alpar@1
|
1 |
/* GAP, Generalized Assignment Problem */
|
alpar@1
|
2 |
|
alpar@1
|
3 |
/* Written in GNU MathProg by Andrew Makhorin <mao@gnu.org> */
|
alpar@1
|
4 |
|
alpar@1
|
5 |
/* The Generalized Assignment Problem (GAP) is to assign a set of jobs
|
alpar@1
|
6 |
to a set of agents subject to the constraints that each job must be
|
alpar@1
|
7 |
assigned exactly to one agent and the total resources consumed by all
|
alpar@1
|
8 |
jobs assigned to an agent must not exceed the agent's capacity. */
|
alpar@1
|
9 |
|
alpar@1
|
10 |
param m, integer, > 0;
|
alpar@1
|
11 |
/* number of agents */
|
alpar@1
|
12 |
|
alpar@1
|
13 |
param n, integer, > 0;
|
alpar@1
|
14 |
/* number of jobs */
|
alpar@1
|
15 |
|
alpar@1
|
16 |
set I := 1..m;
|
alpar@1
|
17 |
/* set of agents */
|
alpar@1
|
18 |
|
alpar@1
|
19 |
set J := 1..n;
|
alpar@1
|
20 |
/* set of jobs */
|
alpar@1
|
21 |
|
alpar@1
|
22 |
param a{i in I, j in J}, >= 0;
|
alpar@1
|
23 |
/* resource consumed in allocating job j to agent i */
|
alpar@1
|
24 |
|
alpar@1
|
25 |
param b{i in I}, >= 0;
|
alpar@1
|
26 |
/* resource capacity of agent i */
|
alpar@1
|
27 |
|
alpar@1
|
28 |
param c{i in I, j in J}, >= 0;
|
alpar@1
|
29 |
/* cost of allocating job j to agent i */
|
alpar@1
|
30 |
|
alpar@1
|
31 |
var x{i in I, j in J}, binary;
|
alpar@1
|
32 |
/* x[i,j] = 1 means job j is assigned to agent i */
|
alpar@1
|
33 |
|
alpar@1
|
34 |
s.t. one{j in J}: sum{i in I} x[i,j] = 1;
|
alpar@1
|
35 |
/* job j must be assigned exactly to one agent */
|
alpar@1
|
36 |
|
alpar@1
|
37 |
s.t. lim{i in I}: sum{j in J} a[i,j] * x[i,j] <= b[i];
|
alpar@1
|
38 |
/* total amount of resources consumed by all jobs assigned to agent i
|
alpar@1
|
39 |
must not exceed the agent's capacity */
|
alpar@1
|
40 |
|
alpar@1
|
41 |
minimize obj: sum{i in I, j in J} c[i,j] * x[i,j];
|
alpar@1
|
42 |
/* the objective is to find cheapest assignment (note that gap can also
|
alpar@1
|
43 |
be formulated as maximization problem) */
|
alpar@1
|
44 |
|
alpar@1
|
45 |
data;
|
alpar@1
|
46 |
|
alpar@1
|
47 |
/* These data correspond to the instance c515-1 (gap1) from:
|
alpar@1
|
48 |
|
alpar@1
|
49 |
I.H. Osman, "Heuristics for the Generalised Assignment Problem:
|
alpar@1
|
50 |
Simulated Annealing and Tabu Search Approaches", OR Spektrum, Volume
|
alpar@1
|
51 |
17, 211-225, 1995
|
alpar@1
|
52 |
|
alpar@1
|
53 |
D. Cattrysse, M. Salomon and L.N. Van Wassenhove, "A set partitioning
|
alpar@1
|
54 |
heuristic for the generalized assignment problem", European Journal
|
alpar@1
|
55 |
of Operational Research, Volume 72, 167-174, 1994 */
|
alpar@1
|
56 |
|
alpar@1
|
57 |
/* The optimal solution is 261 (minimization) or 336 (maximization) */
|
alpar@1
|
58 |
|
alpar@1
|
59 |
param m := 5;
|
alpar@1
|
60 |
|
alpar@1
|
61 |
param n := 15;
|
alpar@1
|
62 |
|
alpar@1
|
63 |
param a : 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 :=
|
alpar@1
|
64 |
1 8 15 14 23 8 16 8 25 9 17 25 15 10 8 24
|
alpar@1
|
65 |
2 15 7 23 22 11 11 12 10 17 16 7 16 10 18 22
|
alpar@1
|
66 |
3 21 20 6 22 24 10 24 9 21 14 11 14 11 19 16
|
alpar@1
|
67 |
4 20 11 8 14 9 5 6 19 19 7 6 6 13 9 18
|
alpar@1
|
68 |
5 8 13 13 13 10 20 25 16 16 17 10 10 5 12 23 ;
|
alpar@1
|
69 |
|
alpar@1
|
70 |
param b := 1 36, 2 34, 3 38, 4 27, 5 33;
|
alpar@1
|
71 |
|
alpar@1
|
72 |
param c : 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 :=
|
alpar@1
|
73 |
1 17 21 22 18 24 15 20 18 19 18 16 22 24 24 16
|
alpar@1
|
74 |
2 23 16 21 16 17 16 19 25 18 21 17 15 25 17 24
|
alpar@1
|
75 |
3 16 20 16 25 24 16 17 19 19 18 20 16 17 21 24
|
alpar@1
|
76 |
4 19 19 22 22 20 16 19 17 21 19 25 23 25 25 25
|
alpar@1
|
77 |
5 18 19 15 15 21 25 16 16 23 15 22 17 19 22 24 ;
|
alpar@1
|
78 |
|
alpar@1
|
79 |
end;
|