examples/gap.mod
author Alpar Juttner <alpar@cs.elte.hu>
Mon, 06 Dec 2010 13:09:21 +0100
changeset 1 c445c931472f
permissions -rw-r--r--
Import glpk-4.45

- Generated files and doc/notes are removed
alpar@1
     1
/* GAP, Generalized Assignment Problem */
alpar@1
     2
alpar@1
     3
/* Written in GNU MathProg by Andrew Makhorin <mao@gnu.org> */
alpar@1
     4
alpar@1
     5
/* The Generalized Assignment Problem (GAP) is to assign a set of jobs
alpar@1
     6
   to a set of agents subject to the constraints that each job must be
alpar@1
     7
   assigned exactly to one agent and the total resources consumed by all
alpar@1
     8
   jobs assigned to an agent must not exceed the agent's capacity. */
alpar@1
     9
alpar@1
    10
param m, integer, > 0;
alpar@1
    11
/* number of agents */
alpar@1
    12
alpar@1
    13
param n, integer, > 0;
alpar@1
    14
/* number of jobs */
alpar@1
    15
alpar@1
    16
set I := 1..m;
alpar@1
    17
/* set of agents */
alpar@1
    18
alpar@1
    19
set J := 1..n;
alpar@1
    20
/* set of jobs */
alpar@1
    21
alpar@1
    22
param a{i in I, j in J}, >= 0;
alpar@1
    23
/* resource consumed in allocating job j to agent i */
alpar@1
    24
alpar@1
    25
param b{i in I}, >= 0;
alpar@1
    26
/* resource capacity of agent i */
alpar@1
    27
alpar@1
    28
param c{i in I, j in J}, >= 0;
alpar@1
    29
/* cost of allocating job j to agent i */
alpar@1
    30
alpar@1
    31
var x{i in I, j in J}, binary;
alpar@1
    32
/* x[i,j] = 1 means job j is assigned to agent i */
alpar@1
    33
alpar@1
    34
s.t. one{j in J}: sum{i in I} x[i,j] = 1;
alpar@1
    35
/* job j must be assigned exactly to one agent */
alpar@1
    36
alpar@1
    37
s.t. lim{i in I}: sum{j in J} a[i,j] * x[i,j] <= b[i];
alpar@1
    38
/* total amount of resources consumed by all jobs assigned to agent i
alpar@1
    39
   must not exceed the agent's capacity */
alpar@1
    40
alpar@1
    41
minimize obj: sum{i in I, j in J} c[i,j] * x[i,j];
alpar@1
    42
/* the objective is to find cheapest assignment (note that gap can also
alpar@1
    43
   be formulated as maximization problem) */
alpar@1
    44
alpar@1
    45
data;
alpar@1
    46
alpar@1
    47
/* These data correspond to the instance c515-1 (gap1) from:
alpar@1
    48
alpar@1
    49
   I.H. Osman, "Heuristics for the Generalised Assignment Problem:
alpar@1
    50
   Simulated Annealing and Tabu Search Approaches", OR Spektrum, Volume
alpar@1
    51
   17, 211-225, 1995
alpar@1
    52
alpar@1
    53
   D. Cattrysse, M. Salomon and L.N. Van Wassenhove, "A set partitioning
alpar@1
    54
   heuristic for the generalized assignment problem", European Journal
alpar@1
    55
   of Operational Research, Volume 72, 167-174, 1994 */
alpar@1
    56
alpar@1
    57
/* The optimal solution is 261 (minimization) or 336 (maximization) */
alpar@1
    58
alpar@1
    59
param m := 5;
alpar@1
    60
alpar@1
    61
param n := 15;
alpar@1
    62
alpar@1
    63
param a :  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 :=
alpar@1
    64
      1    8 15 14 23  8 16  8 25  9 17 25 15 10  8 24
alpar@1
    65
      2   15  7 23 22 11 11 12 10 17 16  7 16 10 18 22
alpar@1
    66
      3   21 20  6 22 24 10 24  9 21 14 11 14 11 19 16
alpar@1
    67
      4   20 11  8 14  9  5  6 19 19  7  6  6 13  9 18
alpar@1
    68
      5    8 13 13 13 10 20 25 16 16 17 10 10  5 12 23 ;
alpar@1
    69
alpar@1
    70
param b := 1 36, 2 34, 3 38, 4 27, 5 33;
alpar@1
    71
alpar@1
    72
param c :  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 :=
alpar@1
    73
      1   17 21 22 18 24 15 20 18 19 18 16 22 24 24 16
alpar@1
    74
      2   23 16 21 16 17 16 19 25 18 21 17 15 25 17 24
alpar@1
    75
      3   16 20 16 25 24 16 17 19 19 18 20 16 17 21 24
alpar@1
    76
      4   19 19 22 22 20 16 19 17 21 19 25 23 25 25 25
alpar@1
    77
      5   18 19 15 15 21 25 16 16 23 15 22 17 19 22 24 ;
alpar@1
    78
alpar@1
    79
end;