNOPSIS
|
alpar@1
|
225 |
*
|
alpar@1
|
226 |
* void glp_init_iptcp(glp_iptcp *parm);
|
alpar@1
|
227 |
*
|
alpar@1
|
228 |
* DESCRIPTION
|
alpar@1
|
229 |
*
|
alpar@1
|
230 |
* The routine glp_init_iptcp initializes control parameters, which are
|
alpar@1
|
231 |
* used by the interior-point solver, with default values.
|
alpar@1
|
232 |
*
|
alpar@1
|
233 |
* Default values of the control parameters are stored in the glp_iptcp
|
alpar@1
|
234 |
* structure, which the parameter parm points to. */
|
alpar@1
|
235 |
|
alpar@1
|
236 |
void glp_init_iptcp(glp_iptcp *parm)
|
alpar@1
|
237 |
{ parm->msg_lev = GLP_MSG_ALL;
|
alpar@1
|
238 |
parm->ord_alg = GLP_ORD_AMD;
|
alpar@1
|
239 |
return;
|
alpar@1
|
240 |
}
|
alpar@1
|
241 |
|
alpar@1
|
242 |
/***********************************************************************
|
alpar@1
|
243 |
* NAME
|
alpar@1
|
244 |
*
|
alpar@1
|
245 |
* glp_ipt_status - retrieve status of interior-point solution
|
alpar@1
|
246 |
*
|
alpar@1
|
247 |
* SYNOPSIS
|
alpar@1
|
248 |
*
|
alpar@1
|
249 |
* int glp_ipt_status(glp_prob *lp);
|
alpar@1
|
250 |
*
|
alpar@1
|
251 |
* RETURNS
|
alpar@1
|
252 |
*
|
alpar@1
|
253 |
* The routine glp_ipt_status reports the status of solution found by
|
alpar@1
|
254 |
* the interior-point solver as follows:
|
alpar@1
|
255 |
*
|
alpar@1
|
256 |
* GLP_UNDEF - interior-point solution is undefined;
|
alpar@1
|
257 |
* GLP_OPT - interior-point solution is optimal;
|
alpar@1
|
258 |
* GLP_INFEAS - interior-point solution is infeasible;
|
alpar@1
|
259 |
* GLP_NOFEAS - no feasible solution exists. */
|
alpar@1
|
260 |
|
alpar@1
|
261 |
int glp_ipt_status(glp_prob *lp)
|
alpar@1
|
262 |
{ int ipt_stat = lp->ipt_stat;
|
alpar@1
|
263 |
return ipt_stat;
|
alpar@1
|
264 |
}
|
alpar@1
|
265 |
|
alpar@1
|
266 |
/***********************************************************************
|
alpar@1
|
267 |
* NAME
|
alpar@1
|
268 |
*
|
alpar@1
|
269 |
* glp_ipt_obj_val - retrieve objective value (interior point)
|
alpar@1
|
270 |
*
|
alpar@1
|
271 |
* SYNOPSIS
|
alpar@1
|
272 |
*
|
alpar@1
|
273 |
* double glp_ipt_obj_val(glp_prob *lp);
|
alpar@1
|
274 |
*
|
alpar@1
|
275 |
* RETURNS
|
alpar@1
|
276 |
*
|
alpar@1
|
277 |
* The routine glp_ipt_obj_val returns value of the objective function
|
alpar@1
|
278 |
* for interior-point solution. */
|
alpar@1
|
279 |
|
alpar@1
|
280 |
double glp_ipt_obj_val(glp_prob *lp)
|
alpar@1
|
281 |
{ /*struct LPXCPS *cps = lp->cps;*/
|
alpar@1
|
282 |
double z;
|
alpar@1
|
283 |
z = lp->ipt_obj;
|
alpar@1
|
284 |
/*if (cps->round && fabs(z) < 1e-9) z = 0.0;*/
|
alpar@1
|
285 |
return z;
|
alpar@1
|
286 |
}
|
alpar@1
|
287 |
|
alpar@1
|
288 |
/***********************************************************************
|
alpar@1
|
289 |
* NAME
|
alpar@1
|
290 |
*
|
alpar@1
|
291 |
* glp_ipt_row_prim - retrieve row primal value (interior point)
|
alpar@1
|
292 |
*
|
alpar@1
|
293 |
* SYNOPSIS
|
alpar@1
|
294 |
*
|
alpar@1
|
295 |
* double glp_ipt_row_prim(glp_prob *lp, int i);
|
alpar@1
|
296 |
*
|
alpar@1
|
297 |
* RETURNS
|
alpar@1
|
298 |
*
|
alpar@1
|
299 |
* The routine glp_ipt_row_prim returns primal value of the auxiliary
|
alpar@1
|
300 |
* variable associated with i-th row. */
|
alpar@1
|
301 |
|
alpar@1
|
302 |
double glp_ipt_row_prim(glp_prob *lp, int i)
|
alpar@1
|
303 |
{ /*struct LPXCPS *cps = lp->cps;*/
|
alpar@1
|
304 |
double pval;
|
alpar@1
|
305 |
if (!(1 <= i && i <= lp->m))
|
alpar@1
|
306 |
xerror("glp_ipt_row_prim: i = %d; row number out of range\n",
|
alpar@1
|
307 |
i);
|
alpar@1
|
308 |
pval = lp->row[i]->pval;
|
alpar@1
|
309 |
/*if (cps->round && fabs(pval) < 1e-9) pval = 0.0;*/
|
alpar@1
|
310 |
return pval;
|
alpar@1
|
311 |
}
|
alpar@1
|
312 |
|
alpar@1
|
313 |
/***********************************************************************
|
alpar@1
|
314 |
* NAME
|
alpar@1
|
315 |
*
|
alpar@1
|
316 |
* glp_ipt_row_dual - retrieve row dual value (interior point)
|
alpar@1
|
317 |
*
|
alpar@1
|
318 |
* SYNOPSIS
|
alpar@1
|
319 |
*
|
alpar@1
|
320 |
* double glp_ipt_row_dual(glp_prob *lp, int i);
|
alpar@1
|
321 |
*
|
alpar@1
|
322 |
* RETURNS
|
alpar@1
|
323 |
*
|
alpar@1
|
324 |
* The routine glp_ipt_row_dual returns dual value (i.e. reduced cost)
|
alpar@1
|
325 |
* of the auxiliary variable associated with i-th row. */
|
alpar@1
|
326 |
|
alpar@1
|
327 |
double glp_ipt_row_dual(glp_prob *lp, int i)
|
alpar@1
|
328 |
{ /*struct LPXCPS *cps = lp->cps;*/
|
alpar@1
|
329 |
double dval;
|
alpar@1
|
330 |
if (!(1 <= i && i <= lp->m))
|
alpar@1
|
331 |
xerror("glp_ipt_row_dual: i = %d; row number out of range\n",
|
alpar@1
|
332 |
i);
|
alpar@1
|
333 |
dval = lp->row[i]->dval;
|
alpar@1
|
334 |
/*if (cps->round && fabs(dval) < 1e-9) dval = 0.0;*/
|
alpar@1
|
335 |
return dval;
|
alpar@1
|
336 |
}
|
alpar@1
|
337 |
|
alpar@1
|
338 |
/***********************************************************************
|
alpar@1
|
339 |
* NAME
|
alpar@1
|
340 |
*
|
alpar@1
|
341 |
* glp_ipt_col_prim - retrieve column primal value (interior point)
|
alpar@1
|
342 |
*
|
alpar@1
|
343 |
* SYNOPSIS
|
alpar@1
|
344 |
*
|
alpar@1
|
345 |
* double glp_ipt_col_prim(glp_prob *lp, int j);
|
alpar@1
|
346 |
*
|
alpar@1
|
347 |
* RETURNS
|
alpar@1
|
348 |
*
|
alpar@1
|
349 |
* The routine glp_ipt_col_prim returns primal value of the structural
|
alpar@1
|
350 |
* variable associated with j-th column. */
|
alpar@1
|
351 |
|
alpar@1
|
352 |
double glp_ipt_col_prim(glp_prob *lp, int j)
|
alpar@1
|
353 |
{ /*struct LPXCPS *cps = lp->cps;*/
|
alpar@1
|
354 |
double pval;
|
alpar@1
|
355 |
if (!(1 <= j && j <= lp->n))
|
alpar@1
|
356 |
xerror("glp_ipt_col_prim: j = %d; column number out of range\n"
|
alpar@1
|
357 |
, j);
|
alpar@1
|
358 |
pval = lp->col[j]->pval;
|
alpar@1
|
359 |
/*if (cps->round && fabs(pval) < 1e-9) pval = 0.0;*/
|
alpar@1
|
360 |
return pval;
|
alpar@1
|
361 |
}
|
alpar@1
|
362 |
|
alpar@1
|
363 |
/***********************************************************************
|
alpar@1
|
364 |
* NAME
|
alpar@1
|
365 |
*
|
alpar@1
|
366 |
* glp_ipt_col_dual - retrieve column dual value (interior point)
|
alpar@1
|
367 |
*
|
alpar@1
|
368 |
* SYNOPSIS
|
alpar@1
|
369 |
*
|
alpar@1
|
370 |
* #include "glplpx.h"
|
alpar@1
|
371 |
* double glp_ipt_col_dual(glp_prob *lp, int j);
|
alpar@1
|
372 |
*
|
alpar@1
|
373 |
* RETURNS
|
alpar@1
|
374 |
*
|
alpar@1
|
375 |
* The routine glp_ipt_col_dual returns dual value (i.e. reduced cost)
|
alpar@1
|
376 |
* of the structural variable associated with j-th column. */
|
alpar@1
|
377 |
|
alpar@1
|
378 |
double glp_ipt_col_dual(glp_prob *lp, int j)
|
alpar@1
|
379 |
{ /*struct LPXCPS *cps = lp->cps;*/
|
alpar@1
|
380 |
double dval;
|
alpar@1
|
381 |
if (!(1 <= j && j <= lp->n))
|
alpar@1
|
382 |
xerror("glp_ipt_col_dual: j = %d; column number out of range\n"
|
alpar@1
|
383 |
, j);
|
alpar@1
|
384 |
dval = lp->col[j]->dval;
|
alpar@1
|
385 |
/*if (cps->round && fabs(dval) < 1e-9) dval = 0.0;*/
|
alpar@1
|
386 |
return dval;
|
alpar@1
|
387 |
}
|
alpar@1
|
388 |
|
alpar@1
|
389 |
/* eof */
|