alpar@1
|
1 |
/* glplib02.c (64-bit arithmetic) */
|
alpar@1
|
2 |
|
alpar@1
|
3 |
/***********************************************************************
|
alpar@1
|
4 |
* This code is part of GLPK (GNU Linear Programming Kit).
|
alpar@1
|
5 |
*
|
alpar@1
|
6 |
* Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
|
alpar@1
|
7 |
* 2009, 2010 Andrew Makhorin, Department for Applied Informatics,
|
alpar@1
|
8 |
* Moscow Aviation Institute, Moscow, Russia. All rights reserved.
|
alpar@1
|
9 |
* E-mail: <mao@gnu.org>.
|
alpar@1
|
10 |
*
|
alpar@1
|
11 |
* GLPK is free software: you can redistribute it and/or modify it
|
alpar@1
|
12 |
* under the terms of the GNU General Public License as published by
|
alpar@1
|
13 |
* the Free Software Foundation, either version 3 of the License, or
|
alpar@1
|
14 |
* (at your option) any later version.
|
alpar@1
|
15 |
*
|
alpar@1
|
16 |
* GLPK is distributed in the hope that it will be useful, but WITHOUT
|
alpar@1
|
17 |
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
alpar@1
|
18 |
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
|
alpar@1
|
19 |
* License for more details.
|
alpar@1
|
20 |
*
|
alpar@1
|
21 |
* You should have received a copy of the GNU General Public License
|
alpar@1
|
22 |
* along with GLPK. If not, see <http://www.gnu.org/licenses/>.
|
alpar@1
|
23 |
***********************************************************************/
|
alpar@1
|
24 |
|
alpar@1
|
25 |
#include "glpenv.h"
|
alpar@1
|
26 |
#include "glplib.h"
|
alpar@1
|
27 |
|
alpar@1
|
28 |
/***********************************************************************
|
alpar@1
|
29 |
* NAME
|
alpar@1
|
30 |
*
|
alpar@1
|
31 |
* xlset - expand integer to long integer
|
alpar@1
|
32 |
*
|
alpar@1
|
33 |
* SYNOPSIS
|
alpar@1
|
34 |
*
|
alpar@1
|
35 |
* #include "glplib.h"
|
alpar@1
|
36 |
* glp_long xlset(int x);
|
alpar@1
|
37 |
*
|
alpar@1
|
38 |
* RETURNS
|
alpar@1
|
39 |
*
|
alpar@1
|
40 |
* The routine xlset returns x expanded to long integer. */
|
alpar@1
|
41 |
|
alpar@1
|
42 |
glp_long xlset(int x)
|
alpar@1
|
43 |
{ glp_long t;
|
alpar@1
|
44 |
t.lo = x, t.hi = (x >= 0 ? 0 : -1);
|
alpar@1
|
45 |
return t;
|
alpar@1
|
46 |
}
|
alpar@1
|
47 |
|
alpar@1
|
48 |
/***********************************************************************
|
alpar@1
|
49 |
* NAME
|
alpar@1
|
50 |
*
|
alpar@1
|
51 |
* xlneg - negate long integer
|
alpar@1
|
52 |
*
|
alpar@1
|
53 |
* SYNOPSIS
|
alpar@1
|
54 |
*
|
alpar@1
|
55 |
* #include "glplib.h"
|
alpar@1
|
56 |
* glp_long xlneg(glp_long x);
|
alpar@1
|
57 |
*
|
alpar@1
|
58 |
* RETURNS
|
alpar@1
|
59 |
*
|
alpar@1
|
60 |
* The routine xlneg returns the difference 0 - x. */
|
alpar@1
|
61 |
|
alpar@1
|
62 |
glp_long xlneg(glp_long x)
|
alpar@1
|
63 |
{ if (x.lo)
|
alpar@1
|
64 |
x.lo = - x.lo, x.hi = ~x.hi;
|
alpar@1
|
65 |
else
|
alpar@1
|
66 |
x.hi = - x.hi;
|
alpar@1
|
67 |
return x;
|
alpar@1
|
68 |
}
|
alpar@1
|
69 |
|
alpar@1
|
70 |
/***********************************************************************
|
alpar@1
|
71 |
* NAME
|
alpar@1
|
72 |
*
|
alpar@1
|
73 |
* xladd - add long integers
|
alpar@1
|
74 |
*
|
alpar@1
|
75 |
* SYNOPSIS
|
alpar@1
|
76 |
*
|
alpar@1
|
77 |
* #include "glplib.h"
|
alpar@1
|
78 |
* glp_long xladd(glp_long x, glp_long y);
|
alpar@1
|
79 |
*
|
alpar@1
|
80 |
* RETURNS
|
alpar@1
|
81 |
*
|
alpar@1
|
82 |
* The routine xladd returns the sum x + y. */
|
alpar@1
|
83 |
|
alpar@1
|
84 |
glp_long xladd(glp_long x, glp_long y)
|
alpar@1
|
85 |
{ if ((unsigned int)x.lo <= 0xFFFFFFFF - (unsigned int)y.lo)
|
alpar@1
|
86 |
x.lo += y.lo, x.hi += y.hi;
|
alpar@1
|
87 |
else
|
alpar@1
|
88 |
x.lo += y.lo, x.hi += y.hi + 1;
|
alpar@1
|
89 |
return x;
|
alpar@1
|
90 |
}
|
alpar@1
|
91 |
|
alpar@1
|
92 |
/***********************************************************************
|
alpar@1
|
93 |
* NAME
|
alpar@1
|
94 |
*
|
alpar@1
|
95 |
* xlsub - subtract long integers
|
alpar@1
|
96 |
*
|
alpar@1
|
97 |
* SYNOPSIS
|
alpar@1
|
98 |
*
|
alpar@1
|
99 |
* #include "glplib.h"
|
alpar@1
|
100 |
* glp_long xlsub(glp_long x, glp_long y);
|
alpar@1
|
101 |
*
|
alpar@1
|
102 |
* RETURNS
|
alpar@1
|
103 |
*
|
alpar@1
|
104 |
* The routine xlsub returns the difference x - y. */
|
alpar@1
|
105 |
|
alpar@1
|
106 |
glp_long xlsub(glp_long x, glp_long y)
|
alpar@1
|
107 |
{ return
|
alpar@1
|
108 |
xladd(x, xlneg(y));
|
alpar@1
|
109 |
}
|
alpar@1
|
110 |
|
alpar@1
|
111 |
/***********************************************************************
|
alpar@1
|
112 |
* NAME
|
alpar@1
|
113 |
*
|
alpar@1
|
114 |
* xlcmp - compare long integers
|
alpar@1
|
115 |
*
|
alpar@1
|
116 |
* SYNOPSIS
|
alpar@1
|
117 |
*
|
alpar@1
|
118 |
* #include "glplib.h"
|
alpar@1
|
119 |
* int xlcmp(glp_long x, glp_long y);
|
alpar@1
|
120 |
*
|
alpar@1
|
121 |
* RETURNS
|
alpar@1
|
122 |
*
|
alpar@1
|
123 |
* The routine xlcmp returns the sign of the difference x - y. */
|
alpar@1
|
124 |
|
alpar@1
|
125 |
int xlcmp(glp_long x, glp_long y)
|
alpar@1
|
126 |
{ if (x.hi >= 0 && y.hi < 0) return +1;
|
alpar@1
|
127 |
if (x.hi < 0 && y.hi >= 0) return -1;
|
alpar@1
|
128 |
if ((unsigned int)x.hi < (unsigned int)y.hi) return -1;
|
alpar@1
|
129 |
if ((unsigned int)x.hi > (unsigned int)y.hi) return +1;
|
alpar@1
|
130 |
if ((unsigned int)x.lo < (unsigned int)y.lo) return -1;
|
alpar@1
|
131 |
if ((unsigned int)x.lo > (unsigned int)y.lo) return +1;
|
alpar@1
|
132 |
return 0;
|
alpar@1
|
133 |
}
|
alpar@1
|
134 |
|
alpar@1
|
135 |
/***********************************************************************
|
alpar@1
|
136 |
* NAME
|
alpar@1
|
137 |
*
|
alpar@1
|
138 |
* xlmul - multiply long integers
|
alpar@1
|
139 |
*
|
alpar@1
|
140 |
* SYNOPSIS
|
alpar@1
|
141 |
*
|
alpar@1
|
142 |
* #include "glplib.h"
|
alpar@1
|
143 |
* glp_long xlmul(glp_long x, glp_long y);
|
alpar@1
|
144 |
*
|
alpar@1
|
145 |
* RETURNS
|
alpar@1
|
146 |
*
|
alpar@1
|
147 |
* The routine xlmul returns the product x * y. */
|
alpar@1
|
148 |
|
alpar@1
|
149 |
glp_long xlmul(glp_long x, glp_long y)
|
alpar@1
|
150 |
{ unsigned short xx[8], yy[4];
|
alpar@1
|
151 |
xx[4] = (unsigned short)x.lo;
|
alpar@1
|
152 |
xx[5] = (unsigned short)(x.lo >> 16);
|
alpar@1
|
153 |
xx[6] = (unsigned short)x.hi;
|
alpar@1
|
154 |
xx[7] = (unsigned short)(x.hi >> 16);
|
alpar@1
|
155 |
yy[0] = (unsigned short)y.lo;
|
alpar@1
|
156 |
yy[1] = (unsigned short)(y.lo >> 16);
|
alpar@1
|
157 |
yy[2] = (unsigned short)y.hi;
|
alpar@1
|
158 |
yy[3] = (unsigned short)(y.hi >> 16);
|
alpar@1
|
159 |
bigmul(4, 4, xx, yy);
|
alpar@1
|
160 |
x.lo = (unsigned int)xx[0] | ((unsigned int)xx[1] << 16);
|
alpar@1
|
161 |
x.hi = (unsigned int)xx[2] | ((unsigned int)xx[3] << 16);
|
alpar@1
|
162 |
return x;
|
alpar@1
|
163 |
}
|
alpar@1
|
164 |
|
alpar@1
|
165 |
/***********************************************************************
|
alpar@1
|
166 |
* NAME
|
alpar@1
|
167 |
*
|
alpar@1
|
168 |
* xldiv - divide long integers
|
alpar@1
|
169 |
*
|
alpar@1
|
170 |
* SYNOPSIS
|
alpar@1
|
171 |
*
|
alpar@1
|
172 |
* #include "glplib.h"
|
alpar@1
|
173 |
* glp_ldiv xldiv(glp_long x, glp_long y);
|
alpar@1
|
174 |
*
|
alpar@1
|
175 |
* RETURNS
|
alpar@1
|
176 |
*
|
alpar@1
|
177 |
* The routine xldiv returns a structure of type glp_ldiv containing
|
alpar@1
|
178 |
* members quot (the quotient) and rem (the remainder), both of type
|
alpar@1
|
179 |
* glp_long. */
|
alpar@1
|
180 |
|
alpar@1
|
181 |
glp_ldiv xldiv(glp_long x, glp_long y)
|
alpar@1
|
182 |
{ glp_ldiv t;
|
alpar@1
|
183 |
int m, sx, sy;
|
alpar@1
|
184 |
unsigned short xx[8], yy[4];
|
alpar@1
|
185 |
/* sx := sign(x) */
|
alpar@1
|
186 |
sx = (x.hi < 0);
|
alpar@1
|
187 |
/* sy := sign(y) */
|
alpar@1
|
188 |
sy = (y.hi < 0);
|
alpar@1
|
189 |
/* x := |x| */
|
alpar@1
|
190 |
if (sx) x = xlneg(x);
|
alpar@1
|
191 |
/* y := |y| */
|
alpar@1
|
192 |
if (sy) y = xlneg(y);
|
alpar@1
|
193 |
/* compute x div y and x mod y */
|
alpar@1
|
194 |
xx[0] = (unsigned short)x.lo;
|
alpar@1
|
195 |
xx[1] = (unsigned short)(x.lo >> 16);
|
alpar@1
|
196 |
xx[2] = (unsigned short)x.hi;
|
alpar@1
|
197 |
xx[3] = (unsigned short)(x.hi >> 16);
|
alpar@1
|
198 |
yy[0] = (unsigned short)y.lo;
|
alpar@1
|
199 |
yy[1] = (unsigned short)(y.lo >> 16);
|
alpar@1
|
200 |
yy[2] = (unsigned short)y.hi;
|
alpar@1
|
201 |
yy[3] = (unsigned short)(y.hi >> 16);
|
alpar@1
|
202 |
if (yy[3])
|
alpar@1
|
203 |
m = 4;
|
alpar@1
|
204 |
else if (yy[2])
|
alpar@1
|
205 |
m = 3;
|
alpar@1
|
206 |
else if (yy[1])
|
alpar@1
|
207 |
m = 2;
|
alpar@1
|
208 |
else if (yy[0])
|
alpar@1
|
209 |
m = 1;
|
alpar@1
|
210 |
else
|
alpar@1
|
211 |
xerror("xldiv: divide by zero\n");
|
alpar@1
|
212 |
bigdiv(4 - m, m, xx, yy);
|
alpar@1
|
213 |
/* remainder in x[0], x[1], ..., x[m-1] */
|
alpar@1
|
214 |
t.rem.lo = (unsigned int)xx[0], t.rem.hi = 0;
|
alpar@1
|
215 |
if (m >= 2) t.rem.lo |= (unsigned int)xx[1] << 16;
|
alpar@1
|
216 |
if (m >= 3) t.rem.hi = (unsigned int)xx[2];
|
alpar@1
|
217 |
if (m >= 4) t.rem.hi |= (unsigned int)xx[3] << 16;
|
alpar@1
|
218 |
if (sx) t.rem = xlneg(t.rem);
|
alpar@1
|
219 |
/* quotient in x[m], x[m+1], ..., x[4] */
|
alpar@1
|
220 |
t.quot.lo = (unsigned int)xx[m], t.quot.hi = 0;
|
alpar@1
|
221 |
if (m <= 3) t.quot.lo |= (unsigned int)xx[m+1] << 16;
|
alpar@1
|
222 |
if (m <= 2) t.quot.hi = (unsigned int)xx[m+2];
|
alpar@1
|
223 |
if (m <= 1) t.quot.hi |= (unsigned int)xx[m+3] << 16;
|
alpar@1
|
224 |
if (sx ^ sy) t.quot = xlneg(t.quot);
|
alpar@1
|
225 |
return t;
|
alpar@1
|
226 |
}
|
alpar@1
|
227 |
|
alpar@1
|
228 |
/***********************************************************************
|
alpar@1
|
229 |
* NAME
|
alpar@1
|
230 |
*
|
alpar@1
|
231 |
* xltod - convert long integer to double
|
alpar@1
|
232 |
*
|
alpar@1
|
233 |
* SYNOPSIS
|
alpar@1
|
234 |
*
|
alpar@1
|
235 |
* #include "glplib.h"
|
alpar@1
|
236 |
* double xltod(glp_long x);
|
alpar@1
|
237 |
*
|
alpar@1
|
238 |
* RETURNS
|
alpar@1
|
239 |
*
|
alpar@1
|
240 |
* The routine xltod returns x converted to double. */
|
alpar@1
|
241 |
|
alpar@1
|
242 |
double xltod(glp_long x)
|
alpar@1
|
243 |
{ double s, z;
|
alpar@1
|
244 |
if (x.hi >= 0)
|
alpar@1
|
245 |
s = +1.0;
|
alpar@1
|
246 |
else
|
alpar@1
|
247 |
s = -1.0, x = xlneg(x);
|
alpar@1
|
248 |
if (x.hi >= 0)
|
alpar@1
|
249 |
z = 4294967296.0 * (double)x.hi + (double)(unsigned int)x.lo;
|
alpar@1
|
250 |
else
|
alpar@1
|
251 |
{ xassert(x.hi == 0x80000000 && x.lo == 0x00000000);
|
alpar@1
|
252 |
z = 9223372036854775808.0; /* 2^63 */
|
alpar@1
|
253 |
}
|
alpar@1
|
254 |
return s * z;
|
alpar@1
|
255 |
}
|
alpar@1
|
256 |
|
alpar@1
|
257 |
char *xltoa(glp_long x, char *s)
|
alpar@1
|
258 |
{ /* convert long integer to character string */
|
alpar@1
|
259 |
static const char *d = "0123456789";
|
alpar@1
|
260 |
glp_ldiv t;
|
alpar@1
|
261 |
int neg, len;
|
alpar@1
|
262 |
if (x.hi >= 0)
|
alpar@1
|
263 |
neg = 0;
|
alpar@1
|
264 |
else
|
alpar@1
|
265 |
neg = 1, x = xlneg(x);
|
alpar@1
|
266 |
if (x.hi >= 0)
|
alpar@1
|
267 |
{ len = 0;
|
alpar@1
|
268 |
while (!(x.hi == 0 && x.lo == 0))
|
alpar@1
|
269 |
{ t = xldiv(x, xlset(10));
|
alpar@1
|
270 |
xassert(0 <= t.rem.lo && t.rem.lo <= 9);
|
alpar@1
|
271 |
s[len++] = d[t.rem.lo];
|
alpar@1
|
272 |
x = t.quot;
|
alpar@1
|
273 |
}
|
alpar@1
|
274 |
if (len == 0) s[len++] = d[0];
|
alpar@1
|
275 |
if (neg) s[len++] = '-';
|
alpar@1
|
276 |
s[len] = '\0';
|
alpar@1
|
277 |
strrev(s);
|
alpar@1
|
278 |
}
|
alpar@1
|
279 |
else
|
alpar@1
|
280 |
strcpy(s, "-9223372036854775808"); /* -2^63 */
|
alpar@1
|
281 |
return s;
|
alpar@1
|
282 |
}
|
alpar@1
|
283 |
|
alpar@1
|
284 |
/**********************************************************************/
|
alpar@1
|
285 |
|
alpar@1
|
286 |
#if 0
|
alpar@1
|
287 |
#include "glprng.h"
|
alpar@1
|
288 |
|
alpar@1
|
289 |
#define N_TEST 1000000
|
alpar@1
|
290 |
/* number of tests */
|
alpar@1
|
291 |
|
alpar@1
|
292 |
static glp_long myrand(RNG *rand)
|
alpar@1
|
293 |
{ glp_long x;
|
alpar@1
|
294 |
int k;
|
alpar@1
|
295 |
k = rng_unif_rand(rand, 4);
|
alpar@1
|
296 |
xassert(0 <= k && k <= 3);
|
alpar@1
|
297 |
x.lo = rng_unif_rand(rand, 65536);
|
alpar@1
|
298 |
if (k == 1 || k == 3)
|
alpar@1
|
299 |
{ x.lo <<= 16;
|
alpar@1
|
300 |
x.lo += rng_unif_rand(rand, 65536);
|
alpar@1
|
301 |
}
|
alpar@1
|
302 |
if (k <= 1)
|
alpar@1
|
303 |
x.hi = 0;
|
alpar@1
|
304 |
else
|
alpar@1
|
305 |
x.hi = rng_unif_rand(rand, 65536);
|
alpar@1
|
306 |
if (k == 3)
|
alpar@1
|
307 |
{ x.hi <<= 16;
|
alpar@1
|
308 |
x.hi += rng_unif_rand(rand, 65536);
|
alpar@1
|
309 |
}
|
alpar@1
|
310 |
if (rng_unif_rand(rand, 2)) x = xlneg(x);
|
alpar@1
|
311 |
return x;
|
alpar@1
|
312 |
}
|
alpar@1
|
313 |
|
alpar@1
|
314 |
int main(void)
|
alpar@1
|
315 |
{ RNG *rand;
|
alpar@1
|
316 |
glp_long x, y;
|
alpar@1
|
317 |
glp_ldiv z;
|
alpar@1
|
318 |
int test;
|
alpar@1
|
319 |
rand = rng_create_rand();
|
alpar@1
|
320 |
for (test = 1; test <= N_TEST; test++)
|
alpar@1
|
321 |
{ x = myrand(rand);
|
alpar@1
|
322 |
y = myrand(rand);
|
alpar@1
|
323 |
if (y.lo == 0 && y.hi == 0) y.lo = 1;
|
alpar@1
|
324 |
/* z.quot := x div y, z.rem := x mod y */
|
alpar@1
|
325 |
z = xldiv(x, y);
|
alpar@1
|
326 |
/* x must be equal to y * z.quot + z.rem */
|
alpar@1
|
327 |
xassert(xlcmp(x, xladd(xlmul(y, z.quot), z.rem)) == 0);
|
alpar@1
|
328 |
}
|
alpar@1
|
329 |
xprintf("%d tests successfully passed\n", N_TEST);
|
alpar@1
|
330 |
rng_delete_rand(rand);
|
alpar@1
|
331 |
return 0;
|
alpar@1
|
332 |
}
|
alpar@1
|
333 |
#endif
|
alpar@1
|
334 |
|
alpar@1
|
335 |
/* eof */
|