alpar@1
|
1 |
/* glplpf.h (LP basis factorization, Schur complement version) */
|
alpar@1
|
2 |
|
alpar@1
|
3 |
/***********************************************************************
|
alpar@1
|
4 |
* This code is part of GLPK (GNU Linear Programming Kit).
|
alpar@1
|
5 |
*
|
alpar@1
|
6 |
* Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
|
alpar@1
|
7 |
* 2009, 2010 Andrew Makhorin, Department for Applied Informatics,
|
alpar@1
|
8 |
* Moscow Aviation Institute, Moscow, Russia. All rights reserved.
|
alpar@1
|
9 |
* E-mail: <mao@gnu.org>.
|
alpar@1
|
10 |
*
|
alpar@1
|
11 |
* GLPK is free software: you can redistribute it and/or modify it
|
alpar@1
|
12 |
* under the terms of the GNU General Public License as published by
|
alpar@1
|
13 |
* the Free Software Foundation, either version 3 of the License, or
|
alpar@1
|
14 |
* (at your option) any later version.
|
alpar@1
|
15 |
*
|
alpar@1
|
16 |
* GLPK is distributed in the hope that it will be useful, but WITHOUT
|
alpar@1
|
17 |
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
alpar@1
|
18 |
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
|
alpar@1
|
19 |
* License for more details.
|
alpar@1
|
20 |
*
|
alpar@1
|
21 |
* You should have received a copy of the GNU General Public License
|
alpar@1
|
22 |
* along with GLPK. If not, see <http://www.gnu.org/licenses/>.
|
alpar@1
|
23 |
***********************************************************************/
|
alpar@1
|
24 |
|
alpar@1
|
25 |
#ifndef GLPLPF_H
|
alpar@1
|
26 |
#define GLPLPF_H
|
alpar@1
|
27 |
|
alpar@1
|
28 |
#include "glpscf.h"
|
alpar@1
|
29 |
#include "glpluf.h"
|
alpar@1
|
30 |
|
alpar@1
|
31 |
/***********************************************************************
|
alpar@1
|
32 |
* The structure LPF defines the factorization of the basis mxm matrix
|
alpar@1
|
33 |
* B, where m is the number of rows in corresponding problem instance.
|
alpar@1
|
34 |
*
|
alpar@1
|
35 |
* This factorization is the following septet:
|
alpar@1
|
36 |
*
|
alpar@1
|
37 |
* [B] = (L0, U0, R, S, C, P, Q), (1)
|
alpar@1
|
38 |
*
|
alpar@1
|
39 |
* and is based on the following main equality:
|
alpar@1
|
40 |
*
|
alpar@1
|
41 |
* ( B F^) ( B0 F ) ( L0 0 ) ( U0 R )
|
alpar@1
|
42 |
* ( ) = P ( ) Q = P ( ) ( ) Q, (2)
|
alpar@1
|
43 |
* ( G^ H^) ( G H ) ( S I ) ( 0 C )
|
alpar@1
|
44 |
*
|
alpar@1
|
45 |
* where:
|
alpar@1
|
46 |
*
|
alpar@1
|
47 |
* B is the current basis matrix (not stored);
|
alpar@1
|
48 |
*
|
alpar@1
|
49 |
* F^, G^, H^ are some additional matrices (not stored);
|
alpar@1
|
50 |
*
|
alpar@1
|
51 |
* B0 is some initial basis matrix (not stored);
|
alpar@1
|
52 |
*
|
alpar@1
|
53 |
* F, G, H are some additional matrices (not stored);
|
alpar@1
|
54 |
*
|
alpar@1
|
55 |
* P, Q are permutation matrices (stored in both row- and column-like
|
alpar@1
|
56 |
* formats);
|
alpar@1
|
57 |
*
|
alpar@1
|
58 |
* L0, U0 are some matrices that defines a factorization of the initial
|
alpar@1
|
59 |
* basis matrix B0 = L0 * U0 (stored in an invertable form);
|
alpar@1
|
60 |
*
|
alpar@1
|
61 |
* R is a matrix defined from L0 * R = F, so R = inv(L0) * F (stored in
|
alpar@1
|
62 |
* a column-wise sparse format);
|
alpar@1
|
63 |
*
|
alpar@1
|
64 |
* S is a matrix defined from S * U0 = G, so S = G * inv(U0) (stored in
|
alpar@1
|
65 |
* a row-wise sparse format);
|
alpar@1
|
66 |
*
|
alpar@1
|
67 |
* C is the Schur complement for matrix (B0 F G H). It is defined from
|
alpar@1
|
68 |
* S * R + C = H, so C = H - S * R = H - G * inv(U0) * inv(L0) * F =
|
alpar@1
|
69 |
* = H - G * inv(B0) * F. Matrix C is stored in an invertable form.
|
alpar@1
|
70 |
*
|
alpar@1
|
71 |
* REFERENCES
|
alpar@1
|
72 |
*
|
alpar@1
|
73 |
* 1. M.A.Saunders, "LUSOL: A basis package for constrained optimiza-
|
alpar@1
|
74 |
* tion," SCCM, Stanford University, 2006.
|
alpar@1
|
75 |
*
|
alpar@1
|
76 |
* 2. M.A.Saunders, "Notes 5: Basis Updates," CME 318, Stanford Univer-
|
alpar@1
|
77 |
* sity, Spring 2006.
|
alpar@1
|
78 |
*
|
alpar@1
|
79 |
* 3. M.A.Saunders, "Notes 6: LUSOL---a Basis Factorization Package,"
|
alpar@1
|
80 |
* ibid. */
|
alpar@1
|
81 |
|
alpar@1
|
82 |
typedef struct LPF LPF;
|
alpar@1
|
83 |
|
alpar@1
|
84 |
struct LPF
|
alpar@1
|
85 |
{ /* LP basis factorization */
|
alpar@1
|
86 |
int valid;
|
alpar@1
|
87 |
/* the factorization is valid only if this flag is set */
|
alpar@1
|
88 |
/*--------------------------------------------------------------*/
|
alpar@1
|
89 |
/* initial basis matrix B0 */
|
alpar@1
|
90 |
int m0_max;
|
alpar@1
|
91 |
/* maximal value of m0 (increased automatically, if necessary) */
|
alpar@1
|
92 |
int m0;
|
alpar@1
|
93 |
/* the order of B0 */
|
alpar@1
|
94 |
LUF *luf;
|
alpar@1
|
95 |
/* LU-factorization of B0 */
|
alpar@1
|
96 |
/*--------------------------------------------------------------*/
|
alpar@1
|
97 |
/* current basis matrix B */
|
alpar@1
|
98 |
int m;
|
alpar@1
|
99 |
/* the order of B */
|
alpar@1
|
100 |
double *B; /* double B[1+m*m]; */
|
alpar@1
|
101 |
/* B in dense format stored by rows and used only for debugging;
|
alpar@1
|
102 |
normally this array is not allocated */
|
alpar@1
|
103 |
/*--------------------------------------------------------------*/
|
alpar@1
|
104 |
/* augmented matrix (B0 F G H) of the order m0+n */
|
alpar@1
|
105 |
int n_max;
|
alpar@1
|
106 |
/* maximal number of additional rows and columns */
|
alpar@1
|
107 |
int n;
|
alpar@1
|
108 |
/* current number of additional rows and columns */
|
alpar@1
|
109 |
/*--------------------------------------------------------------*/
|
alpar@1
|
110 |
/* m0xn matrix R in column-wise format */
|
alpar@1
|
111 |
int *R_ptr; /* int R_ptr[1+n_max]; */
|
alpar@1
|
112 |
/* R_ptr[j], 1 <= j <= n, is a pointer to j-th column */
|
alpar@1
|
113 |
int *R_len; /* int R_len[1+n_max]; */
|
alpar@1
|
114 |
/* R_len[j], 1 <= j <= n, is the length of j-th column */
|
alpar@1
|
115 |
/*--------------------------------------------------------------*/
|
alpar@1
|
116 |
/* nxm0 matrix S in row-wise format */
|
alpar@1
|
117 |
int *S_ptr; /* int S_ptr[1+n_max]; */
|
alpar@1
|
118 |
/* S_ptr[i], 1 <= i <= n, is a pointer to i-th row */
|
alpar@1
|
119 |
int *S_len; /* int S_len[1+n_max]; */
|
alpar@1
|
120 |
/* S_len[i], 1 <= i <= n, is the length of i-th row */
|
alpar@1
|
121 |
/*--------------------------------------------------------------*/
|
alpar@1
|
122 |
/* Schur complement C of the order n */
|
alpar@1
|
123 |
SCF *scf; /* SCF scf[1:n_max]; */
|
alpar@1
|
124 |
/* factorization of the Schur complement */
|
alpar@1
|
125 |
/*--------------------------------------------------------------*/
|
alpar@1
|
126 |
/* matrix P of the order m0+n */
|
alpar@1
|
127 |
int *P_row; /* int P_row[1+m0_max+n_max]; */
|
alpar@1
|
128 |
/* P_row[i] = j means that P[i,j] = 1 */
|
alpar@1
|
129 |
int *P_col; /* int P_col[1+m0_max+n_max]; */
|
alpar@1
|
130 |
/* P_col[j] = i means that P[i,j] = 1 */
|
alpar@1
|
131 |
/*--------------------------------------------------------------*/
|
alpar@1
|
132 |
/* matrix Q of the order m0+n */
|
alpar@1
|
133 |
int *Q_row; /* int Q_row[1+m0_max+n_max]; */
|
alpar@1
|
134 |
/* Q_row[i] = j means that Q[i,j] = 1 */
|
alpar@1
|
135 |
int *Q_col; /* int Q_col[1+m0_max+n_max]; */
|
alpar@1
|
136 |
/* Q_col[j] = i means that Q[i,j] = 1 */
|
alpar@1
|
137 |
/*--------------------------------------------------------------*/
|
alpar@1
|
138 |
/* Sparse Vector Area (SVA) is a set of locations intended to
|
alpar@1
|
139 |
store sparse vectors which represent columns of matrix R and
|
alpar@1
|
140 |
rows of matrix S; each location is a doublet (ind, val), where
|
alpar@1
|
141 |
ind is an index, val is a numerical value of a sparse vector
|
alpar@1
|
142 |
element; in the whole each sparse vector is a set of adjacent
|
alpar@1
|
143 |
locations defined by a pointer to its first element and its
|
alpar@1
|
144 |
length, i.e. the number of its elements */
|
alpar@1
|
145 |
int v_size;
|
alpar@1
|
146 |
/* the SVA size, in locations; locations are numbered by integers
|
alpar@1
|
147 |
1, 2, ..., v_size, and location 0 is not used */
|
alpar@1
|
148 |
int v_ptr;
|
alpar@1
|
149 |
/* pointer to the first available location */
|
alpar@1
|
150 |
int *v_ind; /* int v_ind[1+v_size]; */
|
alpar@1
|
151 |
/* v_ind[k], 1 <= k <= v_size, is the index field of location k */
|
alpar@1
|
152 |
double *v_val; /* double v_val[1+v_size]; */
|
alpar@1
|
153 |
/* v_val[k], 1 <= k <= v_size, is the value field of location k */
|
alpar@1
|
154 |
/*--------------------------------------------------------------*/
|
alpar@1
|
155 |
double *work1; /* double work1[1+m0+n_max]; */
|
alpar@1
|
156 |
/* working array */
|
alpar@1
|
157 |
double *work2; /* double work2[1+m0+n_max]; */
|
alpar@1
|
158 |
/* working array */
|
alpar@1
|
159 |
};
|
alpar@1
|
160 |
|
alpar@1
|
161 |
/* return codes: */
|
alpar@1
|
162 |
#define LPF_ESING 1 /* singular matrix */
|
alpar@1
|
163 |
#define LPF_ECOND 2 /* ill-conditioned matrix */
|
alpar@1
|
164 |
#define LPF_ELIMIT 3 /* update limit reached */
|
alpar@1
|
165 |
|
alpar@1
|
166 |
#define lpf_create_it _glp_lpf_create_it
|
alpar@1
|
167 |
LPF *lpf_create_it(void);
|
alpar@1
|
168 |
/* create LP basis factorization */
|
alpar@1
|
169 |
|
alpar@1
|
170 |
#define lpf_factorize _glp_lpf_factorize
|
alpar@1
|
171 |
int lpf_factorize(LPF *lpf, int m, const int bh[], int (*col)
|
alpar@1
|
172 |
(void *info, int j, int ind[], double val[]), void *info);
|
alpar@1
|
173 |
/* compute LP basis factorization */
|
alpar@1
|
174 |
|
alpar@1
|
175 |
#define lpf_ftran _glp_lpf_ftran
|
alpar@1
|
176 |
void lpf_ftran(LPF *lpf, double x[]);
|
alpar@1
|
177 |
/* perform forward transformation (solve system B*x = b) */
|
alpar@1
|
178 |
|
alpar@1
|
179 |
#define lpf_btran _glp_lpf_btran
|
alpar@1
|
180 |
void lpf_btran(LPF *lpf, double x[]);
|
alpar@1
|
181 |
/* perform backward transformation (solve system B'*x = b) */
|
alpar@1
|
182 |
|
alpar@1
|
183 |
#define lpf_update_it _glp_lpf_update_it
|
alpar@1
|
184 |
int lpf_update_it(LPF *lpf, int j, int bh, int len, const int ind[],
|
alpar@1
|
185 |
const double val[]);
|
alpar@1
|
186 |
/* update LP basis factorization */
|
alpar@1
|
187 |
|
alpar@1
|
188 |
#define lpf_delete_it _glp_lpf_delete_it
|
alpar@1
|
189 |
void lpf_delete_it(LPF *lpf);
|
alpar@1
|
190 |
/* delete LP basis factorization */
|
alpar@1
|
191 |
|
alpar@1
|
192 |
#endif
|
alpar@1
|
193 |
|
alpar@1
|
194 |
/* eof */
|