alpar@1
|
1 |
/* glpios07.c (mixed cover cut generator) */
|
alpar@1
|
2 |
|
alpar@1
|
3 |
/***********************************************************************
|
alpar@1
|
4 |
* This code is part of GLPK (GNU Linear Programming Kit).
|
alpar@1
|
5 |
*
|
alpar@1
|
6 |
* Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
|
alpar@1
|
7 |
* 2009, 2010 Andrew Makhorin, Department for Applied Informatics,
|
alpar@1
|
8 |
* Moscow Aviation Institute, Moscow, Russia. All rights reserved.
|
alpar@1
|
9 |
* E-mail: <mao@gnu.org>.
|
alpar@1
|
10 |
*
|
alpar@1
|
11 |
* GLPK is free software: you can redistribute it and/or modify it
|
alpar@1
|
12 |
* under the terms of the GNU General Public License as published by
|
alpar@1
|
13 |
* the Free Software Foundation, either version 3 of the License, or
|
alpar@1
|
14 |
* (at your option) any later version.
|
alpar@1
|
15 |
*
|
alpar@1
|
16 |
* GLPK is distributed in the hope that it will be useful, but WITHOUT
|
alpar@1
|
17 |
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
alpar@1
|
18 |
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
|
alpar@1
|
19 |
* License for more details.
|
alpar@1
|
20 |
*
|
alpar@1
|
21 |
* You should have received a copy of the GNU General Public License
|
alpar@1
|
22 |
* along with GLPK. If not, see <http://www.gnu.org/licenses/>.
|
alpar@1
|
23 |
***********************************************************************/
|
alpar@1
|
24 |
|
alpar@1
|
25 |
#include "glpios.h"
|
alpar@1
|
26 |
|
alpar@1
|
27 |
/*----------------------------------------------------------------------
|
alpar@1
|
28 |
-- COVER INEQUALITIES
|
alpar@1
|
29 |
--
|
alpar@1
|
30 |
-- Consider the set of feasible solutions to 0-1 knapsack problem:
|
alpar@1
|
31 |
--
|
alpar@1
|
32 |
-- sum a[j]*x[j] <= b, (1)
|
alpar@1
|
33 |
-- j in J
|
alpar@1
|
34 |
--
|
alpar@1
|
35 |
-- x[j] is binary, (2)
|
alpar@1
|
36 |
--
|
alpar@1
|
37 |
-- where, wlog, we assume that a[j] > 0 (since 0-1 variables can be
|
alpar@1
|
38 |
-- complemented) and a[j] <= b (since a[j] > b implies x[j] = 0).
|
alpar@1
|
39 |
--
|
alpar@1
|
40 |
-- A set C within J is called a cover if
|
alpar@1
|
41 |
--
|
alpar@1
|
42 |
-- sum a[j] > b. (3)
|
alpar@1
|
43 |
-- j in C
|
alpar@1
|
44 |
--
|
alpar@1
|
45 |
-- For any cover C the inequality
|
alpar@1
|
46 |
--
|
alpar@1
|
47 |
-- sum x[j] <= |C| - 1 (4)
|
alpar@1
|
48 |
-- j in C
|
alpar@1
|
49 |
--
|
alpar@1
|
50 |
-- is called a cover inequality and is valid for (1)-(2).
|
alpar@1
|
51 |
--
|
alpar@1
|
52 |
-- MIXED COVER INEQUALITIES
|
alpar@1
|
53 |
--
|
alpar@1
|
54 |
-- Consider the set of feasible solutions to mixed knapsack problem:
|
alpar@1
|
55 |
--
|
alpar@1
|
56 |
-- sum a[j]*x[j] + y <= b, (5)
|
alpar@1
|
57 |
-- j in J
|
alpar@1
|
58 |
--
|
alpar@1
|
59 |
-- x[j] is binary, (6)
|
alpar@1
|
60 |
--
|
alpar@1
|
61 |
-- 0 <= y <= u is continuous, (7)
|
alpar@1
|
62 |
--
|
alpar@1
|
63 |
-- where again we assume that a[j] > 0.
|
alpar@1
|
64 |
--
|
alpar@1
|
65 |
-- Let C within J be some set. From (1)-(4) it follows that
|
alpar@1
|
66 |
--
|
alpar@1
|
67 |
-- sum a[j] > b - y (8)
|
alpar@1
|
68 |
-- j in C
|
alpar@1
|
69 |
--
|
alpar@1
|
70 |
-- implies
|
alpar@1
|
71 |
--
|
alpar@1
|
72 |
-- sum x[j] <= |C| - 1. (9)
|
alpar@1
|
73 |
-- j in C
|
alpar@1
|
74 |
--
|
alpar@1
|
75 |
-- Thus, we need to modify the inequality (9) in such a way that it be
|
alpar@1
|
76 |
-- a constraint only if the condition (8) is satisfied.
|
alpar@1
|
77 |
--
|
alpar@1
|
78 |
-- Consider the following inequality:
|
alpar@1
|
79 |
--
|
alpar@1
|
80 |
-- sum x[j] <= |C| - t. (10)
|
alpar@1
|
81 |
-- j in C
|
alpar@1
|
82 |
--
|
alpar@1
|
83 |
-- If 0 < t <= 1, then (10) is equivalent to (9), because all x[j] are
|
alpar@1
|
84 |
-- binary variables. On the other hand, if t <= 0, (10) being satisfied
|
alpar@1
|
85 |
-- for any values of x[j] is not a constraint.
|
alpar@1
|
86 |
--
|
alpar@1
|
87 |
-- Let
|
alpar@1
|
88 |
--
|
alpar@1
|
89 |
-- t' = sum a[j] + y - b. (11)
|
alpar@1
|
90 |
-- j in C
|
alpar@1
|
91 |
--
|
alpar@1
|
92 |
-- It is understood that the condition t' > 0 is equivalent to (8).
|
alpar@1
|
93 |
-- Besides, from (6)-(7) it follows that t' has an implied upper bound:
|
alpar@1
|
94 |
--
|
alpar@1
|
95 |
-- t'max = sum a[j] + u - b. (12)
|
alpar@1
|
96 |
-- j in C
|
alpar@1
|
97 |
--
|
alpar@1
|
98 |
-- This allows to express the parameter t having desired properties:
|
alpar@1
|
99 |
--
|
alpar@1
|
100 |
-- t = t' / t'max. (13)
|
alpar@1
|
101 |
--
|
alpar@1
|
102 |
-- In fact, t <= 1 by definition, and t > 0 being equivalent to t' > 0
|
alpar@1
|
103 |
-- is equivalent to (8).
|
alpar@1
|
104 |
--
|
alpar@1
|
105 |
-- Thus, the inequality (10), where t is given by formula (13) is valid
|
alpar@1
|
106 |
-- for (5)-(7).
|
alpar@1
|
107 |
--
|
alpar@1
|
108 |
-- Note that if u = 0, then y = 0, so t = 1, and the conditions (8) and
|
alpar@1
|
109 |
-- (10) is transformed to the conditions (3) and (4).
|
alpar@1
|
110 |
--
|
alpar@1
|
111 |
-- GENERATING MIXED COVER CUTS
|
alpar@1
|
112 |
--
|
alpar@1
|
113 |
-- To generate a mixed cover cut in the form (10) we need to find such
|
alpar@1
|
114 |
-- set C which satisfies to the inequality (8) and for which, in turn,
|
alpar@1
|
115 |
-- the inequality (10) is violated in the current point.
|
alpar@1
|
116 |
--
|
alpar@1
|
117 |
-- Substituting t from (13) to (10) gives:
|
alpar@1
|
118 |
--
|
alpar@1
|
119 |
-- 1
|
alpar@1
|
120 |
-- sum x[j] <= |C| - ----- (sum a[j] + y - b), (14)
|
alpar@1
|
121 |
-- j in C t'max j in C
|
alpar@1
|
122 |
--
|
alpar@1
|
123 |
-- and finally we have the cut inequality in the standard form:
|
alpar@1
|
124 |
--
|
alpar@1
|
125 |
-- sum x[j] + alfa * y <= beta, (15)
|
alpar@1
|
126 |
-- j in C
|
alpar@1
|
127 |
--
|
alpar@1
|
128 |
-- where:
|
alpar@1
|
129 |
--
|
alpar@1
|
130 |
-- alfa = 1 / t'max, (16)
|
alpar@1
|
131 |
--
|
alpar@1
|
132 |
-- beta = |C| - alfa * (sum a[j] - b). (17)
|
alpar@1
|
133 |
-- j in C */
|
alpar@1
|
134 |
|
alpar@1
|
135 |
#if 1
|
alpar@1
|
136 |
#define MAXTRY 1000
|
alpar@1
|
137 |
#else
|
alpar@1
|
138 |
#define MAXTRY 10000
|
alpar@1
|
139 |
#endif
|
alpar@1
|
140 |
|
alpar@1
|
141 |
static int cover2(int n, double a[], double b, double u, double x[],
|
alpar@1
|
142 |
double y, int cov[], double *_alfa, double *_beta)
|
alpar@1
|
143 |
{ /* try to generate mixed cover cut using two-element cover */
|
alpar@1
|
144 |
int i, j, try = 0, ret = 0;
|
alpar@1
|
145 |
double eps, alfa, beta, temp, rmax = 0.001;
|
alpar@1
|
146 |
eps = 0.001 * (1.0 + fabs(b));
|
alpar@1
|
147 |
for (i = 0+1; i <= n; i++)
|
alpar@1
|
148 |
for (j = i+1; j <= n; j++)
|
alpar@1
|
149 |
{ /* C = {i, j} */
|
alpar@1
|
150 |
try++;
|
alpar@1
|
151 |
if (try > MAXTRY) goto done;
|
alpar@1
|
152 |
/* check if condition (8) is satisfied */
|
alpar@1
|
153 |
if (a[i] + a[j] + y > b + eps)
|
alpar@1
|
154 |
{ /* compute parameters for inequality (15) */
|
alpar@1
|
155 |
temp = a[i] + a[j] - b;
|
alpar@1
|
156 |
alfa = 1.0 / (temp + u);
|
alpar@1
|
157 |
beta = 2.0 - alfa * temp;
|
alpar@1
|
158 |
/* compute violation of inequality (15) */
|
alpar@1
|
159 |
temp = x[i] + x[j] + alfa * y - beta;
|
alpar@1
|
160 |
/* choose C providing maximum violation */
|
alpar@1
|
161 |
if (rmax < temp)
|
alpar@1
|
162 |
{ rmax = temp;
|
alpar@1
|
163 |
cov[1] = i;
|
alpar@1
|
164 |
cov[2] = j;
|
alpar@1
|
165 |
*_alfa = alfa;
|
alpar@1
|
166 |
*_beta = beta;
|
alpar@1
|
167 |
ret = 1;
|
alpar@1
|
168 |
}
|
alpar@1
|
169 |
}
|
alpar@1
|
170 |
}
|
alpar@1
|
171 |
done: return ret;
|
alpar@1
|
172 |
}
|
alpar@1
|
173 |
|
alpar@1
|
174 |
static int cover3(int n, double a[], double b, double u, double x[],
|
alpar@1
|
175 |
double y, int cov[], double *_alfa, double *_beta)
|
alpar@1
|
176 |
{ /* try to generate mixed cover cut using three-element cover */
|
alpar@1
|
177 |
int i, j, k, try = 0, ret = 0;
|
alpar@1
|
178 |
double eps, alfa, beta, temp, rmax = 0.001;
|
alpar@1
|
179 |
eps = 0.001 * (1.0 + fabs(b));
|
alpar@1
|
180 |
for (i = 0+1; i <= n; i++)
|
alpar@1
|
181 |
for (j = i+1; j <= n; j++)
|
alpar@1
|
182 |
for (k = j+1; k <= n; k++)
|
alpar@1
|
183 |
{ /* C = {i, j, k} */
|
alpar@1
|
184 |
try++;
|
alpar@1
|
185 |
if (try > MAXTRY) goto done;
|
alpar@1
|
186 |
/* check if condition (8) is satisfied */
|
alpar@1
|
187 |
if (a[i] + a[j] + a[k] + y > b + eps)
|
alpar@1
|
188 |
{ /* compute parameters for inequality (15) */
|
alpar@1
|
189 |
temp = a[i] + a[j] + a[k] - b;
|
alpar@1
|
190 |
alfa = 1.0 / (temp + u);
|
alpar@1
|
191 |
beta = 3.0 - alfa * temp;
|
alpar@1
|
192 |
/* compute violation of inequality (15) */
|
alpar@1
|
193 |
temp = x[i] + x[j] + x[k] + alfa * y - beta;
|
alpar@1
|
194 |
/* choose C providing maximum violation */
|
alpar@1
|
195 |
if (rmax < temp)
|
alpar@1
|
196 |
{ rmax = temp;
|
alpar@1
|
197 |
cov[1] = i;
|
alpar@1
|
198 |
cov[2] = j;
|
alpar@1
|
199 |
cov[3] = k;
|
alpar@1
|
200 |
*_alfa = alfa;
|
alpar@1
|
201 |
*_beta = beta;
|
alpar@1
|
202 |
ret = 1;
|
alpar@1
|
203 |
}
|
alpar@1
|
204 |
}
|
alpar@1
|
205 |
}
|
alpar@1
|
206 |
done: return ret;
|
alpar@1
|
207 |
}
|
alpar@1
|
208 |
|
alpar@1
|
209 |
static int cover4(int n, double a[], double b, double u, double x[],
|
alpar@1
|
210 |
double y, int cov[], double *_alfa, double *_beta)
|
alpar@1
|
211 |
{ /* try to generate mixed cover cut using four-element cover */
|
alpar@1
|
212 |
int i, j, k, l, try = 0, ret = 0;
|
alpar@1
|
213 |
double eps, alfa, beta, temp, rmax = 0.001;
|
alpar@1
|
214 |
eps = 0.001 * (1.0 + fabs(b));
|
alpar@1
|
215 |
for (i = 0+1; i <= n; i++)
|
alpar@1
|
216 |
for (j = i+1; j <= n; j++)
|
alpar@1
|
217 |
for (k = j+1; k <= n; k++)
|
alpar@1
|
218 |
for (l = k+1; l <= n; l++)
|
alpar@1
|
219 |
{ /* C = {i, j, k, l} */
|
alpar@1
|
220 |
try++;
|
alpar@1
|
221 |
if (try > MAXTRY) goto done;
|
alpar@1
|
222 |
/* check if condition (8) is satisfied */
|
alpar@1
|
223 |
if (a[i] + a[j] + a[k] + a[l] + y > b + eps)
|
alpar@1
|
224 |
{ /* compute parameters for inequality (15) */
|
alpar@1
|
225 |
temp = a[i] + a[j] + a[k] + a[l] - b;
|
alpar@1
|
226 |
alfa = 1.0 / (temp + u);
|
alpar@1
|
227 |
beta = 4.0 - alfa * temp;
|
alpar@1
|
228 |
/* compute violation of inequality (15) */
|
alpar@1
|
229 |
temp = x[i] + x[j] + x[k] + x[l] + alfa * y - beta;
|
alpar@1
|
230 |
/* choose C providing maximum violation */
|
alpar@1
|
231 |
if (rmax < temp)
|
alpar@1
|
232 |
{ rmax = temp;
|
alpar@1
|
233 |
cov[1] = i;
|
alpar@1
|
234 |
cov[2] = j;
|
alpar@1
|
235 |
cov[3] = k;
|
alpar@1
|
236 |
cov[4] = l;
|
alpar@1
|
237 |
*_alfa = alfa;
|
alpar@1
|
238 |
*_beta = beta;
|
alpar@1
|
239 |
ret = 1;
|
alpar@1
|
240 |
}
|
alpar@1
|
241 |
}
|
alpar@1
|
242 |
}
|
alpar@1
|
243 |
done: return ret;
|
alpar@1
|
244 |
}
|
alpar@1
|
245 |
|
alpar@1
|
246 |
static int cover(int n, double a[], double b, double u, double x[],
|
alpar@1
|
247 |
double y, int cov[], double *alfa, double *beta)
|
alpar@1
|
248 |
{ /* try to generate mixed cover cut;
|
alpar@1
|
249 |
input (see (5)):
|
alpar@1
|
250 |
n is the number of binary variables;
|
alpar@1
|
251 |
a[1:n] are coefficients at binary variables;
|
alpar@1
|
252 |
b is the right-hand side;
|
alpar@1
|
253 |
u is upper bound of continuous variable;
|
alpar@1
|
254 |
x[1:n] are values of binary variables at current point;
|
alpar@1
|
255 |
y is value of continuous variable at current point;
|
alpar@1
|
256 |
output (see (15), (16), (17)):
|
alpar@1
|
257 |
cov[1:r] are indices of binary variables included in cover C,
|
alpar@1
|
258 |
where r is the set cardinality returned on exit;
|
alpar@1
|
259 |
alfa coefficient at continuous variable;
|
alpar@1
|
260 |
beta is the right-hand side; */
|
alpar@1
|
261 |
int j;
|
alpar@1
|
262 |
/* perform some sanity checks */
|
alpar@1
|
263 |
xassert(n >= 2);
|
alpar@1
|
264 |
for (j = 1; j <= n; j++) xassert(a[j] > 0.0);
|
alpar@1
|
265 |
#if 1 /* ??? */
|
alpar@1
|
266 |
xassert(b > -1e-5);
|
alpar@1
|
267 |
#else
|
alpar@1
|
268 |
xassert(b > 0.0);
|
alpar@1
|
269 |
#endif
|
alpar@1
|
270 |
xassert(u >= 0.0);
|
alpar@1
|
271 |
for (j = 1; j <= n; j++) xassert(0.0 <= x[j] && x[j] <= 1.0);
|
alpar@1
|
272 |
xassert(0.0 <= y && y <= u);
|
alpar@1
|
273 |
/* try to generate mixed cover cut */
|
alpar@1
|
274 |
if (cover2(n, a, b, u, x, y, cov, alfa, beta)) return 2;
|
alpar@1
|
275 |
if (cover3(n, a, b, u, x, y, cov, alfa, beta)) return 3;
|
alpar@1
|
276 |
if (cover4(n, a, b, u, x, y, cov, alfa, beta)) return 4;
|
alpar@1
|
277 |
return 0;
|
alpar@1
|
278 |
}
|
alpar@1
|
279 |
|
alpar@1
|
280 |
/*----------------------------------------------------------------------
|
alpar@1
|
281 |
-- lpx_cover_cut - generate mixed cover cut.
|
alpar@1
|
282 |
--
|
alpar@1
|
283 |
-- SYNOPSIS
|
alpar@1
|
284 |
--
|
alpar@1
|
285 |
-- #include "glplpx.h"
|
alpar@1
|
286 |
-- int lpx_cover_cut(LPX *lp, int len, int ind[], double val[],
|
alpar@1
|
287 |
-- double work[]);
|
alpar@1
|
288 |
--
|
alpar@1
|
289 |
-- DESCRIPTION
|
alpar@1
|
290 |
--
|
alpar@1
|
291 |
-- The routine lpx_cover_cut generates a mixed cover cut for a given
|
alpar@1
|
292 |
-- row of the MIP problem.
|
alpar@1
|
293 |
--
|
alpar@1
|
294 |
-- The given row of the MIP problem should be explicitly specified in
|
alpar@1
|
295 |
-- the form:
|
alpar@1
|
296 |
--
|
alpar@1
|
297 |
-- sum{j in J} a[j]*x[j] <= b. (1)
|
alpar@1
|
298 |
--
|
alpar@1
|
299 |
-- On entry indices (ordinal numbers) of structural variables, which
|
alpar@1
|
300 |
-- have non-zero constraint coefficients, should be placed in locations
|
alpar@1
|
301 |
-- ind[1], ..., ind[len], and corresponding constraint coefficients
|
alpar@1
|
302 |
-- should be placed in locations val[1], ..., val[len]. The right-hand
|
alpar@1
|
303 |
-- side b should be stored in location val[0].
|
alpar@1
|
304 |
--
|
alpar@1
|
305 |
-- The working array work should have at least nb locations, where nb
|
alpar@1
|
306 |
-- is the number of binary variables in (1).
|
alpar@1
|
307 |
--
|
alpar@1
|
308 |
-- The routine generates a mixed cover cut in the same form as (1) and
|
alpar@1
|
309 |
-- stores the cut coefficients and right-hand side in the same way as
|
alpar@1
|
310 |
-- just described above.
|
alpar@1
|
311 |
--
|
alpar@1
|
312 |
-- RETURNS
|
alpar@1
|
313 |
--
|
alpar@1
|
314 |
-- If the cutting plane has been successfully generated, the routine
|
alpar@1
|
315 |
-- returns 1 <= len' <= n, which is the number of non-zero coefficients
|
alpar@1
|
316 |
-- in the inequality constraint. Otherwise, the routine returns zero. */
|
alpar@1
|
317 |
|
alpar@1
|
318 |
static int lpx_cover_cut(LPX *lp, int len, int ind[], double val[],
|
alpar@1
|
319 |
double work[])
|
alpar@1
|
320 |
{ int cov[1+4], j, k, nb, newlen, r;
|
alpar@1
|
321 |
double f_min, f_max, alfa, beta, u, *x = work, y;
|
alpar@1
|
322 |
/* substitute and remove fixed variables */
|
alpar@1
|
323 |
newlen = 0;
|
alpar@1
|
324 |
for (k = 1; k <= len; k++)
|
alpar@1
|
325 |
{ j = ind[k];
|
alpar@1
|
326 |
if (lpx_get_col_type(lp, j) == LPX_FX)
|
alpar@1
|
327 |
val[0] -= val[k] * lpx_get_col_lb(lp, j);
|
alpar@1
|
328 |
else
|
alpar@1
|
329 |
{ newlen++;
|
alpar@1
|
330 |
ind[newlen] = ind[k];
|
alpar@1
|
331 |
val[newlen] = val[k];
|
alpar@1
|
332 |
}
|
alpar@1
|
333 |
}
|
alpar@1
|
334 |
len = newlen;
|
alpar@1
|
335 |
/* move binary variables to the beginning of the list so that
|
alpar@1
|
336 |
elements 1, 2, ..., nb correspond to binary variables, and
|
alpar@1
|
337 |
elements nb+1, nb+2, ..., len correspond to rest variables */
|
alpar@1
|
338 |
nb = 0;
|
alpar@1
|
339 |
for (k = 1; k <= len; k++)
|
alpar@1
|
340 |
{ j = ind[k];
|
alpar@1
|
341 |
if (lpx_get_col_kind(lp, j) == LPX_IV &&
|
alpar@1
|
342 |
lpx_get_col_type(lp, j) == LPX_DB &&
|
alpar@1
|
343 |
lpx_get_col_lb(lp, j) == 0.0 &&
|
alpar@1
|
344 |
lpx_get_col_ub(lp, j) == 1.0)
|
alpar@1
|
345 |
{ /* binary variable */
|
alpar@1
|
346 |
int ind_k;
|
alpar@1
|
347 |
double val_k;
|
alpar@1
|
348 |
nb++;
|
alpar@1
|
349 |
ind_k = ind[nb], val_k = val[nb];
|
alpar@1
|
350 |
ind[nb] = ind[k], val[nb] = val[k];
|
alpar@1
|
351 |
ind[k] = ind_k, val[k] = val_k;
|
alpar@1
|
352 |
}
|
alpar@1
|
353 |
}
|
alpar@1
|
354 |
/* now the specified row has the form:
|
alpar@1
|
355 |
sum a[j]*x[j] + sum a[j]*y[j] <= b,
|
alpar@1
|
356 |
where x[j] are binary variables, y[j] are rest variables */
|
alpar@1
|
357 |
/* at least two binary variables are needed */
|
alpar@1
|
358 |
if (nb < 2) return 0;
|
alpar@1
|
359 |
/* compute implied lower and upper bounds for sum a[j]*y[j] */
|
alpar@1
|
360 |
f_min = f_max = 0.0;
|
alpar@1
|
361 |
for (k = nb+1; k <= len; k++)
|
alpar@1
|
362 |
{ j = ind[k];
|
alpar@1
|
363 |
/* both bounds must be finite */
|
alpar@1
|
364 |
if (lpx_get_col_type(lp, j) != LPX_DB) return 0;
|
alpar@1
|
365 |
if (val[k] > 0.0)
|
alpar@1
|
366 |
{ f_min += val[k] * lpx_get_col_lb(lp, j);
|
alpar@1
|
367 |
f_max += val[k] * lpx_get_col_ub(lp, j);
|
alpar@1
|
368 |
}
|
alpar@1
|
369 |
else
|
alpar@1
|
370 |
{ f_min += val[k] * lpx_get_col_ub(lp, j);
|
alpar@1
|
371 |
f_max += val[k] * lpx_get_col_lb(lp, j);
|
alpar@1
|
372 |
}
|
alpar@1
|
373 |
}
|
alpar@1
|
374 |
/* sum a[j]*x[j] + sum a[j]*y[j] <= b ===>
|
alpar@1
|
375 |
sum a[j]*x[j] + (sum a[j]*y[j] - f_min) <= b - f_min ===>
|
alpar@1
|
376 |
sum a[j]*x[j] + y <= b - f_min,
|
alpar@1
|
377 |
where y = sum a[j]*y[j] - f_min;
|
alpar@1
|
378 |
note that 0 <= y <= u, u = f_max - f_min */
|
alpar@1
|
379 |
/* determine upper bound of y */
|
alpar@1
|
380 |
u = f_max - f_min;
|
alpar@1
|
381 |
/* determine value of y at the current point */
|
alpar@1
|
382 |
y = 0.0;
|
alpar@1
|
383 |
for (k = nb+1; k <= len; k++)
|
alpar@1
|
384 |
{ j = ind[k];
|
alpar@1
|
385 |
y += val[k] * lpx_get_col_prim(lp, j);
|
alpar@1
|
386 |
}
|
alpar@1
|
387 |
y -= f_min;
|
alpar@1
|
388 |
if (y < 0.0) y = 0.0;
|
alpar@1
|
389 |
if (y > u) y = u;
|
alpar@1
|
390 |
/* modify the right-hand side b */
|
alpar@1
|
391 |
val[0] -= f_min;
|
alpar@1
|
392 |
/* now the transformed row has the form:
|
alpar@1
|
393 |
sum a[j]*x[j] + y <= b, where 0 <= y <= u */
|
alpar@1
|
394 |
/* determine values of x[j] at the current point */
|
alpar@1
|
395 |
for (k = 1; k <= nb; k++)
|
alpar@1
|
396 |
{ j = ind[k];
|
alpar@1
|
397 |
x[k] = lpx_get_col_prim(lp, j);
|
alpar@1
|
398 |
if (x[k] < 0.0) x[k] = 0.0;
|
alpar@1
|
399 |
if (x[k] > 1.0) x[k] = 1.0;
|
alpar@1
|
400 |
}
|
alpar@1
|
401 |
/* if a[j] < 0, replace x[j] by its complement 1 - x'[j] */
|
alpar@1
|
402 |
for (k = 1; k <= nb; k++)
|
alpar@1
|
403 |
{ if (val[k] < 0.0)
|
alpar@1
|
404 |
{ ind[k] = - ind[k];
|
alpar@1
|
405 |
val[k] = - val[k];
|
alpar@1
|
406 |
val[0] += val[k];
|
alpar@1
|
407 |
x[k] = 1.0 - x[k];
|
alpar@1
|
408 |
}
|
alpar@1
|
409 |
}
|
alpar@1
|
410 |
/* try to generate a mixed cover cut for the transformed row */
|
alpar@1
|
411 |
r = cover(nb, val, val[0], u, x, y, cov, &alfa, &beta);
|
alpar@1
|
412 |
if (r == 0) return 0;
|
alpar@1
|
413 |
xassert(2 <= r && r <= 4);
|
alpar@1
|
414 |
/* now the cut is in the form:
|
alpar@1
|
415 |
sum{j in C} x[j] + alfa * y <= beta */
|
alpar@1
|
416 |
/* store the right-hand side beta */
|
alpar@1
|
417 |
ind[0] = 0, val[0] = beta;
|
alpar@1
|
418 |
/* restore the original ordinal numbers of x[j] */
|
alpar@1
|
419 |
for (j = 1; j <= r; j++) cov[j] = ind[cov[j]];
|
alpar@1
|
420 |
/* store cut coefficients at binary variables complementing back
|
alpar@1
|
421 |
the variables having negative row coefficients */
|
alpar@1
|
422 |
xassert(r <= nb);
|
alpar@1
|
423 |
for (k = 1; k <= r; k++)
|
alpar@1
|
424 |
{ if (cov[k] > 0)
|
alpar@1
|
425 |
{ ind[k] = +cov[k];
|
alpar@1
|
426 |
val[k] = +1.0;
|
alpar@1
|
427 |
}
|
alpar@1
|
428 |
else
|
alpar@1
|
429 |
{ ind[k] = -cov[k];
|
alpar@1
|
430 |
val[k] = -1.0;
|
alpar@1
|
431 |
val[0] -= 1.0;
|
alpar@1
|
432 |
}
|
alpar@1
|
433 |
}
|
alpar@1
|
434 |
/* substitute y = sum a[j]*y[j] - f_min */
|
alpar@1
|
435 |
for (k = nb+1; k <= len; k++)
|
alpar@1
|
436 |
{ r++;
|
alpar@1
|
437 |
ind[r] = ind[k];
|
alpar@1
|
438 |
val[r] = alfa * val[k];
|
alpar@1
|
439 |
}
|
alpar@1
|
440 |
val[0] += alfa * f_min;
|
alpar@1
|
441 |
xassert(r <= len);
|
alpar@1
|
442 |
len = r;
|
alpar@1
|
443 |
return len;
|
alpar@1
|
444 |
}
|
alpar@1
|
445 |
|
alpar@1
|
446 |
/*----------------------------------------------------------------------
|
alpar@1
|
447 |
-- lpx_eval_row - compute explictily specified row.
|
alpar@1
|
448 |
--
|
alpar@1
|
449 |
-- SYNOPSIS
|
alpar@1
|
450 |
--
|
alpar@1
|
451 |
-- #include "glplpx.h"
|
alpar@1
|
452 |
-- double lpx_eval_row(LPX *lp, int len, int ind[], double val[]);
|
alpar@1
|
453 |
--
|
alpar@1
|
454 |
-- DESCRIPTION
|
alpar@1
|
455 |
--
|
alpar@1
|
456 |
-- The routine lpx_eval_row computes the primal value of an explicitly
|
alpar@1
|
457 |
-- specified row using current values of structural variables.
|
alpar@1
|
458 |
--
|
alpar@1
|
459 |
-- The explicitly specified row may be thought as a linear form:
|
alpar@1
|
460 |
--
|
alpar@1
|
461 |
-- y = a[1]*x[m+1] + a[2]*x[m+2] + ... + a[n]*x[m+n],
|
alpar@1
|
462 |
--
|
alpar@1
|
463 |
-- where y is an auxiliary variable for this row, a[j] are coefficients
|
alpar@1
|
464 |
-- of the linear form, x[m+j] are structural variables.
|
alpar@1
|
465 |
--
|
alpar@1
|
466 |
-- On entry column indices and numerical values of non-zero elements of
|
alpar@1
|
467 |
-- the row should be stored in locations ind[1], ..., ind[len] and
|
alpar@1
|
468 |
-- val[1], ..., val[len], where len is the number of non-zero elements.
|
alpar@1
|
469 |
-- The array ind and val are not changed on exit.
|
alpar@1
|
470 |
--
|
alpar@1
|
471 |
-- RETURNS
|
alpar@1
|
472 |
--
|
alpar@1
|
473 |
-- The routine returns a computed value of y, the auxiliary variable of
|
alpar@1
|
474 |
-- the specified row. */
|
alpar@1
|
475 |
|
alpar@1
|
476 |
static double lpx_eval_row(LPX *lp, int len, int ind[], double val[])
|
alpar@1
|
477 |
{ int n = lpx_get_num_cols(lp);
|
alpar@1
|
478 |
int j, k;
|
alpar@1
|
479 |
double sum = 0.0;
|
alpar@1
|
480 |
if (len < 0)
|
alpar@1
|
481 |
xerror("lpx_eval_row: len = %d; invalid row length\n", len);
|
alpar@1
|
482 |
for (k = 1; k <= len; k++)
|
alpar@1
|
483 |
{ j = ind[k];
|
alpar@1
|
484 |
if (!(1 <= j && j <= n))
|
alpar@1
|
485 |
xerror("lpx_eval_row: j = %d; column number out of range\n",
|
alpar@1
|
486 |
j);
|
alpar@1
|
487 |
sum += val[k] * lpx_get_col_prim(lp, j);
|
alpar@1
|
488 |
}
|
alpar@1
|
489 |
return sum;
|
alpar@1
|
490 |
}
|
alpar@1
|
491 |
|
alpar@1
|
492 |
/***********************************************************************
|
alpar@1
|
493 |
* NAME
|
alpar@1
|
494 |
*
|
alpar@1
|
495 |
* ios_cov_gen - generate mixed cover cuts
|
alpar@1
|
496 |
*
|
alpar@1
|
497 |
* SYNOPSIS
|
alpar@1
|
498 |
*
|
alpar@1
|
499 |
* #include "glpios.h"
|
alpar@1
|
500 |
* void ios_cov_gen(glp_tree *tree);
|
alpar@1
|
501 |
*
|
alpar@1
|
502 |
* DESCRIPTION
|
alpar@1
|
503 |
*
|
alpar@1
|
504 |
* The routine ios_cov_gen generates mixed cover cuts for the current
|
alpar@1
|
505 |
* point and adds them to the cut pool. */
|
alpar@1
|
506 |
|
alpar@1
|
507 |
void ios_cov_gen(glp_tree *tree)
|
alpar@1
|
508 |
{ glp_prob *prob = tree->mip;
|
alpar@1
|
509 |
int m = lpx_get_num_rows(prob);
|
alpar@1
|
510 |
int n = lpx_get_num_cols(prob);
|
alpar@1
|
511 |
int i, k, type, kase, len, *ind;
|
alpar@1
|
512 |
double r, *val, *work;
|
alpar@1
|
513 |
xassert(lpx_get_status(prob) == LPX_OPT);
|
alpar@1
|
514 |
/* allocate working arrays */
|
alpar@1
|
515 |
ind = xcalloc(1+n, sizeof(int));
|
alpar@1
|
516 |
val = xcalloc(1+n, sizeof(double));
|
alpar@1
|
517 |
work = xcalloc(1+n, sizeof(double));
|
alpar@1
|
518 |
/* look through all rows */
|
alpar@1
|
519 |
for (i = 1; i <= m; i++)
|
alpar@1
|
520 |
for (kase = 1; kase <= 2; kase++)
|
alpar@1
|
521 |
{ type = lpx_get_row_type(prob, i);
|
alpar@1
|
522 |
if (kase == 1)
|
alpar@1
|
523 |
{ /* consider rows of '<=' type */
|
alpar@1
|
524 |
if (!(type == LPX_UP || type == LPX_DB)) continue;
|
alpar@1
|
525 |
len = lpx_get_mat_row(prob, i, ind, val);
|
alpar@1
|
526 |
val[0] = lpx_get_row_ub(prob, i);
|
alpar@1
|
527 |
}
|
alpar@1
|
528 |
else
|
alpar@1
|
529 |
{ /* consider rows of '>=' type */
|
alpar@1
|
530 |
if (!(type == LPX_LO || type == LPX_DB)) continue;
|
alpar@1
|
531 |
len = lpx_get_mat_row(prob, i, ind, val);
|
alpar@1
|
532 |
for (k = 1; k <= len; k++) val[k] = - val[k];
|
alpar@1
|
533 |
val[0] = - lpx_get_row_lb(prob, i);
|
alpar@1
|
534 |
}
|
alpar@1
|
535 |
/* generate mixed cover cut:
|
alpar@1
|
536 |
sum{j in J} a[j] * x[j] <= b */
|
alpar@1
|
537 |
len = lpx_cover_cut(prob, len, ind, val, work);
|
alpar@1
|
538 |
if (len == 0) continue;
|
alpar@1
|
539 |
/* at the current point the cut inequality is violated, i.e.
|
alpar@1
|
540 |
sum{j in J} a[j] * x[j] - b > 0 */
|
alpar@1
|
541 |
r = lpx_eval_row(prob, len, ind, val) - val[0];
|
alpar@1
|
542 |
if (r < 1e-3) continue;
|
alpar@1
|
543 |
/* add the cut to the cut pool */
|
alpar@1
|
544 |
glp_ios_add_row(tree, NULL, GLP_RF_COV, 0, len, ind, val,
|
alpar@1
|
545 |
GLP_UP, val[0]);
|
alpar@1
|
546 |
}
|
alpar@1
|
547 |
/* free working arrays */
|
alpar@1
|
548 |
xfree(ind);
|
alpar@1
|
549 |
xfree(val);
|
alpar@1
|
550 |
xfree(work);
|
alpar@1
|
551 |
return;
|
alpar@1
|
552 |
}
|
alpar@1
|
553 |
|
alpar@1
|
554 |
/* eof */
|