examples/train.mod
author Alpar Juttner <alpar@cs.elte.hu>
Mon, 06 Dec 2010 13:09:21 +0100
changeset 1 c445c931472f
permissions -rw-r--r--
Import glpk-4.45

- Generated files and doc/notes are removed
alpar@1
     1
# TRAIN, a model of railroad passenger car allocation
alpar@1
     2
#
alpar@1
     3
# References:
alpar@1
     4
# Robert Fourer, David M. Gay and Brian W. Kernighan, "A Modeling Language
alpar@1
     5
# for Mathematical Programming." Management Science 36 (1990) 519-554.
alpar@1
     6
alpar@1
     7
###  SCHEDULE SETS AND PARAMETERS  ###
alpar@1
     8
alpar@1
     9
set cities;
alpar@1
    10
alpar@1
    11
set links within {c1 in cities, c2 in cities: c1 <> c2};
alpar@1
    12
alpar@1
    13
                        # Set of cities, and set of intercity links
alpar@1
    14
alpar@1
    15
param last > 0 integer; # Number of time intervals in a day
alpar@1
    16
alpar@1
    17
set times := 1..last;   # Set of time intervals in a day
alpar@1
    18
alpar@1
    19
set schedule within
alpar@1
    20
      {c1 in cities, t1 in times,
alpar@1
    21
       c2 in cities, t2 in times: (c1,c2) in links};
alpar@1
    22
alpar@1
    23
                        # Member (c1,t1,c2,t2) of this set represents
alpar@1
    24
                        # a train that leaves city c1 at time t1
alpar@1
    25
                        # and arrives in city c2 at time t2
alpar@1
    26
alpar@1
    27
###  DEMAND PARAMETERS  ###
alpar@1
    28
alpar@1
    29
param section > 0 integer;
alpar@1
    30
alpar@1
    31
                        # Maximum number of cars in one section of a train
alpar@1
    32
alpar@1
    33
param demand {schedule} > 0;
alpar@1
    34
alpar@1
    35
                        # For each scheduled train:
alpar@1
    36
                        # the smallest number of cars that
alpar@1
    37
                        # can meet demand for the train
alpar@1
    38
alpar@1
    39
param low {(c1,t1,c2,t2) in schedule} := ceil(demand[c1,t1,c2,t2]);
alpar@1
    40
alpar@1
    41
                        # Minimum number of cars needed to meet demand
alpar@1
    42
alpar@1
    43
param high {(c1,t1,c2,t2) in schedule}
alpar@1
    44
alpar@1
    45
   := max (2, min (ceil(2*demand[c1,t1,c2,t2]),
alpar@1
    46
                   section*ceil(demand[c1,t1,c2,t2]/section) ));
alpar@1
    47
alpar@1
    48
                        # Maximum number of cars allowed on a train:
alpar@1
    49
                        # 2 if demand is for less than one car;
alpar@1
    50
                        # otherwise, lesser of
alpar@1
    51
                        # number of cars needed to hold twice the demand, and
alpar@1
    52
                        # number of cars in minimum number of sections needed
alpar@1
    53
alpar@1
    54
###  DISTANCE PARAMETERS  ###
alpar@1
    55
alpar@1
    56
param dist_table {links} >= 0 default 0.0;
alpar@1
    57
alpar@1
    58
param distance {(c1,c2) in links} > 0
alpar@1
    59
   := if dist_table[c1,c2] > 0 then dist_table[c1,c2] else dist_table[c2,c1];
alpar@1
    60
alpar@1
    61
                        # Inter-city distances: distance[c1,c2] is miles
alpar@1
    62
                        # between city c1 and city c2
alpar@1
    63
alpar@1
    64
###  VARIABLES  ###
alpar@1
    65
alpar@1
    66
var U 'cars stored' {cities,times} >= 0;
alpar@1
    67
alpar@1
    68
                        # u[c,t] is the number of unused cars stored
alpar@1
    69
                        # at city c in the interval beginning at time t
alpar@1
    70
alpar@1
    71
var X 'cars in train' {schedule} >= 0;
alpar@1
    72
alpar@1
    73
                        # x[c1,t1,c2,t2] is the number of cars assigned to
alpar@1
    74
                        # the scheduled train that leaves c1 at t1 and
alpar@1
    75
                        # arrives in c2 at t2
alpar@1
    76
alpar@1
    77
###  OBJECTIVES  ###
alpar@1
    78
alpar@1
    79
minimize cars:
alpar@1
    80
       sum {c in cities} U[c,last] +
alpar@1
    81
       sum {(c1,t1,c2,t2) in schedule: t2 < t1} X[c1,t1,c2,t2];
alpar@1
    82
alpar@1
    83
                        # Number of cars in the system:
alpar@1
    84
                        # sum of unused cars and cars in trains during
alpar@1
    85
                        # the last time interval of the day
alpar@1
    86
alpar@1
    87
minimize miles:
alpar@1
    88
       sum {(c1,t1,c2,t2) in schedule} distance[c1,c2] * X[c1,t1,c2,t2];
alpar@1
    89
alpar@1
    90
                        # Total car-miles run by all scheduled trains in a day
alpar@1
    91
alpar@1
    92
###  CONSTRAINTS  ###
alpar@1
    93
alpar@1
    94
account {c in cities, t in times}:
alpar@1
    95
alpar@1
    96
  U[c,t] = U[c, if t > 1 then t-1 else last] +
alpar@1
    97
alpar@1
    98
      sum {(c1,t1,c,t) in schedule} X[c1,t1,c,t] -
alpar@1
    99
      sum {(c,t,c2,t2) in schedule} X[c,t,c2,t2];
alpar@1
   100
alpar@1
   101
                        # For every city and time:
alpar@1
   102
                        # unused cars in the present interval must equal
alpar@1
   103
                        # unused cars in the previous interval,
alpar@1
   104
                        # plus cars just arriving in trains,
alpar@1
   105
                        # minus cars just leaving in trains
alpar@1
   106
alpar@1
   107
satisfy {(c1,t1,c2,t2) in schedule}:
alpar@1
   108
alpar@1
   109
       low[c1,t1,c2,t2] <= X[c1,t1,c2,t2] <= high[c1,t1,c2,t2];
alpar@1
   110
alpar@1
   111
                        # For each scheduled train:
alpar@1
   112
                        # number of cars must meet demand,
alpar@1
   113
                        # but must not be so great that unnecessary
alpar@1
   114
                        # sections are run
alpar@1
   115
alpar@1
   116
###  DATA  ###
alpar@1
   117
alpar@1
   118
data;
alpar@1
   119
alpar@1
   120
set cities := BO NY PH WA ;
alpar@1
   121
alpar@1
   122
set links := (BO,NY) (NY,PH) (PH,WA)
alpar@1
   123
             (NY,BO) (PH,NY) (WA,PH) ;
alpar@1
   124
alpar@1
   125
param dist_table := [*,*]  BO NY  232
alpar@1
   126
                           NY PH   90
alpar@1
   127
                           PH WA  135 ;
alpar@1
   128
alpar@1
   129
param last := 48 ;
alpar@1
   130
alpar@1
   131
param section := 14 ;
alpar@1
   132
alpar@1
   133
set schedule :=
alpar@1
   134
alpar@1
   135
   (WA,*,PH,*)   2  5     6  9     8 11    10 13
alpar@1
   136
                12 15    13 16    14 17    15 18
alpar@1
   137
                16 19    17 20    18 21    19 22
alpar@1
   138
                20 23    21 24    22 25    23 26
alpar@1
   139
                24 27    25 28    26 29    27 30
alpar@1
   140
                28 31    29 32    30 33    31 34
alpar@1
   141
                32 35    33 36    34 37    35 38
alpar@1
   142
                36 39    37 40    38 41    39 42
alpar@1
   143
                40 43    41 44    42 45    44 47
alpar@1
   144
                46  1
alpar@1
   145
alpar@1
   146
   (PH,*,NY,*)   1  3     5  7     9 11    11 13
alpar@1
   147
                13 15    14 16    15 17    16 18
alpar@1
   148
                17 19    18 20    19 21    20 22
alpar@1
   149
                21 23    22 24    23 25    24 26
alpar@1
   150
                25 27    26 28    27 29    28 30
alpar@1
   151
                29 31    30 32    31 33    32 34
alpar@1
   152
                33 35    34 36    35 37    36 38
alpar@1
   153
                37 39    38 40    39 41    40 42
alpar@1
   154
                41 43    42 44    43 45    44 46
alpar@1
   155
                45 47    47  1
alpar@1
   156
alpar@1
   157
   (NY,*,BO,*)  10 16    12 18    14 20    15 21
alpar@1
   158
                16 22    17 23    18 24    19 25
alpar@1
   159
                20 26    21 27    22 28    23 29
alpar@1
   160
                24 30    25 31    26 32    27 33
alpar@1
   161
                28 34    29 35    30 36    31 37
alpar@1
   162
                32 38    33 39    34 40    35 41
alpar@1
   163
                36 42    37 43    38 44    39 45
alpar@1
   164
                40 46    41 47    42 48    43  1
alpar@1
   165
                44  2    45  3    46  4    48  6
alpar@1
   166
alpar@1
   167
   (BO,*,NY,*)   7 13     9 15    11 17    12 18
alpar@1
   168
                13 19    14 20    15 21    16 22
alpar@1
   169
                17 23    18 24    19 25    20 26
alpar@1
   170
                21 27    22 28    23 29    24 30
alpar@1
   171
                25 31    26 32    27 33    28 34
alpar@1
   172
                29 35    30 36    31 37    32 38
alpar@1
   173
                33 39    34 40    35 41    36 42
alpar@1
   174
                37 43    38 44    39 45    40 46
alpar@1
   175
                41 47    43  1    45  3    47  5
alpar@1
   176
alpar@1
   177
   (NY,*,PH,*)   1  3    12 14    13 15    14 16
alpar@1
   178
                15 17    16 18    17 19    18 20
alpar@1
   179
                19 21    20 22    21 23    22 24
alpar@1
   180
                23 25    24 26    25 27    26 28
alpar@1
   181
                27 29    28 30    29 31    30 32
alpar@1
   182
                31 33    32 34    33 35    34 36
alpar@1
   183
                35 37    36 38    37 39    38 40
alpar@1
   184
                39 41    40 42    41 43    42 44
alpar@1
   185
                43 45    44 46    45 47    46 48
alpar@1
   186
                47  1
alpar@1
   187
alpar@1
   188
   (PH,*,WA,*)   1  4    14 17    15 18    16 19
alpar@1
   189
                17 20    18 21    19 22    20 23
alpar@1
   190
                21 24    22 25    23 26    24 27
alpar@1
   191
                25 28    26 29    27 30    28 31
alpar@1
   192
                29 32    30 33    31 34    32 35
alpar@1
   193
                33 36    34 37    35 38    36 39
alpar@1
   194
                37 40    38 41    39 42    40 43
alpar@1
   195
                41 44    42 45    43 46    44 47
alpar@1
   196
                45 48    46  1    47  2    ;
alpar@1
   197
alpar@1
   198
param demand :=
alpar@1
   199
alpar@1
   200
 [WA,*,PH,*]   2  5    .55      6  9    .01      8 11    .01
alpar@1
   201
              10 13    .13     12 15   1.59     13 16   1.69
alpar@1
   202
              14 17   5.19     15 18   3.55     16 19   6.29
alpar@1
   203
              17 20   4.00     18 21   5.80     19 22   3.40
alpar@1
   204
              20 23   4.88     21 24   2.92     22 25   4.37
alpar@1
   205
              23 26   2.80     24 27   4.23     25 28   2.88
alpar@1
   206
              26 29   4.33     27 30   3.11     28 31   4.64
alpar@1
   207
              29 32   3.44     30 33   4.95     31 34   3.73
alpar@1
   208
              32 35   5.27     33 36   3.77     34 37   4.80
alpar@1
   209
              35 38   3.31     36 39   3.89     37 40   2.65
alpar@1
   210
              38 41   3.01     39 42   2.04     40 43   2.31
alpar@1
   211
              41 44   1.52     42 45   1.75     44 47   1.88
alpar@1
   212
              46  1   1.05
alpar@1
   213
alpar@1
   214
 [PH,*,NY,*]   1  3   1.05      5  7    .43      9 11    .20
alpar@1
   215
              11 13    .21     13 15    .40     14 16   6.49
alpar@1
   216
              15 17  16.40     16 18   9.48     17 19  17.15
alpar@1
   217
              18 20   9.31     19 21  15.20     20 22   8.21
alpar@1
   218
              21 23  13.32     22 24   7.35     23 25  11.83
alpar@1
   219
              24 26   6.61     25 27  10.61     26 28   6.05
alpar@1
   220
              27 29   9.65     28 30   5.61     29 31   9.25
alpar@1
   221
              30 32   5.40     31 33   8.24     32 34   4.84
alpar@1
   222
              33 35   7.44     34 36   4.44     35 37   6.80
alpar@1
   223
              36 38   4.11     37 39   6.25     38 40   3.69
alpar@1
   224
              39 41   5.55     40 42   3.29     41 43   4.77
alpar@1
   225
              42 44   2.91     43 45   4.19     44 46   2.53
alpar@1
   226
              45 47   4.00     47 1    1.65
alpar@1
   227
alpar@1
   228
 [NY,*,BO,*]  10 16   1.23     12 18   3.84     14 20   4.08
alpar@1
   229
              15 21   1.47     16 22   2.96     17 23   1.60
alpar@1
   230
              18 24   2.95     19 25   1.71     20 26   2.81
alpar@1
   231
              21 27   1.77     22 28   2.87     23 29   1.84
alpar@1
   232
              24 30   2.95     25 31   1.91     26 32   3.12
alpar@1
   233
              27 33   1.93     28 34   3.31     29 35   2.00
alpar@1
   234
              30 36   3.40     31 37   2.08     32 38   3.41
alpar@1
   235
              33 39   2.69     34 40   4.45     35 41   2.32
alpar@1
   236
              36 42   3.40     37 43   1.80     38 44   2.63
alpar@1
   237
              39 45   1.52     40 46   2.23     41 47   1.25
alpar@1
   238
              42 48   1.79     43  1    .97     44  2   1.28
alpar@1
   239
              45  3    .48     46  4    .68     48  6    .08
alpar@1
   240
alpar@1
   241
 [BO,*,NY,*]   7 13    .03      9 15   1.29     11 17   4.59
alpar@1
   242
              12 18   2.56     13 19   3.92     14 20   2.37
alpar@1
   243
              15 21   3.81     16 22   2.24     17 23   3.51
alpar@1
   244
              18 24   2.13     19 25   3.28     20 26   2.05
alpar@1
   245
              21 27   3.15     22 28   1.99     23 29   3.09
alpar@1
   246
              24 30   1.93     25 31   3.19     26 32   1.91
alpar@1
   247
              27 33   3.21     28 34   1.85     29 35   3.21
alpar@1
   248
              30 36   1.71     31 37   3.04     32 38   2.08
alpar@1
   249
              33 39   3.13     34 40   1.96     35 41   2.53
alpar@1
   250
              36 42   1.43     37 43   2.04     38 44   1.12
alpar@1
   251
              39 45   1.71     40 46    .91     41 47   1.32
alpar@1
   252
              43  1   1.80     45  3   1.13     47  5    .23
alpar@1
   253
alpar@1
   254
 [NY,*,PH,*]   1  3    .04     12 14   4.68     13 15   5.61
alpar@1
   255
              14 16   3.56     15 17   5.81     16 18   3.81
alpar@1
   256
              17 19   6.31     18 20   4.07     19 21   7.33
alpar@1
   257
              20 22   4.55     21 23   7.37     22 24   4.73
alpar@1
   258
              23 25   7.61     24 26   4.92     25 27   7.91
alpar@1
   259
              26 28   5.19     27 29   8.40     28 30   5.53
alpar@1
   260
              29 31   9.32     30 32   5.51     31 33  10.33
alpar@1
   261
              32 34   9.21     33 35  18.95     34 36  11.23
alpar@1
   262
              35 37  16.85     36 38   7.29     37 39  10.89
alpar@1
   263
              38 40   5.41     39 41   8.21     40 42   4.52
alpar@1
   264
              41 43   6.99     42 44   3.92     43 45   6.21
alpar@1
   265
              44 46   3.44     45 47   5.17     46 48   2.55
alpar@1
   266
              47  1   1.24
alpar@1
   267
alpar@1
   268
 [PH,*,WA,*]   1  4    .20     14 17   4.49     15 18   3.53
alpar@1
   269
              16 19   2.67     17 20   3.83     18 21   3.01
alpar@1
   270
              19 22   4.12     20 23   3.15     21 24   4.67
alpar@1
   271
              22 25   3.20     23 26   4.23     24 27   2.87
alpar@1
   272
              25 28   3.84     26 29   2.60     27 30   3.80
alpar@1
   273
              28 31   2.77     29 32   4.31     30 33   3.16
alpar@1
   274
              31 34   4.88     32 35   3.45     33 36   5.55
alpar@1
   275
              34 37   3.52     35 38   6.11     36 39   3.32
alpar@1
   276
              37 40   5.53     38 41   3.03     39 42   4.51
alpar@1
   277
              40 43   2.53     41 44   3.39     42 45   1.93
alpar@1
   278
              43 46   2.52     44 47   1.20     45 48   1.75
alpar@1
   279
              46  1    .88     47  2    .87     ;
alpar@1
   280
alpar@1
   281
end;