alpar@1
|
1 |
/* glpmpl03.c */
|
alpar@1
|
2 |
|
alpar@1
|
3 |
/***********************************************************************
|
alpar@1
|
4 |
* This code is part of GLPK (GNU Linear Programming Kit).
|
alpar@1
|
5 |
*
|
alpar@1
|
6 |
* Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
|
alpar@1
|
7 |
* 2009, 2010 Andrew Makhorin, Department for Applied Informatics,
|
alpar@1
|
8 |
* Moscow Aviation Institute, Moscow, Russia. All rights reserved.
|
alpar@1
|
9 |
* E-mail: <mao@gnu.org>.
|
alpar@1
|
10 |
*
|
alpar@1
|
11 |
* GLPK is free software: you can redistribute it and/or modify it
|
alpar@1
|
12 |
* under the terms of the GNU General Public License as published by
|
alpar@1
|
13 |
* the Free Software Foundation, either version 3 of the License, or
|
alpar@1
|
14 |
* (at your option) any later version.
|
alpar@1
|
15 |
*
|
alpar@1
|
16 |
* GLPK is distributed in the hope that it will be useful, but WITHOUT
|
alpar@1
|
17 |
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
alpar@1
|
18 |
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
|
alpar@1
|
19 |
* License for more details.
|
alpar@1
|
20 |
*
|
alpar@1
|
21 |
* You should have received a copy of the GNU General Public License
|
alpar@1
|
22 |
* along with GLPK. If not, see <http://www.gnu.org/licenses/>.
|
alpar@1
|
23 |
***********************************************************************/
|
alpar@1
|
24 |
|
alpar@1
|
25 |
#define _GLPSTD_ERRNO
|
alpar@1
|
26 |
#define _GLPSTD_STDIO
|
alpar@1
|
27 |
#include "glpenv.h"
|
alpar@1
|
28 |
#include "glpmpl.h"
|
alpar@1
|
29 |
|
alpar@1
|
30 |
/**********************************************************************/
|
alpar@1
|
31 |
/* * * FLOATING-POINT NUMBERS * * */
|
alpar@1
|
32 |
/**********************************************************************/
|
alpar@1
|
33 |
|
alpar@1
|
34 |
/*----------------------------------------------------------------------
|
alpar@1
|
35 |
-- fp_add - floating-point addition.
|
alpar@1
|
36 |
--
|
alpar@1
|
37 |
-- This routine computes the sum x + y. */
|
alpar@1
|
38 |
|
alpar@1
|
39 |
double fp_add(MPL *mpl, double x, double y)
|
alpar@1
|
40 |
{ if (x > 0.0 && y > 0.0 && x > + 0.999 * DBL_MAX - y ||
|
alpar@1
|
41 |
x < 0.0 && y < 0.0 && x < - 0.999 * DBL_MAX - y)
|
alpar@1
|
42 |
error(mpl, "%.*g + %.*g; floating-point overflow",
|
alpar@1
|
43 |
DBL_DIG, x, DBL_DIG, y);
|
alpar@1
|
44 |
return x + y;
|
alpar@1
|
45 |
}
|
alpar@1
|
46 |
|
alpar@1
|
47 |
/*----------------------------------------------------------------------
|
alpar@1
|
48 |
-- fp_sub - floating-point subtraction.
|
alpar@1
|
49 |
--
|
alpar@1
|
50 |
-- This routine computes the difference x - y. */
|
alpar@1
|
51 |
|
alpar@1
|
52 |
double fp_sub(MPL *mpl, double x, double y)
|
alpar@1
|
53 |
{ if (x > 0.0 && y < 0.0 && x > + 0.999 * DBL_MAX + y ||
|
alpar@1
|
54 |
x < 0.0 && y > 0.0 && x < - 0.999 * DBL_MAX + y)
|
alpar@1
|
55 |
error(mpl, "%.*g - %.*g; floating-point overflow",
|
alpar@1
|
56 |
DBL_DIG, x, DBL_DIG, y);
|
alpar@1
|
57 |
return x - y;
|
alpar@1
|
58 |
}
|
alpar@1
|
59 |
|
alpar@1
|
60 |
/*----------------------------------------------------------------------
|
alpar@1
|
61 |
-- fp_less - floating-point non-negative subtraction.
|
alpar@1
|
62 |
--
|
alpar@1
|
63 |
-- This routine computes the non-negative difference max(0, x - y). */
|
alpar@1
|
64 |
|
alpar@1
|
65 |
double fp_less(MPL *mpl, double x, double y)
|
alpar@1
|
66 |
{ if (x < y) return 0.0;
|
alpar@1
|
67 |
if (x > 0.0 && y < 0.0 && x > + 0.999 * DBL_MAX + y)
|
alpar@1
|
68 |
error(mpl, "%.*g less %.*g; floating-point overflow",
|
alpar@1
|
69 |
DBL_DIG, x, DBL_DIG, y);
|
alpar@1
|
70 |
return x - y;
|
alpar@1
|
71 |
}
|
alpar@1
|
72 |
|
alpar@1
|
73 |
/*----------------------------------------------------------------------
|
alpar@1
|
74 |
-- fp_mul - floating-point multiplication.
|
alpar@1
|
75 |
--
|
alpar@1
|
76 |
-- This routine computes the product x * y. */
|
alpar@1
|
77 |
|
alpar@1
|
78 |
double fp_mul(MPL *mpl, double x, double y)
|
alpar@1
|
79 |
{ if (fabs(y) > 1.0 && fabs(x) > (0.999 * DBL_MAX) / fabs(y))
|
alpar@1
|
80 |
error(mpl, "%.*g * %.*g; floating-point overflow",
|
alpar@1
|
81 |
DBL_DIG, x, DBL_DIG, y);
|
alpar@1
|
82 |
return x * y;
|
alpar@1
|
83 |
}
|
alpar@1
|
84 |
|
alpar@1
|
85 |
/*----------------------------------------------------------------------
|
alpar@1
|
86 |
-- fp_div - floating-point division.
|
alpar@1
|
87 |
--
|
alpar@1
|
88 |
-- This routine computes the quotient x / y. */
|
alpar@1
|
89 |
|
alpar@1
|
90 |
double fp_div(MPL *mpl, double x, double y)
|
alpar@1
|
91 |
{ if (fabs(y) < DBL_MIN)
|
alpar@1
|
92 |
error(mpl, "%.*g / %.*g; floating-point zero divide",
|
alpar@1
|
93 |
DBL_DIG, x, DBL_DIG, y);
|
alpar@1
|
94 |
if (fabs(y) < 1.0 && fabs(x) > (0.999 * DBL_MAX) * fabs(y))
|
alpar@1
|
95 |
error(mpl, "%.*g / %.*g; floating-point overflow",
|
alpar@1
|
96 |
DBL_DIG, x, DBL_DIG, y);
|
alpar@1
|
97 |
return x / y;
|
alpar@1
|
98 |
}
|
alpar@1
|
99 |
|
alpar@1
|
100 |
/*----------------------------------------------------------------------
|
alpar@1
|
101 |
-- fp_idiv - floating-point quotient of exact division.
|
alpar@1
|
102 |
--
|
alpar@1
|
103 |
-- This routine computes the quotient of exact division x div y. */
|
alpar@1
|
104 |
|
alpar@1
|
105 |
double fp_idiv(MPL *mpl, double x, double y)
|
alpar@1
|
106 |
{ if (fabs(y) < DBL_MIN)
|
alpar@1
|
107 |
error(mpl, "%.*g div %.*g; floating-point zero divide",
|
alpar@1
|
108 |
DBL_DIG, x, DBL_DIG, y);
|
alpar@1
|
109 |
if (fabs(y) < 1.0 && fabs(x) > (0.999 * DBL_MAX) * fabs(y))
|
alpar@1
|
110 |
error(mpl, "%.*g div %.*g; floating-point overflow",
|
alpar@1
|
111 |
DBL_DIG, x, DBL_DIG, y);
|
alpar@1
|
112 |
x /= y;
|
alpar@1
|
113 |
return x > 0.0 ? floor(x) : x < 0.0 ? ceil(x) : 0.0;
|
alpar@1
|
114 |
}
|
alpar@1
|
115 |
|
alpar@1
|
116 |
/*----------------------------------------------------------------------
|
alpar@1
|
117 |
-- fp_mod - floating-point remainder of exact division.
|
alpar@1
|
118 |
--
|
alpar@1
|
119 |
-- This routine computes the remainder of exact division x mod y.
|
alpar@1
|
120 |
--
|
alpar@1
|
121 |
-- NOTE: By definition x mod y = x - y * floor(x / y). */
|
alpar@1
|
122 |
|
alpar@1
|
123 |
double fp_mod(MPL *mpl, double x, double y)
|
alpar@1
|
124 |
{ double r;
|
alpar@1
|
125 |
xassert(mpl == mpl);
|
alpar@1
|
126 |
if (x == 0.0)
|
alpar@1
|
127 |
r = 0.0;
|
alpar@1
|
128 |
else if (y == 0.0)
|
alpar@1
|
129 |
r = x;
|
alpar@1
|
130 |
else
|
alpar@1
|
131 |
{ r = fmod(fabs(x), fabs(y));
|
alpar@1
|
132 |
if (r != 0.0)
|
alpar@1
|
133 |
{ if (x < 0.0) r = - r;
|
alpar@1
|
134 |
if (x > 0.0 && y < 0.0 || x < 0.0 && y > 0.0) r += y;
|
alpar@1
|
135 |
}
|
alpar@1
|
136 |
}
|
alpar@1
|
137 |
return r;
|
alpar@1
|
138 |
}
|
alpar@1
|
139 |
|
alpar@1
|
140 |
/*----------------------------------------------------------------------
|
alpar@1
|
141 |
-- fp_power - floating-point exponentiation (raise to power).
|
alpar@1
|
142 |
--
|
alpar@1
|
143 |
-- This routine computes the exponentiation x ** y. */
|
alpar@1
|
144 |
|
alpar@1
|
145 |
double fp_power(MPL *mpl, double x, double y)
|
alpar@1
|
146 |
{ double r;
|
alpar@1
|
147 |
if (x == 0.0 && y <= 0.0 || x < 0.0 && y != floor(y))
|
alpar@1
|
148 |
error(mpl, "%.*g ** %.*g; result undefined",
|
alpar@1
|
149 |
DBL_DIG, x, DBL_DIG, y);
|
alpar@1
|
150 |
if (x == 0.0) goto eval;
|
alpar@1
|
151 |
if (fabs(x) > 1.0 && y > +1.0 &&
|
alpar@1
|
152 |
+log(fabs(x)) > (0.999 * log(DBL_MAX)) / y ||
|
alpar@1
|
153 |
fabs(x) < 1.0 && y < -1.0 &&
|
alpar@1
|
154 |
+log(fabs(x)) < (0.999 * log(DBL_MAX)) / y)
|
alpar@1
|
155 |
error(mpl, "%.*g ** %.*g; floating-point overflow",
|
alpar@1
|
156 |
DBL_DIG, x, DBL_DIG, y);
|
alpar@1
|
157 |
if (fabs(x) > 1.0 && y < -1.0 &&
|
alpar@1
|
158 |
-log(fabs(x)) < (0.999 * log(DBL_MAX)) / y ||
|
alpar@1
|
159 |
fabs(x) < 1.0 && y > +1.0 &&
|
alpar@1
|
160 |
-log(fabs(x)) > (0.999 * log(DBL_MAX)) / y)
|
alpar@1
|
161 |
r = 0.0;
|
alpar@1
|
162 |
else
|
alpar@1
|
163 |
eval: r = pow(x, y);
|
alpar@1
|
164 |
return r;
|
alpar@1
|
165 |
}
|
alpar@1
|
166 |
|
alpar@1
|
167 |
/*----------------------------------------------------------------------
|
alpar@1
|
168 |
-- fp_exp - floating-point base-e exponential.
|
alpar@1
|
169 |
--
|
alpar@1
|
170 |
-- This routine computes the base-e exponential e ** x. */
|
alpar@1
|
171 |
|
alpar@1
|
172 |
double fp_exp(MPL *mpl, double x)
|
alpar@1
|
173 |
{ if (x > 0.999 * log(DBL_MAX))
|
alpar@1
|
174 |
error(mpl, "exp(%.*g); floating-point overflow", DBL_DIG, x);
|
alpar@1
|
175 |
return exp(x);
|
alpar@1
|
176 |
}
|
alpar@1
|
177 |
|
alpar@1
|
178 |
/*----------------------------------------------------------------------
|
alpar@1
|
179 |
-- fp_log - floating-point natural logarithm.
|
alpar@1
|
180 |
--
|
alpar@1
|
181 |
-- This routine computes the natural logarithm log x. */
|
alpar@1
|
182 |
|
alpar@1
|
183 |
double fp_log(MPL *mpl, double x)
|
alpar@1
|
184 |
{ if (x <= 0.0)
|
alpar@1
|
185 |
error(mpl, "log(%.*g); non-positive argument", DBL_DIG, x);
|
alpar@1
|
186 |
return log(x);
|
alpar@1
|
187 |
}
|
alpar@1
|
188 |
|
alpar@1
|
189 |
/*----------------------------------------------------------------------
|
alpar@1
|
190 |
-- fp_log10 - floating-point common (decimal) logarithm.
|
alpar@1
|
191 |
--
|
alpar@1
|
192 |
-- This routine computes the common (decimal) logarithm lg x. */
|
alpar@1
|
193 |
|
alpar@1
|
194 |
double fp_log10(MPL *mpl, double x)
|
alpar@1
|
195 |
{ if (x <= 0.0)
|
alpar@1
|
196 |
error(mpl, "log10(%.*g); non-positive argument", DBL_DIG, x);
|
alpar@1
|
197 |
return log10(x);
|
alpar@1
|
198 |
}
|
alpar@1
|
199 |
|
alpar@1
|
200 |
/*----------------------------------------------------------------------
|
alpar@1
|
201 |
-- fp_sqrt - floating-point square root.
|
alpar@1
|
202 |
--
|
alpar@1
|
203 |
-- This routine computes the square root x ** 0.5. */
|
alpar@1
|
204 |
|
alpar@1
|
205 |
double fp_sqrt(MPL *mpl, double x)
|
alpar@1
|
206 |
{ if (x < 0.0)
|
alpar@1
|
207 |
error(mpl, "sqrt(%.*g); negative argument", DBL_DIG, x);
|
alpar@1
|
208 |
return sqrt(x);
|
alpar@1
|
209 |
}
|
alpar@1
|
210 |
|
alpar@1
|
211 |
/*----------------------------------------------------------------------
|
alpar@1
|
212 |
-- fp_sin - floating-point trigonometric sine.
|
alpar@1
|
213 |
--
|
alpar@1
|
214 |
-- This routine computes the trigonometric sine sin(x). */
|
alpar@1
|
215 |
|
alpar@1
|
216 |
double fp_sin(MPL *mpl, double x)
|
alpar@1
|
217 |
{ if (!(-1e6 <= x && x <= +1e6))
|
alpar@1
|
218 |
error(mpl, "sin(%.*g); argument too large", DBL_DIG, x);
|
alpar@1
|
219 |
return sin(x);
|
alpar@1
|
220 |
}
|
alpar@1
|
221 |
|
alpar@1
|
222 |
/*----------------------------------------------------------------------
|
alpar@1
|
223 |
-- fp_cos - floating-point trigonometric cosine.
|
alpar@1
|
224 |
--
|
alpar@1
|
225 |
-- This routine computes the trigonometric cosine cos(x). */
|
alpar@1
|
226 |
|
alpar@1
|
227 |
double fp_cos(MPL *mpl, double x)
|
alpar@1
|
228 |
{ if (!(-1e6 <= x && x <= +1e6))
|
alpar@1
|
229 |
error(mpl, "cos(%.*g); argument too large", DBL_DIG, x);
|
alpar@1
|
230 |
return cos(x);
|
alpar@1
|
231 |
}
|
alpar@1
|
232 |
|
alpar@1
|
233 |
/*----------------------------------------------------------------------
|
alpar@1
|
234 |
-- fp_atan - floating-point trigonometric arctangent.
|
alpar@1
|
235 |
--
|
alpar@1
|
236 |
-- This routine computes the trigonometric arctangent atan(x). */
|
alpar@1
|
237 |
|
alpar@1
|
238 |
double fp_atan(MPL *mpl, double x)
|
alpar@1
|
239 |
{ xassert(mpl == mpl);
|
alpar@1
|
240 |
return atan(x);
|
alpar@1
|
241 |
}
|
alpar@1
|
242 |
|
alpar@1
|
243 |
/*----------------------------------------------------------------------
|
alpar@1
|
244 |
-- fp_atan2 - floating-point trigonometric arctangent.
|
alpar@1
|
245 |
--
|
alpar@1
|
246 |
-- This routine computes the trigonometric arctangent atan(y / x). */
|
alpar@1
|
247 |
|
alpar@1
|
248 |
double fp_atan2(MPL *mpl, double y, double x)
|
alpar@1
|
249 |
{ xassert(mpl == mpl);
|
alpar@1
|
250 |
return atan2(y, x);
|
alpar@1
|
251 |
}
|
alpar@1
|
252 |
|
alpar@1
|
253 |
/*----------------------------------------------------------------------
|
alpar@1
|
254 |
-- fp_round - round floating-point value to n fractional digits.
|
alpar@1
|
255 |
--
|
alpar@1
|
256 |
-- This routine rounds given floating-point value x to n fractional
|
alpar@1
|
257 |
-- digits with the formula:
|
alpar@1
|
258 |
--
|
alpar@1
|
259 |
-- round(x, n) = floor(x * 10^n + 0.5) / 10^n.
|
alpar@1
|
260 |
--
|
alpar@1
|
261 |
-- The parameter n is assumed to be integer. */
|
alpar@1
|
262 |
|
alpar@1
|
263 |
double fp_round(MPL *mpl, double x, double n)
|
alpar@1
|
264 |
{ double ten_to_n;
|
alpar@1
|
265 |
if (n != floor(n))
|
alpar@1
|
266 |
error(mpl, "round(%.*g, %.*g); non-integer second argument",
|
alpar@1
|
267 |
DBL_DIG, x, DBL_DIG, n);
|
alpar@1
|
268 |
if (n <= DBL_DIG + 2)
|
alpar@1
|
269 |
{ ten_to_n = pow(10.0, n);
|
alpar@1
|
270 |
if (fabs(x) < (0.999 * DBL_MAX) / ten_to_n)
|
alpar@1
|
271 |
{ x = floor(x * ten_to_n + 0.5);
|
alpar@1
|
272 |
if (x != 0.0) x /= ten_to_n;
|
alpar@1
|
273 |
}
|
alpar@1
|
274 |
}
|
alpar@1
|
275 |
return x;
|
alpar@1
|
276 |
}
|
alpar@1
|
277 |
|
alpar@1
|
278 |
/*----------------------------------------------------------------------
|
alpar@1
|
279 |
-- fp_trunc - truncate floating-point value to n fractional digits.
|
alpar@1
|
280 |
--
|
alpar@1
|
281 |
-- This routine truncates given floating-point value x to n fractional
|
alpar@1
|
282 |
-- digits with the formula:
|
alpar@1
|
283 |
--
|
alpar@1
|
284 |
-- ( floor(x * 10^n) / 10^n, if x >= 0
|
alpar@1
|
285 |
-- trunc(x, n) = <
|
alpar@1
|
286 |
-- ( ceil(x * 10^n) / 10^n, if x < 0
|
alpar@1
|
287 |
--
|
alpar@1
|
288 |
-- The parameter n is assumed to be integer. */
|
alpar@1
|
289 |
|
alpar@1
|
290 |
double fp_trunc(MPL *mpl, double x, double n)
|
alpar@1
|
291 |
{ double ten_to_n;
|
alpar@1
|
292 |
if (n != floor(n))
|
alpar@1
|
293 |
error(mpl, "trunc(%.*g, %.*g); non-integer second argument",
|
alpar@1
|
294 |
DBL_DIG, x, DBL_DIG, n);
|
alpar@1
|
295 |
if (n <= DBL_DIG + 2)
|
alpar@1
|
296 |
{ ten_to_n = pow(10.0, n);
|
alpar@1
|
297 |
if (fabs(x) < (0.999 * DBL_MAX) / ten_to_n)
|
alpar@1
|
298 |
{ x = (x >= 0.0 ? floor(x * ten_to_n) : ceil(x * ten_to_n));
|
alpar@1
|
299 |
if (x != 0.0) x /= ten_to_n;
|
alpar@1
|
300 |
}
|
alpar@1
|
301 |
}
|
alpar@1
|
302 |
return x;
|
alpar@1
|
303 |
}
|
alpar@1
|
304 |
|
alpar@1
|
305 |
/**********************************************************************/
|
alpar@1
|
306 |
/* * * PSEUDO-RANDOM NUMBER GENERATORS * * */
|
alpar@1
|
307 |
/**********************************************************************/
|
alpar@1
|
308 |
|
alpar@1
|
309 |
/*----------------------------------------------------------------------
|
alpar@1
|
310 |
-- fp_irand224 - pseudo-random integer in the range [0, 2^24).
|
alpar@1
|
311 |
--
|
alpar@1
|
312 |
-- This routine returns a next pseudo-random integer (converted to
|
alpar@1
|
313 |
-- floating-point) which is uniformly distributed between 0 and 2^24-1,
|
alpar@1
|
314 |
-- inclusive. */
|
alpar@1
|
315 |
|
alpar@1
|
316 |
#define two_to_the_24 0x1000000
|
alpar@1
|
317 |
|
alpar@1
|
318 |
double fp_irand224(MPL *mpl)
|
alpar@1
|
319 |
{ return
|
alpar@1
|
320 |
(double)rng_unif_rand(mpl->rand, two_to_the_24);
|
alpar@1
|
321 |
}
|
alpar@1
|
322 |
|
alpar@1
|
323 |
/*----------------------------------------------------------------------
|
alpar@1
|
324 |
-- fp_uniform01 - pseudo-random number in the range [0, 1).
|
alpar@1
|
325 |
--
|
alpar@1
|
326 |
-- This routine returns a next pseudo-random number which is uniformly
|
alpar@1
|
327 |
-- distributed in the range [0, 1). */
|
alpar@1
|
328 |
|
alpar@1
|
329 |
#define two_to_the_31 ((unsigned int)0x80000000)
|
alpar@1
|
330 |
|
alpar@1
|
331 |
double fp_uniform01(MPL *mpl)
|
alpar@1
|
332 |
{ return
|
alpar@1
|
333 |
(double)rng_next_rand(mpl->rand) / (double)two_to_the_31;
|
alpar@1
|
334 |
}
|
alpar@1
|
335 |
|
alpar@1
|
336 |
/*----------------------------------------------------------------------
|
alpar@1
|
337 |
-- fp_uniform - pseudo-random number in the range [a, b).
|
alpar@1
|
338 |
--
|
alpar@1
|
339 |
-- This routine returns a next pseudo-random number which is uniformly
|
alpar@1
|
340 |
-- distributed in the range [a, b). */
|
alpar@1
|
341 |
|
alpar@1
|
342 |
double fp_uniform(MPL *mpl, double a, double b)
|
alpar@1
|
343 |
{ double x;
|
alpar@1
|
344 |
if (a >= b)
|
alpar@1
|
345 |
error(mpl, "Uniform(%.*g, %.*g); invalid range",
|
alpar@1
|
346 |
DBL_DIG, a, DBL_DIG, b);
|
alpar@1
|
347 |
x = fp_uniform01(mpl);
|
alpar@1
|
348 |
#if 0
|
alpar@1
|
349 |
x = a * (1.0 - x) + b * x;
|
alpar@1
|
350 |
#else
|
alpar@1
|
351 |
x = fp_add(mpl, a * (1.0 - x), b * x);
|
alpar@1
|
352 |
#endif
|
alpar@1
|
353 |
return x;
|
alpar@1
|
354 |
}
|
alpar@1
|
355 |
|
alpar@1
|
356 |
/*----------------------------------------------------------------------
|
alpar@1
|
357 |
-- fp_normal01 - Gaussian random variate with mu = 0 and sigma = 1.
|
alpar@1
|
358 |
--
|
alpar@1
|
359 |
-- This routine returns a Gaussian random variate with zero mean and
|
alpar@1
|
360 |
-- unit standard deviation. The polar (Box-Mueller) method is used.
|
alpar@1
|
361 |
--
|
alpar@1
|
362 |
-- This code is a modified version of the routine gsl_ran_gaussian from
|
alpar@1
|
363 |
-- the GNU Scientific Library Version 1.0. */
|
alpar@1
|
364 |
|
alpar@1
|
365 |
double fp_normal01(MPL *mpl)
|
alpar@1
|
366 |
{ double x, y, r2;
|
alpar@1
|
367 |
do
|
alpar@1
|
368 |
{ /* choose x, y in uniform square (-1,-1) to (+1,+1) */
|
alpar@1
|
369 |
x = -1.0 + 2.0 * fp_uniform01(mpl);
|
alpar@1
|
370 |
y = -1.0 + 2.0 * fp_uniform01(mpl);
|
alpar@1
|
371 |
/* see if it is in the unit circle */
|
alpar@1
|
372 |
r2 = x * x + y * y;
|
alpar@1
|
373 |
} while (r2 > 1.0 || r2 == 0.0);
|
alpar@1
|
374 |
/* Box-Muller transform */
|
alpar@1
|
375 |
return y * sqrt(-2.0 * log (r2) / r2);
|
alpar@1
|
376 |
}
|
alpar@1
|
377 |
|
alpar@1
|
378 |
/*----------------------------------------------------------------------
|
alpar@1
|
379 |
-- fp_normal - Gaussian random variate with specified mu and sigma.
|
alpar@1
|
380 |
--
|
alpar@1
|
381 |
-- This routine returns a Gaussian random variate with mean mu and
|
alpar@1
|
382 |
-- standard deviation sigma. */
|
alpar@1
|
383 |
|
alpar@1
|
384 |
double fp_normal(MPL *mpl, double mu, double sigma)
|
alpar@1
|
385 |
{ double x;
|
alpar@1
|
386 |
#if 0
|
alpar@1
|
387 |
x = mu + sigma * fp_normal01(mpl);
|
alpar@1
|
388 |
#else
|
alpar@1
|
389 |
x = fp_add(mpl, mu, fp_mul(mpl, sigma, fp_normal01(mpl)));
|
alpar@1
|
390 |
#endif
|
alpar@1
|
391 |
return x;
|
alpar@1
|
392 |
}
|
alpar@1
|
393 |
|
alpar@1
|
394 |
/**********************************************************************/
|
alpar@1
|
395 |
/* * * SEGMENTED CHARACTER STRINGS * * */
|
alpar@1
|
396 |
/**********************************************************************/
|
alpar@1
|
397 |
|
alpar@1
|
398 |
/*----------------------------------------------------------------------
|
alpar@1
|
399 |
-- create_string - create character string.
|
alpar@1
|
400 |
--
|
alpar@1
|
401 |
-- This routine creates a segmented character string, which is exactly
|
alpar@1
|
402 |
-- equivalent to specified character string. */
|
alpar@1
|
403 |
|
alpar@1
|
404 |
STRING *create_string
|
alpar@1
|
405 |
( MPL *mpl,
|
alpar@1
|
406 |
char buf[MAX_LENGTH+1] /* not changed */
|
alpar@1
|
407 |
)
|
alpar@1
|
408 |
#if 0
|
alpar@1
|
409 |
{ STRING *head, *tail;
|
alpar@1
|
410 |
int i, j;
|
alpar@1
|
411 |
xassert(buf != NULL);
|
alpar@1
|
412 |
xassert(strlen(buf) <= MAX_LENGTH);
|
alpar@1
|
413 |
head = tail = dmp_get_atom(mpl->strings, sizeof(STRING));
|
alpar@1
|
414 |
for (i = j = 0; ; i++)
|
alpar@1
|
415 |
{ if ((tail->seg[j++] = buf[i]) == '\0') break;
|
alpar@1
|
416 |
if (j == STRSEG_SIZE)
|
alpar@1
|
417 |
tail = (tail->next = dmp_get_atom(mpl->strings, sizeof(STRING))), j = 0;
|
alpar@1
|
418 |
}
|
alpar@1
|
419 |
tail->next = NULL;
|
alpar@1
|
420 |
return head;
|
alpar@1
|
421 |
}
|
alpar@1
|
422 |
#else
|
alpar@1
|
423 |
{ STRING *str;
|
alpar@1
|
424 |
xassert(strlen(buf) <= MAX_LENGTH);
|
alpar@1
|
425 |
str = dmp_get_atom(mpl->strings, strlen(buf)+1);
|
alpar@1
|
426 |
strcpy(str, buf);
|
alpar@1
|
427 |
return str;
|
alpar@1
|
428 |
}
|
alpar@1
|
429 |
#endif
|
alpar@1
|
430 |
|
alpar@1
|
431 |
/*----------------------------------------------------------------------
|
alpar@1
|
432 |
-- copy_string - make copy of character string.
|
alpar@1
|
433 |
--
|
alpar@1
|
434 |
-- This routine returns an exact copy of segmented character string. */
|
alpar@1
|
435 |
|
alpar@1
|
436 |
STRING *copy_string
|
alpar@1
|
437 |
( MPL *mpl,
|
alpar@1
|
438 |
STRING *str /* not changed */
|
alpar@1
|
439 |
)
|
alpar@1
|
440 |
#if 0
|
alpar@1
|
441 |
{ STRING *head, *tail;
|
alpar@1
|
442 |
xassert(str != NULL);
|
alpar@1
|
443 |
head = tail = dmp_get_atom(mpl->strings, sizeof(STRING));
|
alpar@1
|
444 |
for (; str != NULL; str = str->next)
|
alpar@1
|
445 |
{ memcpy(tail->seg, str->seg, STRSEG_SIZE);
|
alpar@1
|
446 |
if (str->next != NULL)
|
alpar@1
|
447 |
tail = (tail->next = dmp_get_atom(mpl->strings, sizeof(STRING)));
|
alpar@1
|
448 |
}
|
alpar@1
|
449 |
tail->next = NULL;
|
alpar@1
|
450 |
return head;
|
alpar@1
|
451 |
}
|
alpar@1
|
452 |
#else
|
alpar@1
|
453 |
{ xassert(mpl == mpl);
|
alpar@1
|
454 |
return create_string(mpl, str);
|
alpar@1
|
455 |
}
|
alpar@1
|
456 |
#endif
|
alpar@1
|
457 |
|
alpar@1
|
458 |
/*----------------------------------------------------------------------
|
alpar@1
|
459 |
-- compare_strings - compare one character string with another.
|
alpar@1
|
460 |
--
|
alpar@1
|
461 |
-- This routine compares one segmented character strings with another
|
alpar@1
|
462 |
-- and returns the result of comparison as follows:
|
alpar@1
|
463 |
--
|
alpar@1
|
464 |
-- = 0 - both strings are identical;
|
alpar@1
|
465 |
-- < 0 - the first string precedes the second one;
|
alpar@1
|
466 |
-- > 0 - the first string follows the second one. */
|
alpar@1
|
467 |
|
alpar@1
|
468 |
int compare_strings
|
alpar@1
|
469 |
( MPL *mpl,
|
alpar@1
|
470 |
STRING *str1, /* not changed */
|
alpar@1
|
471 |
STRING *str2 /* not changed */
|
alpar@1
|
472 |
)
|
alpar@1
|
473 |
#if 0
|
alpar@1
|
474 |
{ int j, c1, c2;
|
alpar@1
|
475 |
xassert(mpl == mpl);
|
alpar@1
|
476 |
for (;; str1 = str1->next, str2 = str2->next)
|
alpar@1
|
477 |
{ xassert(str1 != NULL);
|
alpar@1
|
478 |
xassert(str2 != NULL);
|
alpar@1
|
479 |
for (j = 0; j < STRSEG_SIZE; j++)
|
alpar@1
|
480 |
{ c1 = (unsigned char)str1->seg[j];
|
alpar@1
|
481 |
c2 = (unsigned char)str2->seg[j];
|
alpar@1
|
482 |
if (c1 < c2) return -1;
|
alpar@1
|
483 |
if (c1 > c2) return +1;
|
alpar@1
|
484 |
if (c1 == '\0') goto done;
|
alpar@1
|
485 |
}
|
alpar@1
|
486 |
}
|
alpar@1
|
487 |
done: return 0;
|
alpar@1
|
488 |
}
|
alpar@1
|
489 |
#else
|
alpar@1
|
490 |
{ xassert(mpl == mpl);
|
alpar@1
|
491 |
return strcmp(str1, str2);
|
alpar@1
|
492 |
}
|
alpar@1
|
493 |
#endif
|
alpar@1
|
494 |
|
alpar@1
|
495 |
/*----------------------------------------------------------------------
|
alpar@1
|
496 |
-- fetch_string - extract content of character string.
|
alpar@1
|
497 |
--
|
alpar@1
|
498 |
-- This routine returns a character string, which is exactly equivalent
|
alpar@1
|
499 |
-- to specified segmented character string. */
|
alpar@1
|
500 |
|
alpar@1
|
501 |
char *fetch_string
|
alpar@1
|
502 |
( MPL *mpl,
|
alpar@1
|
503 |
STRING *str, /* not changed */
|
alpar@1
|
504 |
char buf[MAX_LENGTH+1] /* modified */
|
alpar@1
|
505 |
)
|
alpar@1
|
506 |
#if 0
|
alpar@1
|
507 |
{ int i, j;
|
alpar@1
|
508 |
xassert(mpl == mpl);
|
alpar@1
|
509 |
xassert(buf != NULL);
|
alpar@1
|
510 |
for (i = 0; ; str = str->next)
|
alpar@1
|
511 |
{ xassert(str != NULL);
|
alpar@1
|
512 |
for (j = 0; j < STRSEG_SIZE; j++)
|
alpar@1
|
513 |
if ((buf[i++] = str->seg[j]) == '\0') goto done;
|
alpar@1
|
514 |
}
|
alpar@1
|
515 |
done: xassert(strlen(buf) <= MAX_LENGTH);
|
alpar@1
|
516 |
return buf;
|
alpar@1
|
517 |
}
|
alpar@1
|
518 |
#else
|
alpar@1
|
519 |
{ xassert(mpl == mpl);
|
alpar@1
|
520 |
return strcpy(buf, str);
|
alpar@1
|
521 |
}
|
alpar@1
|
522 |
#endif
|
alpar@1
|
523 |
|
alpar@1
|
524 |
/*----------------------------------------------------------------------
|
alpar@1
|
525 |
-- delete_string - delete character string.
|
alpar@1
|
526 |
--
|
alpar@1
|
527 |
-- This routine deletes specified segmented character string. */
|
alpar@1
|
528 |
|
alpar@1
|
529 |
void delete_string
|
alpar@1
|
530 |
( MPL *mpl,
|
alpar@1
|
531 |
STRING *str /* destroyed */
|
alpar@1
|
532 |
)
|
alpar@1
|
533 |
#if 0
|
alpar@1
|
534 |
{ STRING *temp;
|
alpar@1
|
535 |
xassert(str != NULL);
|
alpar@1
|
536 |
while (str != NULL)
|
alpar@1
|
537 |
{ temp = str;
|
alpar@1
|
538 |
str = str->next;
|
alpar@1
|
539 |
dmp_free_atom(mpl->strings, temp, sizeof(STRING));
|
alpar@1
|
540 |
}
|
alpar@1
|
541 |
return;
|
alpar@1
|
542 |
}
|
alpar@1
|
543 |
#else
|
alpar@1
|
544 |
{ dmp_free_atom(mpl->strings, str, strlen(str)+1);
|
alpar@1
|
545 |
return;
|
alpar@1
|
546 |
}
|
alpar@1
|
547 |
#endif
|
alpar@1
|
548 |
|
alpar@1
|
549 |
/**********************************************************************/
|
alpar@1
|
550 |
/* * * SYMBOLS * * */
|
alpar@1
|
551 |
/**********************************************************************/
|
alpar@1
|
552 |
|
alpar@1
|
553 |
/*----------------------------------------------------------------------
|
alpar@1
|
554 |
-- create_symbol_num - create symbol of numeric type.
|
alpar@1
|
555 |
--
|
alpar@1
|
556 |
-- This routine creates a symbol, which has a numeric value specified
|
alpar@1
|
557 |
-- as floating-point number. */
|
alpar@1
|
558 |
|
alpar@1
|
559 |
SYMBOL *create_symbol_num(MPL *mpl, double num)
|
alpar@1
|
560 |
{ SYMBOL *sym;
|
alpar@1
|
561 |
sym = dmp_get_atom(mpl->symbols, sizeof(SYMBOL));
|
alpar@1
|
562 |
sym->num = num;
|
alpar@1
|
563 |
sym->str = NULL;
|
alpar@1
|
564 |
return sym;
|
alpar@1
|
565 |
}
|
alpar@1
|
566 |
|
alpar@1
|
567 |
/*----------------------------------------------------------------------
|
alpar@1
|
568 |
-- create_symbol_str - create symbol of abstract type.
|
alpar@1
|
569 |
--
|
alpar@1
|
570 |
-- This routine creates a symbol, which has an abstract value specified
|
alpar@1
|
571 |
-- as segmented character string. */
|
alpar@1
|
572 |
|
alpar@1
|
573 |
SYMBOL *create_symbol_str
|
alpar@1
|
574 |
( MPL *mpl,
|
alpar@1
|
575 |
STRING *str /* destroyed */
|
alpar@1
|
576 |
)
|
alpar@1
|
577 |
{ SYMBOL *sym;
|
alpar@1
|
578 |
xassert(str != NULL);
|
alpar@1
|
579 |
sym = dmp_get_atom(mpl->symbols, sizeof(SYMBOL));
|
alpar@1
|
580 |
sym->num = 0.0;
|
alpar@1
|
581 |
sym->str = str;
|
alpar@1
|
582 |
return sym;
|
alpar@1
|
583 |
}
|
alpar@1
|
584 |
|
alpar@1
|
585 |
/*----------------------------------------------------------------------
|
alpar@1
|
586 |
-- copy_symbol - make copy of symbol.
|
alpar@1
|
587 |
--
|
alpar@1
|
588 |
-- This routine returns an exact copy of symbol. */
|
alpar@1
|
589 |
|
alpar@1
|
590 |
SYMBOL *copy_symbol
|
alpar@1
|
591 |
( MPL *mpl,
|
alpar@1
|
592 |
SYMBOL *sym /* not changed */
|
alpar@1
|
593 |
)
|
alpar@1
|
594 |
{ SYMBOL *copy;
|
alpar@1
|
595 |
xassert(sym != NULL);
|
alpar@1
|
596 |
copy = dmp_get_atom(mpl->symbols, sizeof(SYMBOL));
|
alpar@1
|
597 |
if (sym->str == NULL)
|
alpar@1
|
598 |
{ copy->num = sym->num;
|
alpar@1
|
599 |
copy->str = NULL;
|
alpar@1
|
600 |
}
|
alpar@1
|
601 |
else
|
alpar@1
|
602 |
{ copy->num = 0.0;
|
alpar@1
|
603 |
copy->str = copy_string(mpl, sym->str);
|
alpar@1
|
604 |
}
|
alpar@1
|
605 |
return copy;
|
alpar@1
|
606 |
}
|
alpar@1
|
607 |
|
alpar@1
|
608 |
/*----------------------------------------------------------------------
|
alpar@1
|
609 |
-- compare_symbols - compare one symbol with another.
|
alpar@1
|
610 |
--
|
alpar@1
|
611 |
-- This routine compares one symbol with another and returns the result
|
alpar@1
|
612 |
-- of comparison as follows:
|
alpar@1
|
613 |
--
|
alpar@1
|
614 |
-- = 0 - both symbols are identical;
|
alpar@1
|
615 |
-- < 0 - the first symbol precedes the second one;
|
alpar@1
|
616 |
-- > 0 - the first symbol follows the second one.
|
alpar@1
|
617 |
--
|
alpar@1
|
618 |
-- Note that the linear order, in which symbols follow each other, is
|
alpar@1
|
619 |
-- implementation-dependent. It may be not an alphabetical order. */
|
alpar@1
|
620 |
|
alpar@1
|
621 |
int compare_symbols
|
alpar@1
|
622 |
( MPL *mpl,
|
alpar@1
|
623 |
SYMBOL *sym1, /* not changed */
|
alpar@1
|
624 |
SYMBOL *sym2 /* not changed */
|
alpar@1
|
625 |
)
|
alpar@1
|
626 |
{ xassert(sym1 != NULL);
|
alpar@1
|
627 |
xassert(sym2 != NULL);
|
alpar@1
|
628 |
/* let all numeric quantities precede all symbolic quantities */
|
alpar@1
|
629 |
if (sym1->str == NULL && sym2->str == NULL)
|
alpar@1
|
630 |
{ if (sym1->num < sym2->num) return -1;
|
alpar@1
|
631 |
if (sym1->num > sym2->num) return +1;
|
alpar@1
|
632 |
return 0;
|
alpar@1
|
633 |
}
|
alpar@1
|
634 |
if (sym1->str == NULL) return -1;
|
alpar@1
|
635 |
if (sym2->str == NULL) return +1;
|
alpar@1
|
636 |
return compare_strings(mpl, sym1->str, sym2->str);
|
alpar@1
|
637 |
}
|
alpar@1
|
638 |
|
alpar@1
|
639 |
/*----------------------------------------------------------------------
|
alpar@1
|
640 |
-- delete_symbol - delete symbol.
|
alpar@1
|
641 |
--
|
alpar@1
|
642 |
-- This routine deletes specified symbol. */
|
alpar@1
|
643 |
|
alpar@1
|
644 |
void delete_symbol
|
alpar@1
|
645 |
( MPL *mpl,
|
alpar@1
|
646 |
SYMBOL *sym /* destroyed */
|
alpar@1
|
647 |
)
|
alpar@1
|
648 |
{ xassert(sym != NULL);
|
alpar@1
|
649 |
if (sym->str != NULL) delete_string(mpl, sym->str);
|
alpar@1
|
650 |
dmp_free_atom(mpl->symbols, sym, sizeof(SYMBOL));
|
alpar@1
|
651 |
return;
|
alpar@1
|
652 |
}
|
alpar@1
|
653 |
|
alpar@1
|
654 |
/*----------------------------------------------------------------------
|
alpar@1
|
655 |
-- format_symbol - format symbol for displaying or printing.
|
alpar@1
|
656 |
--
|
alpar@1
|
657 |
-- This routine converts specified symbol to a charater string, which
|
alpar@1
|
658 |
-- is suitable for displaying or printing.
|
alpar@1
|
659 |
--
|
alpar@1
|
660 |
-- The resultant string is never longer than 255 characters. If it gets
|
alpar@1
|
661 |
-- longer, it is truncated from the right and appended by dots. */
|
alpar@1
|
662 |
|
alpar@1
|
663 |
char *format_symbol
|
alpar@1
|
664 |
( MPL *mpl,
|
alpar@1
|
665 |
SYMBOL *sym /* not changed */
|
alpar@1
|
666 |
)
|
alpar@1
|
667 |
{ char *buf = mpl->sym_buf;
|
alpar@1
|
668 |
xassert(sym != NULL);
|
alpar@1
|
669 |
if (sym->str == NULL)
|
alpar@1
|
670 |
sprintf(buf, "%.*g", DBL_DIG, sym->num);
|
alpar@1
|
671 |
else
|
alpar@1
|
672 |
{ char str[MAX_LENGTH+1];
|
alpar@1
|
673 |
int quoted, j, len;
|
alpar@1
|
674 |
fetch_string(mpl, sym->str, str);
|
alpar@1
|
675 |
if (!(isalpha((unsigned char)str[0]) || str[0] == '_'))
|
alpar@1
|
676 |
quoted = 1;
|
alpar@1
|
677 |
else
|
alpar@1
|
678 |
{ quoted = 0;
|
alpar@1
|
679 |
for (j = 1; str[j] != '\0'; j++)
|
alpar@1
|
680 |
{ if (!(isalnum((unsigned char)str[j]) ||
|
alpar@1
|
681 |
strchr("+-._", (unsigned char)str[j]) != NULL))
|
alpar@1
|
682 |
{ quoted = 1;
|
alpar@1
|
683 |
break;
|
alpar@1
|
684 |
}
|
alpar@1
|
685 |
}
|
alpar@1
|
686 |
}
|
alpar@1
|
687 |
# define safe_append(c) \
|
alpar@1
|
688 |
(void)(len < 255 ? (buf[len++] = (char)(c)) : 0)
|
alpar@1
|
689 |
buf[0] = '\0', len = 0;
|
alpar@1
|
690 |
if (quoted) safe_append('\'');
|
alpar@1
|
691 |
for (j = 0; str[j] != '\0'; j++)
|
alpar@1
|
692 |
{ if (quoted && str[j] == '\'') safe_append('\'');
|
alpar@1
|
693 |
safe_append(str[j]);
|
alpar@1
|
694 |
}
|
alpar@1
|
695 |
if (quoted) safe_append('\'');
|
alpar@1
|
696 |
# undef safe_append
|
alpar@1
|
697 |
buf[len] = '\0';
|
alpar@1
|
698 |
if (len == 255) strcpy(buf+252, "...");
|
alpar@1
|
699 |
}
|
alpar@1
|
700 |
xassert(strlen(buf) <= 255);
|
alpar@1
|
701 |
return buf;
|
alpar@1
|
702 |
}
|
alpar@1
|
703 |
|
alpar@1
|
704 |
/*----------------------------------------------------------------------
|
alpar@1
|
705 |
-- concat_symbols - concatenate one symbol with another.
|
alpar@1
|
706 |
--
|
alpar@1
|
707 |
-- This routine concatenates values of two given symbols and assigns
|
alpar@1
|
708 |
-- the resultant character string to a new symbol, which is returned on
|
alpar@1
|
709 |
-- exit. Both original symbols are destroyed. */
|
alpar@1
|
710 |
|
alpar@1
|
711 |
SYMBOL *concat_symbols
|
alpar@1
|
712 |
( MPL *mpl,
|
alpar@1
|
713 |
SYMBOL *sym1, /* destroyed */
|
alpar@1
|
714 |
SYMBOL *sym2 /* destroyed */
|
alpar@1
|
715 |
)
|
alpar@1
|
716 |
{ char str1[MAX_LENGTH+1], str2[MAX_LENGTH+1];
|
alpar@1
|
717 |
xassert(MAX_LENGTH >= DBL_DIG + DBL_DIG);
|
alpar@1
|
718 |
if (sym1->str == NULL)
|
alpar@1
|
719 |
sprintf(str1, "%.*g", DBL_DIG, sym1->num);
|
alpar@1
|
720 |
else
|
alpar@1
|
721 |
fetch_string(mpl, sym1->str, str1);
|
alpar@1
|
722 |
if (sym2->str == NULL)
|
alpar@1
|
723 |
sprintf(str2, "%.*g", DBL_DIG, sym2->num);
|
alpar@1
|
724 |
else
|
alpar@1
|
725 |
fetch_string(mpl, sym2->str, str2);
|
alpar@1
|
726 |
if (strlen(str1) + strlen(str2) > MAX_LENGTH)
|
alpar@1
|
727 |
{ char buf[255+1];
|
alpar@1
|
728 |
strcpy(buf, format_symbol(mpl, sym1));
|
alpar@1
|
729 |
xassert(strlen(buf) < sizeof(buf));
|
alpar@1
|
730 |
error(mpl, "%s & %s; resultant symbol exceeds %d characters",
|
alpar@1
|
731 |
buf, format_symbol(mpl, sym2), MAX_LENGTH);
|
alpar@1
|
732 |
}
|
alpar@1
|
733 |
delete_symbol(mpl, sym1);
|
alpar@1
|
734 |
delete_symbol(mpl, sym2);
|
alpar@1
|
735 |
return create_symbol_str(mpl, create_string(mpl, strcat(str1,
|
alpar@1
|
736 |
str2)));
|
alpar@1
|
737 |
}
|
alpar@1
|
738 |
|
alpar@1
|
739 |
/**********************************************************************/
|
alpar@1
|
740 |
/* * * N-TUPLES * * */
|
alpar@1
|
741 |
/**********************************************************************/
|
alpar@1
|
742 |
|
alpar@1
|
743 |
/*----------------------------------------------------------------------
|
alpar@1
|
744 |
-- create_tuple - create n-tuple.
|
alpar@1
|
745 |
--
|
alpar@1
|
746 |
-- This routine creates a n-tuple, which initially has no components,
|
alpar@1
|
747 |
-- i.e. which is 0-tuple. */
|
alpar@1
|
748 |
|
alpar@1
|
749 |
TUPLE *create_tuple(MPL *mpl)
|
alpar@1
|
750 |
{ TUPLE *tuple;
|
alpar@1
|
751 |
xassert(mpl == mpl);
|
alpar@1
|
752 |
tuple = NULL;
|
alpar@1
|
753 |
return tuple;
|
alpar@1
|
754 |
}
|
alpar@1
|
755 |
|
alpar@1
|
756 |
/*----------------------------------------------------------------------
|
alpar@1
|
757 |
-- expand_tuple - append symbol to n-tuple.
|
alpar@1
|
758 |
--
|
alpar@1
|
759 |
-- This routine expands n-tuple appending to it a given symbol, which
|
alpar@1
|
760 |
-- becomes its new last component. */
|
alpar@1
|
761 |
|
alpar@1
|
762 |
TUPLE *expand_tuple
|
alpar@1
|
763 |
( MPL *mpl,
|
alpar@1
|
764 |
TUPLE *tuple, /* destroyed */
|
alpar@1
|
765 |
SYMBOL *sym /* destroyed */
|
alpar@1
|
766 |
)
|
alpar@1
|
767 |
{ TUPLE *tail, *temp;
|
alpar@1
|
768 |
xassert(sym != NULL);
|
alpar@1
|
769 |
/* create a new component */
|
alpar@1
|
770 |
tail = dmp_get_atom(mpl->tuples, sizeof(TUPLE));
|
alpar@1
|
771 |
tail->sym = sym;
|
alpar@1
|
772 |
tail->next = NULL;
|
alpar@1
|
773 |
/* and append it to the component list */
|
alpar@1
|
774 |
if (tuple == NULL)
|
alpar@1
|
775 |
tuple = tail;
|
alpar@1
|
776 |
else
|
alpar@1
|
777 |
{ for (temp = tuple; temp->next != NULL; temp = temp->next);
|
alpar@1
|
778 |
temp->next = tail;
|
alpar@1
|
779 |
}
|
alpar@1
|
780 |
return tuple;
|
alpar@1
|
781 |
}
|
alpar@1
|
782 |
|
alpar@1
|
783 |
/*----------------------------------------------------------------------
|
alpar@1
|
784 |
-- tuple_dimen - determine dimension of n-tuple.
|
alpar@1
|
785 |
--
|
alpar@1
|
786 |
-- This routine returns dimension of n-tuple, i.e. number of components
|
alpar@1
|
787 |
-- in the n-tuple. */
|
alpar@1
|
788 |
|
alpar@1
|
789 |
int tuple_dimen
|
alpar@1
|
790 |
( MPL *mpl,
|
alpar@1
|
791 |
TUPLE *tuple /* not changed */
|
alpar@1
|
792 |
)
|
alpar@1
|
793 |
{ TUPLE *temp;
|
alpar@1
|
794 |
int dim = 0;
|
alpar@1
|
795 |
xassert(mpl == mpl);
|
alpar@1
|
796 |
for (temp = tuple; temp != NULL; temp = temp->next) dim++;
|
alpar@1
|
797 |
return dim;
|
alpar@1
|
798 |
}
|
alpar@1
|
799 |
|
alpar@1
|
800 |
/*----------------------------------------------------------------------
|
alpar@1
|
801 |
-- copy_tuple - make copy of n-tuple.
|
alpar@1
|
802 |
--
|
alpar@1
|
803 |
-- This routine returns an exact copy of n-tuple. */
|
alpar@1
|
804 |
|
alpar@1
|
805 |
TUPLE *copy_tuple
|
alpar@1
|
806 |
( MPL *mpl,
|
alpar@1
|
807 |
TUPLE *tuple /* not changed */
|
alpar@1
|
808 |
)
|
alpar@1
|
809 |
{ TUPLE *head, *tail;
|
alpar@1
|
810 |
if (tuple == NULL)
|
alpar@1
|
811 |
head = NULL;
|
alpar@1
|
812 |
else
|
alpar@1
|
813 |
{ head = tail = dmp_get_atom(mpl->tuples, sizeof(TUPLE));
|
alpar@1
|
814 |
for (; tuple != NULL; tuple = tuple->next)
|
alpar@1
|
815 |
{ xassert(tuple->sym != NULL);
|
alpar@1
|
816 |
tail->sym = copy_symbol(mpl, tuple->sym);
|
alpar@1
|
817 |
if (tuple->next != NULL)
|
alpar@1
|
818 |
tail = (tail->next = dmp_get_atom(mpl->tuples, sizeof(TUPLE)));
|
alpar@1
|
819 |
}
|
alpar@1
|
820 |
tail->next = NULL;
|
alpar@1
|
821 |
}
|
alpar@1
|
822 |
return head;
|
alpar@1
|
823 |
}
|
alpar@1
|
824 |
|
alpar@1
|
825 |
/*----------------------------------------------------------------------
|
alpar@1
|
826 |
-- compare_tuples - compare one n-tuple with another.
|
alpar@1
|
827 |
--
|
alpar@1
|
828 |
-- This routine compares two given n-tuples, which must have the same
|
alpar@1
|
829 |
-- dimension (not checked for the sake of efficiency), and returns one
|
alpar@1
|
830 |
-- of the following codes:
|
alpar@1
|
831 |
--
|
alpar@1
|
832 |
-- = 0 - both n-tuples are identical;
|
alpar@1
|
833 |
-- < 0 - the first n-tuple precedes the second one;
|
alpar@1
|
834 |
-- > 0 - the first n-tuple follows the second one.
|
alpar@1
|
835 |
--
|
alpar@1
|
836 |
-- Note that the linear order, in which n-tuples follow each other, is
|
alpar@1
|
837 |
-- implementation-dependent. It may be not an alphabetical order. */
|
alpar@1
|
838 |
|
alpar@1
|
839 |
int compare_tuples
|
alpar@1
|
840 |
( MPL *mpl,
|
alpar@1
|
841 |
TUPLE *tuple1, /* not changed */
|
alpar@1
|
842 |
TUPLE *tuple2 /* not changed */
|
alpar@1
|
843 |
)
|
alpar@1
|
844 |
{ TUPLE *item1, *item2;
|
alpar@1
|
845 |
int ret;
|
alpar@1
|
846 |
xassert(mpl == mpl);
|
alpar@1
|
847 |
for (item1 = tuple1, item2 = tuple2; item1 != NULL;
|
alpar@1
|
848 |
item1 = item1->next, item2 = item2->next)
|
alpar@1
|
849 |
{ xassert(item2 != NULL);
|
alpar@1
|
850 |
xassert(item1->sym != NULL);
|
alpar@1
|
851 |
xassert(item2->sym != NULL);
|
alpar@1
|
852 |
ret = compare_symbols(mpl, item1->sym, item2->sym);
|
alpar@1
|
853 |
if (ret != 0) return ret;
|
alpar@1
|
854 |
}
|
alpar@1
|
855 |
xassert(item2 == NULL);
|
alpar@1
|
856 |
return 0;
|
alpar@1
|
857 |
}
|
alpar@1
|
858 |
|
alpar@1
|
859 |
/*----------------------------------------------------------------------
|
alpar@1
|
860 |
-- build_subtuple - build subtuple of given n-tuple.
|
alpar@1
|
861 |
--
|
alpar@1
|
862 |
-- This routine builds subtuple, which consists of first dim components
|
alpar@1
|
863 |
-- of given n-tuple. */
|
alpar@1
|
864 |
|
alpar@1
|
865 |
TUPLE *build_subtuple
|
alpar@1
|
866 |
( MPL *mpl,
|
alpar@1
|
867 |
TUPLE *tuple, /* not changed */
|
alpar@1
|
868 |
int dim
|
alpar@1
|
869 |
)
|
alpar@1
|
870 |
{ TUPLE *head, *temp;
|
alpar@1
|
871 |
int j;
|
alpar@1
|
872 |
head = create_tuple(mpl);
|
alpar@1
|
873 |
for (j = 1, temp = tuple; j <= dim; j++, temp = temp->next)
|
alpar@1
|
874 |
{ xassert(temp != NULL);
|
alpar@1
|
875 |
head = expand_tuple(mpl, head, copy_symbol(mpl, temp->sym));
|
alpar@1
|
876 |
}
|
alpar@1
|
877 |
return head;
|
alpar@1
|
878 |
}
|
alpar@1
|
879 |
|
alpar@1
|
880 |
/*----------------------------------------------------------------------
|
alpar@1
|
881 |
-- delete_tuple - delete n-tuple.
|
alpar@1
|
882 |
--
|
alpar@1
|
883 |
-- This routine deletes specified n-tuple. */
|
alpar@1
|
884 |
|
alpar@1
|
885 |
void delete_tuple
|
alpar@1
|
886 |
( MPL *mpl,
|
alpar@1
|
887 |
TUPLE *tuple /* destroyed */
|
alpar@1
|
888 |
)
|
alpar@1
|
889 |
{ TUPLE *temp;
|
alpar@1
|
890 |
while (tuple != NULL)
|
alpar@1
|
891 |
{ temp = tuple;
|
alpar@1
|
892 |
tuple = temp->next;
|
alpar@1
|
893 |
xassert(temp->sym != NULL);
|
alpar@1
|
894 |
delete_symbol(mpl, temp->sym);
|
alpar@1
|
895 |
dmp_free_atom(mpl->tuples, temp, sizeof(TUPLE));
|
alpar@1
|
896 |
}
|
alpar@1
|
897 |
return;
|
alpar@1
|
898 |
}
|
alpar@1
|
899 |
|
alpar@1
|
900 |
/*----------------------------------------------------------------------
|
alpar@1
|
901 |
-- format_tuple - format n-tuple for displaying or printing.
|
alpar@1
|
902 |
--
|
alpar@1
|
903 |
-- This routine converts specified n-tuple to a character string, which
|
alpar@1
|
904 |
-- is suitable for displaying or printing.
|
alpar@1
|
905 |
--
|
alpar@1
|
906 |
-- The resultant string is never longer than 255 characters. If it gets
|
alpar@1
|
907 |
-- longer, it is truncated from the right and appended by dots. */
|
alpar@1
|
908 |
|
alpar@1
|
909 |
char *format_tuple
|
alpar@1
|
910 |
( MPL *mpl,
|
alpar@1
|
911 |
int c,
|
alpar@1
|
912 |
TUPLE *tuple /* not changed */
|
alpar@1
|
913 |
)
|
alpar@1
|
914 |
{ TUPLE *temp;
|
alpar@1
|
915 |
int dim, j, len;
|
alpar@1
|
916 |
char *buf = mpl->tup_buf, str[255+1], *save;
|
alpar@1
|
917 |
# define safe_append(c) \
|
alpar@1
|
918 |
(void)(len < 255 ? (buf[len++] = (char)(c)) : 0)
|
alpar@1
|
919 |
buf[0] = '\0', len = 0;
|
alpar@1
|
920 |
dim = tuple_dimen(mpl, tuple);
|
alpar@1
|
921 |
if (c == '[' && dim > 0) safe_append('[');
|
alpar@1
|
922 |
if (c == '(' && dim > 1) safe_append('(');
|
alpar@1
|
923 |
for (temp = tuple; temp != NULL; temp = temp->next)
|
alpar@1
|
924 |
{ if (temp != tuple) safe_append(',');
|
alpar@1
|
925 |
xassert(temp->sym != NULL);
|
alpar@1
|
926 |
save = mpl->sym_buf;
|
alpar@1
|
927 |
mpl->sym_buf = str;
|
alpar@1
|
928 |
format_symbol(mpl, temp->sym);
|
alpar@1
|
929 |
mpl->sym_buf = save;
|
alpar@1
|
930 |
xassert(strlen(str) < sizeof(str));
|
alpar@1
|
931 |
for (j = 0; str[j] != '\0'; j++) safe_append(str[j]);
|
alpar@1
|
932 |
}
|
alpar@1
|
933 |
if (c == '[' && dim > 0) safe_append(']');
|
alpar@1
|
934 |
if (c == '(' && dim > 1) safe_append(')');
|
alpar@1
|
935 |
# undef safe_append
|
alpar@1
|
936 |
buf[len] = '\0';
|
alpar@1
|
937 |
if (len == 255) strcpy(buf+252, "...");
|
alpar@1
|
938 |
xassert(strlen(buf) <= 255);
|
alpar@1
|
939 |
return buf;
|
alpar@1
|
940 |
}
|
alpar@1
|
941 |
|
alpar@1
|
942 |
/**********************************************************************/
|
alpar@1
|
943 |
/* * * ELEMENTAL SETS * * */
|
alpar@1
|
944 |
/**********************************************************************/
|
alpar@1
|
945 |
|
alpar@1
|
946 |
/*----------------------------------------------------------------------
|
alpar@1
|
947 |
-- create_elemset - create elemental set.
|
alpar@1
|
948 |
--
|
alpar@1
|
949 |
-- This routine creates an elemental set, whose members are n-tuples of
|
alpar@1
|
950 |
-- specified dimension. Being created the set is initially empty. */
|
alpar@1
|
951 |
|
alpar@1
|
952 |
ELEMSET *create_elemset(MPL *mpl, int dim)
|
alpar@1
|
953 |
{ ELEMSET *set;
|
alpar@1
|
954 |
xassert(dim > 0);
|
alpar@1
|
955 |
set = create_array(mpl, A_NONE, dim);
|
alpar@1
|
956 |
return set;
|
alpar@1
|
957 |
}
|
alpar@1
|
958 |
|
alpar@1
|
959 |
/*----------------------------------------------------------------------
|
alpar@1
|
960 |
-- find_tuple - check if elemental set contains given n-tuple.
|
alpar@1
|
961 |
--
|
alpar@1
|
962 |
-- This routine finds given n-tuple in specified elemental set in order
|
alpar@1
|
963 |
-- to check if the set contains that n-tuple. If the n-tuple is found,
|
alpar@1
|
964 |
-- the routine returns pointer to corresponding array member. Otherwise
|
alpar@1
|
965 |
-- null pointer is returned. */
|
alpar@1
|
966 |
|
alpar@1
|
967 |
MEMBER *find_tuple
|
alpar@1
|
968 |
( MPL *mpl,
|
alpar@1
|
969 |
ELEMSET *set, /* not changed */
|
alpar@1
|
970 |
TUPLE *tuple /* not changed */
|
alpar@1
|
971 |
)
|
alpar@1
|
972 |
{ xassert(set != NULL);
|
alpar@1
|
973 |
xassert(set->type == A_NONE);
|
alpar@1
|
974 |
xassert(set->dim == tuple_dimen(mpl, tuple));
|
alpar@1
|
975 |
return find_member(mpl, set, tuple);
|
alpar@1
|
976 |
}
|
alpar@1
|
977 |
|
alpar@1
|
978 |
/*----------------------------------------------------------------------
|
alpar@1
|
979 |
-- add_tuple - add new n-tuple to elemental set.
|
alpar@1
|
980 |
--
|
alpar@1
|
981 |
-- This routine adds given n-tuple to specified elemental set.
|
alpar@1
|
982 |
--
|
alpar@1
|
983 |
-- For the sake of efficiency this routine doesn't check whether the
|
alpar@1
|
984 |
-- set already contains the same n-tuple or not. Therefore the calling
|
alpar@1
|
985 |
-- program should use the routine find_tuple (if necessary) in order to
|
alpar@1
|
986 |
-- make sure that the given n-tuple is not contained in the set, since
|
alpar@1
|
987 |
-- duplicate n-tuples within the same set are not allowed. */
|
alpar@1
|
988 |
|
alpar@1
|
989 |
MEMBER *add_tuple
|
alpar@1
|
990 |
( MPL *mpl,
|
alpar@1
|
991 |
ELEMSET *set, /* modified */
|
alpar@1
|
992 |
TUPLE *tuple /* destroyed */
|
alpar@1
|
993 |
)
|
alpar@1
|
994 |
{ MEMBER *memb;
|
alpar@1
|
995 |
xassert(set != NULL);
|
alpar@1
|
996 |
xassert(set->type == A_NONE);
|
alpar@1
|
997 |
xassert(set->dim == tuple_dimen(mpl, tuple));
|
alpar@1
|
998 |
memb = add_member(mpl, set, tuple);
|
alpar@1
|
999 |
memb->value.none = NULL;
|
alpar@1
|
1000 |
return memb;
|
alpar@1
|
1001 |
}
|
alpar@1
|
1002 |
|
alpar@1
|
1003 |
/*----------------------------------------------------------------------
|
alpar@1
|
1004 |
-- check_then_add - check and add new n-tuple to elemental set.
|
alpar@1
|
1005 |
--
|
alpar@1
|
1006 |
-- This routine is equivalent to the routine add_tuple except that it
|
alpar@1
|
1007 |
-- does check for duplicate n-tuples. */
|
alpar@1
|
1008 |
|
alpar@1
|
1009 |
MEMBER *check_then_add
|
alpar@1
|
1010 |
( MPL *mpl,
|
alpar@1
|
1011 |
ELEMSET *set, /* modified */
|
alpar@1
|
1012 |
TUPLE *tuple /* destroyed */
|
alpar@1
|
1013 |
)
|
alpar@1
|
1014 |
{ if (find_tuple(mpl, set, tuple) != NULL)
|
alpar@1
|
1015 |
error(mpl, "duplicate tuple %s detected", format_tuple(mpl,
|
alpar@1
|
1016 |
'(', tuple));
|
alpar@1
|
1017 |
return add_tuple(mpl, set, tuple);
|
alpar@1
|
1018 |
}
|
alpar@1
|
1019 |
|
alpar@1
|
1020 |
/*----------------------------------------------------------------------
|
alpar@1
|
1021 |
-- copy_elemset - make copy of elemental set.
|
alpar@1
|
1022 |
--
|
alpar@1
|
1023 |
-- This routine makes an exact copy of elemental set. */
|
alpar@1
|
1024 |
|
alpar@1
|
1025 |
ELEMSET *copy_elemset
|
alpar@1
|
1026 |
( MPL *mpl,
|
alpar@1
|
1027 |
ELEMSET *set /* not changed */
|
alpar@1
|
1028 |
)
|
alpar@1
|
1029 |
{ ELEMSET *copy;
|
alpar@1
|
1030 |
MEMBER *memb;
|
alpar@1
|
1031 |
xassert(set != NULL);
|
alpar@1
|
1032 |
xassert(set->type == A_NONE);
|
alpar@1
|
1033 |
xassert(set->dim > 0);
|
alpar@1
|
1034 |
copy = create_elemset(mpl, set->dim);
|
alpar@1
|
1035 |
for (memb = set->head; memb != NULL; memb = memb->next)
|
alpar@1
|
1036 |
add_tuple(mpl, copy, copy_tuple(mpl, memb->tuple));
|
alpar@1
|
1037 |
return copy;
|
alpar@1
|
1038 |
}
|
alpar@1
|
1039 |
|
alpar@1
|
1040 |
/*----------------------------------------------------------------------
|
alpar@1
|
1041 |
-- delete_elemset - delete elemental set.
|
alpar@1
|
1042 |
--
|
alpar@1
|
1043 |
-- This routine deletes specified elemental set. */
|
alpar@1
|
1044 |
|
alpar@1
|
1045 |
void delete_elemset
|
alpar@1
|
1046 |
( MPL *mpl,
|
alpar@1
|
1047 |
ELEMSET *set /* destroyed */
|
alpar@1
|
1048 |
)
|
alpar@1
|
1049 |
{ xassert(set != NULL);
|
alpar@1
|
1050 |
xassert(set->type == A_NONE);
|
alpar@1
|
1051 |
delete_array(mpl, set);
|
alpar@1
|
1052 |
return;
|
alpar@1
|
1053 |
}
|
alpar@1
|
1054 |
|
alpar@1
|
1055 |
/*----------------------------------------------------------------------
|
alpar@1
|
1056 |
-- arelset_size - compute size of "arithmetic" elemental set.
|
alpar@1
|
1057 |
--
|
alpar@1
|
1058 |
-- This routine computes the size of "arithmetic" elemental set, which
|
alpar@1
|
1059 |
-- is specified in the form of arithmetic progression:
|
alpar@1
|
1060 |
--
|
alpar@1
|
1061 |
-- { t0 .. tf by dt }.
|
alpar@1
|
1062 |
--
|
alpar@1
|
1063 |
-- The size is computed using the formula:
|
alpar@1
|
1064 |
--
|
alpar@1
|
1065 |
-- n = max(0, floor((tf - t0) / dt) + 1). */
|
alpar@1
|
1066 |
|
alpar@1
|
1067 |
int arelset_size(MPL *mpl, double t0, double tf, double dt)
|
alpar@1
|
1068 |
{ double temp;
|
alpar@1
|
1069 |
if (dt == 0.0)
|
alpar@1
|
1070 |
error(mpl, "%.*g .. %.*g by %.*g; zero stride not allowed",
|
alpar@1
|
1071 |
DBL_DIG, t0, DBL_DIG, tf, DBL_DIG, dt);
|
alpar@1
|
1072 |
if (tf > 0.0 && t0 < 0.0 && tf > + 0.999 * DBL_MAX + t0)
|
alpar@1
|
1073 |
temp = +DBL_MAX;
|
alpar@1
|
1074 |
else if (tf < 0.0 && t0 > 0.0 && tf < - 0.999 * DBL_MAX + t0)
|
alpar@1
|
1075 |
temp = -DBL_MAX;
|
alpar@1
|
1076 |
else
|
alpar@1
|
1077 |
temp = tf - t0;
|
alpar@1
|
1078 |
if (fabs(dt) < 1.0 && fabs(temp) > (0.999 * DBL_MAX) * fabs(dt))
|
alpar@1
|
1079 |
{ if (temp > 0.0 && dt > 0.0 || temp < 0.0 && dt < 0.0)
|
alpar@1
|
1080 |
temp = +DBL_MAX;
|
alpar@1
|
1081 |
else
|
alpar@1
|
1082 |
temp = 0.0;
|
alpar@1
|
1083 |
}
|
alpar@1
|
1084 |
else
|
alpar@1
|
1085 |
{ temp = floor(temp / dt) + 1.0;
|
alpar@1
|
1086 |
if (temp < 0.0) temp = 0.0;
|
alpar@1
|
1087 |
}
|
alpar@1
|
1088 |
xassert(temp >= 0.0);
|
alpar@1
|
1089 |
if (temp > (double)(INT_MAX - 1))
|
alpar@1
|
1090 |
error(mpl, "%.*g .. %.*g by %.*g; set too large",
|
alpar@1
|
1091 |
DBL_DIG, t0, DBL_DIG, tf, DBL_DIG, dt);
|
alpar@1
|
1092 |
return (int)(temp + 0.5);
|
alpar@1
|
1093 |
}
|
alpar@1
|
1094 |
|
alpar@1
|
1095 |
/*----------------------------------------------------------------------
|
alpar@1
|
1096 |
-- arelset_member - compute member of "arithmetic" elemental set.
|
alpar@1
|
1097 |
--
|
alpar@1
|
1098 |
-- This routine returns a numeric value of symbol, which is equivalent
|
alpar@1
|
1099 |
-- to j-th member of given "arithmetic" elemental set specified in the
|
alpar@1
|
1100 |
-- form of arithmetic progression:
|
alpar@1
|
1101 |
--
|
alpar@1
|
1102 |
-- { t0 .. tf by dt }.
|
alpar@1
|
1103 |
--
|
alpar@1
|
1104 |
-- The symbol value is computed with the formula:
|
alpar@1
|
1105 |
--
|
alpar@1
|
1106 |
-- j-th member = t0 + (j - 1) * dt,
|
alpar@1
|
1107 |
--
|
alpar@1
|
1108 |
-- The number j must satisfy to the restriction 1 <= j <= n, where n is
|
alpar@1
|
1109 |
-- the set size computed by the routine arelset_size. */
|
alpar@1
|
1110 |
|
alpar@1
|
1111 |
double arelset_member(MPL *mpl, double t0, double tf, double dt, int j)
|
alpar@1
|
1112 |
{ xassert(1 <= j && j <= arelset_size(mpl, t0, tf, dt));
|
alpar@1
|
1113 |
return t0 + (double)(j - 1) * dt;
|
alpar@1
|
1114 |
}
|
alpar@1
|
1115 |
|
alpar@1
|
1116 |
/*----------------------------------------------------------------------
|
alpar@1
|
1117 |
-- create_arelset - create "arithmetic" elemental set.
|
alpar@1
|
1118 |
--
|
alpar@1
|
1119 |
-- This routine creates "arithmetic" elemental set, which is specified
|
alpar@1
|
1120 |
-- in the form of arithmetic progression:
|
alpar@1
|
1121 |
--
|
alpar@1
|
1122 |
-- { t0 .. tf by dt }.
|
alpar@1
|
1123 |
--
|
alpar@1
|
1124 |
-- Components of this set are 1-tuples. */
|
alpar@1
|
1125 |
|
alpar@1
|
1126 |
ELEMSET *create_arelset(MPL *mpl, double t0, double tf, double dt)
|
alpar@1
|
1127 |
{ ELEMSET *set;
|
alpar@1
|
1128 |
int j, n;
|
alpar@1
|
1129 |
set = create_elemset(mpl, 1);
|
alpar@1
|
1130 |
n = arelset_size(mpl, t0, tf, dt);
|
alpar@1
|
1131 |
for (j = 1; j <= n; j++)
|
alpar@1
|
1132 |
{ add_tuple
|
alpar@1
|
1133 |
( mpl,
|
alpar@1
|
1134 |
set,
|
alpar@1
|
1135 |
expand_tuple
|
alpar@1
|
1136 |
( mpl,
|
alpar@1
|
1137 |
create_tuple(mpl),
|
alpar@1
|
1138 |
create_symbol_num
|
alpar@1
|
1139 |
( mpl,
|
alpar@1
|
1140 |
arelset_member(mpl, t0, tf, dt, j)
|
alpar@1
|
1141 |
)
|
alpar@1
|
1142 |
)
|
alpar@1
|
1143 |
);
|
alpar@1
|
1144 |
}
|
alpar@1
|
1145 |
return set;
|
alpar@1
|
1146 |
}
|
alpar@1
|
1147 |
|
alpar@1
|
1148 |
/*----------------------------------------------------------------------
|
alpar@1
|
1149 |
-- set_union - union of two elemental sets.
|
alpar@1
|
1150 |
--
|
alpar@1
|
1151 |
-- This routine computes the union:
|
alpar@1
|
1152 |
--
|
alpar@1
|
1153 |
-- X U Y = { j | (j in X) or (j in Y) },
|
alpar@1
|
1154 |
--
|
alpar@1
|
1155 |
-- where X and Y are given elemental sets (destroyed on exit). */
|
alpar@1
|
1156 |
|
alpar@1
|
1157 |
ELEMSET *set_union
|
alpar@1
|
1158 |
( MPL *mpl,
|
alpar@1
|
1159 |
ELEMSET *X, /* destroyed */
|
alpar@1
|
1160 |
ELEMSET *Y /* destroyed */
|
alpar@1
|
1161 |
)
|
alpar@1
|
1162 |
{ MEMBER *memb;
|
alpar@1
|
1163 |
xassert(X != NULL);
|
alpar@1
|
1164 |
xassert(X->type == A_NONE);
|
alpar@1
|
1165 |
xassert(X->dim > 0);
|
alpar@1
|
1166 |
xassert(Y != NULL);
|
alpar@1
|
1167 |
xassert(Y->type == A_NONE);
|
alpar@1
|
1168 |
xassert(Y->dim > 0);
|
alpar@1
|
1169 |
xassert(X->dim == Y->dim);
|
alpar@1
|
1170 |
for (memb = Y->head; memb != NULL; memb = memb->next)
|
alpar@1
|
1171 |
{ if (find_tuple(mpl, X, memb->tuple) == NULL)
|
alpar@1
|
1172 |
add_tuple(mpl, X, copy_tuple(mpl, memb->tuple));
|
alpar@1
|
1173 |
}
|
alpar@1
|
1174 |
delete_elemset(mpl, Y);
|
alpar@1
|
1175 |
return X;
|
alpar@1
|
1176 |
}
|
alpar@1
|
1177 |
|
alpar@1
|
1178 |
/*----------------------------------------------------------------------
|
alpar@1
|
1179 |
-- set_diff - difference between two elemental sets.
|
alpar@1
|
1180 |
--
|
alpar@1
|
1181 |
-- This routine computes the difference:
|
alpar@1
|
1182 |
--
|
alpar@1
|
1183 |
-- X \ Y = { j | (j in X) and (j not in Y) },
|
alpar@1
|
1184 |
--
|
alpar@1
|
1185 |
-- where X and Y are given elemental sets (destroyed on exit). */
|
alpar@1
|
1186 |
|
alpar@1
|
1187 |
ELEMSET *set_diff
|
alpar@1
|
1188 |
( MPL *mpl,
|
alpar@1
|
1189 |
ELEMSET *X, /* destroyed */
|
alpar@1
|
1190 |
ELEMSET *Y /* destroyed */
|
alpar@1
|
1191 |
)
|
alpar@1
|
1192 |
{ ELEMSET *Z;
|
alpar@1
|
1193 |
MEMBER *memb;
|
alpar@1
|
1194 |
xassert(X != NULL);
|
alpar@1
|
1195 |
xassert(X->type == A_NONE);
|
alpar@1
|
1196 |
xassert(X->dim > 0);
|
alpar@1
|
1197 |
xassert(Y != NULL);
|
alpar@1
|
1198 |
xassert(Y->type == A_NONE);
|
alpar@1
|
1199 |
xassert(Y->dim > 0);
|
alpar@1
|
1200 |
xassert(X->dim == Y->dim);
|
alpar@1
|
1201 |
Z = create_elemset(mpl, X->dim);
|
alpar@1
|
1202 |
for (memb = X->head; memb != NULL; memb = memb->next)
|
alpar@1
|
1203 |
{ if (find_tuple(mpl, Y, memb->tuple) == NULL)
|
alpar@1
|
1204 |
add_tuple(mpl, Z, copy_tuple(mpl, memb->tuple));
|
alpar@1
|
1205 |
}
|
alpar@1
|
1206 |
delete_elemset(mpl, X);
|
alpar@1
|
1207 |
delete_elemset(mpl, Y);
|
alpar@1
|
1208 |
return Z;
|
alpar@1
|
1209 |
}
|
alpar@1
|
1210 |
|
alpar@1
|
1211 |
/*----------------------------------------------------------------------
|
alpar@1
|
1212 |
-- set_symdiff - symmetric difference between two elemental sets.
|
alpar@1
|
1213 |
--
|
alpar@1
|
1214 |
-- This routine computes the symmetric difference:
|
alpar@1
|
1215 |
--
|
alpar@1
|
1216 |
-- X (+) Y = (X \ Y) U (Y \ X),
|
alpar@1
|
1217 |
--
|
alpar@1
|
1218 |
-- where X and Y are given elemental sets (destroyed on exit). */
|
alpar@1
|
1219 |
|
alpar@1
|
1220 |
ELEMSET *set_symdiff
|
alpar@1
|
1221 |
( MPL *mpl,
|
alpar@1
|
1222 |
ELEMSET *X, /* destroyed */
|
alpar@1
|
1223 |
ELEMSET *Y /* destroyed */
|
alpar@1
|
1224 |
)
|
alpar@1
|
1225 |
{ ELEMSET *Z;
|
alpar@1
|
1226 |
MEMBER *memb;
|
alpar@1
|
1227 |
xassert(X != NULL);
|
alpar@1
|
1228 |
xassert(X->type == A_NONE);
|
alpar@1
|
1229 |
xassert(X->dim > 0);
|
alpar@1
|
1230 |
xassert(Y != NULL);
|
alpar@1
|
1231 |
xassert(Y->type == A_NONE);
|
alpar@1
|
1232 |
xassert(Y->dim > 0);
|
alpar@1
|
1233 |
xassert(X->dim == Y->dim);
|
alpar@1
|
1234 |
/* Z := X \ Y */
|
alpar@1
|
1235 |
Z = create_elemset(mpl, X->dim);
|
alpar@1
|
1236 |
for (memb = X->head; memb != NULL; memb = memb->next)
|
alpar@1
|
1237 |
{ if (find_tuple(mpl, Y, memb->tuple) == NULL)
|
alpar@1
|
1238 |
add_tuple(mpl, Z, copy_tuple(mpl, memb->tuple));
|
alpar@1
|
1239 |
}
|
alpar@1
|
1240 |
/* Z := Z U (Y \ X) */
|
alpar@1
|
1241 |
for (memb = Y->head; memb != NULL; memb = memb->next)
|
alpar@1
|
1242 |
{ if (find_tuple(mpl, X, memb->tuple) == NULL)
|
alpar@1
|
1243 |
add_tuple(mpl, Z, copy_tuple(mpl, memb->tuple));
|
alpar@1
|
1244 |
}
|
alpar@1
|
1245 |
delete_elemset(mpl, X);
|
alpar@1
|
1246 |
delete_elemset(mpl, Y);
|
alpar@1
|
1247 |
return Z;
|
alpar@1
|
1248 |
}
|
alpar@1
|
1249 |
|
alpar@1
|
1250 |
/*----------------------------------------------------------------------
|
alpar@1
|
1251 |
-- set_inter - intersection of two elemental sets.
|
alpar@1
|
1252 |
--
|
alpar@1
|
1253 |
-- This routine computes the intersection:
|
alpar@1
|
1254 |
--
|
alpar@1
|
1255 |
-- X ^ Y = { j | (j in X) and (j in Y) },
|
alpar@1
|
1256 |
--
|
alpar@1
|
1257 |
-- where X and Y are given elemental sets (destroyed on exit). */
|
alpar@1
|
1258 |
|
alpar@1
|
1259 |
ELEMSET *set_inter
|
alpar@1
|
1260 |
( MPL *mpl,
|
alpar@1
|
1261 |
ELEMSET *X, /* destroyed */
|
alpar@1
|
1262 |
ELEMSET *Y /* destroyed */
|
alpar@1
|
1263 |
)
|
alpar@1
|
1264 |
{ ELEMSET *Z;
|
alpar@1
|
1265 |
MEMBER *memb;
|
alpar@1
|
1266 |
xassert(X != NULL);
|
alpar@1
|
1267 |
xassert(X->type == A_NONE);
|
alpar@1
|
1268 |
xassert(X->dim > 0);
|
alpar@1
|
1269 |
xassert(Y != NULL);
|
alpar@1
|
1270 |
xassert(Y->type == A_NONE);
|
alpar@1
|
1271 |
xassert(Y->dim > 0);
|
alpar@1
|
1272 |
xassert(X->dim == Y->dim);
|
alpar@1
|
1273 |
Z = create_elemset(mpl, X->dim);
|
alpar@1
|
1274 |
for (memb = X->head; memb != NULL; memb = memb->next)
|
alpar@1
|
1275 |
{ if (find_tuple(mpl, Y, memb->tuple) != NULL)
|
alpar@1
|
1276 |
add_tuple(mpl, Z, copy_tuple(mpl, memb->tuple));
|
alpar@1
|
1277 |
}
|
alpar@1
|
1278 |
delete_elemset(mpl, X);
|
alpar@1
|
1279 |
delete_elemset(mpl, Y);
|
alpar@1
|
1280 |
return Z;
|
alpar@1
|
1281 |
}
|
alpar@1
|
1282 |
|
alpar@1
|
1283 |
/*----------------------------------------------------------------------
|
alpar@1
|
1284 |
-- set_cross - cross (Cartesian) product of two elemental sets.
|
alpar@1
|
1285 |
--
|
alpar@1
|
1286 |
-- This routine computes the cross (Cartesian) product:
|
alpar@1
|
1287 |
--
|
alpar@1
|
1288 |
-- X x Y = { (i,j) | (i in X) and (j in Y) },
|
alpar@1
|
1289 |
--
|
alpar@1
|
1290 |
-- where X and Y are given elemental sets (destroyed on exit). */
|
alpar@1
|
1291 |
|
alpar@1
|
1292 |
ELEMSET *set_cross
|
alpar@1
|
1293 |
( MPL *mpl,
|
alpar@1
|
1294 |
ELEMSET *X, /* destroyed */
|
alpar@1
|
1295 |
ELEMSET *Y /* destroyed */
|
alpar@1
|
1296 |
)
|
alpar@1
|
1297 |
{ ELEMSET *Z;
|
alpar@1
|
1298 |
MEMBER *memx, *memy;
|
alpar@1
|
1299 |
TUPLE *tuple, *temp;
|
alpar@1
|
1300 |
xassert(X != NULL);
|
alpar@1
|
1301 |
xassert(X->type == A_NONE);
|
alpar@1
|
1302 |
xassert(X->dim > 0);
|
alpar@1
|
1303 |
xassert(Y != NULL);
|
alpar@1
|
1304 |
xassert(Y->type == A_NONE);
|
alpar@1
|
1305 |
xassert(Y->dim > 0);
|
alpar@1
|
1306 |
Z = create_elemset(mpl, X->dim + Y->dim);
|
alpar@1
|
1307 |
for (memx = X->head; memx != NULL; memx = memx->next)
|
alpar@1
|
1308 |
{ for (memy = Y->head; memy != NULL; memy = memy->next)
|
alpar@1
|
1309 |
{ tuple = copy_tuple(mpl, memx->tuple);
|
alpar@1
|
1310 |
for (temp = memy->tuple; temp != NULL; temp = temp->next)
|
alpar@1
|
1311 |
tuple = expand_tuple(mpl, tuple, copy_symbol(mpl,
|
alpar@1
|
1312 |
temp->sym));
|
alpar@1
|
1313 |
add_tuple(mpl, Z, tuple);
|
alpar@1
|
1314 |
}
|
alpar@1
|
1315 |
}
|
alpar@1
|
1316 |
delete_elemset(mpl, X);
|
alpar@1
|
1317 |
delete_elemset(mpl, Y);
|
alpar@1
|
1318 |
return Z;
|
alpar@1
|
1319 |
}
|
alpar@1
|
1320 |
|
alpar@1
|
1321 |
/**********************************************************************/
|
alpar@1
|
1322 |
/* * * ELEMENTAL VARIABLES * * */
|
alpar@1
|
1323 |
/**********************************************************************/
|
alpar@1
|
1324 |
|
alpar@1
|
1325 |
/* (there are no specific routines for elemental variables) */
|
alpar@1
|
1326 |
|
alpar@1
|
1327 |
/**********************************************************************/
|
alpar@1
|
1328 |
/* * * LINEAR FORMS * * */
|
alpar@1
|
1329 |
/**********************************************************************/
|
alpar@1
|
1330 |
|
alpar@1
|
1331 |
/*----------------------------------------------------------------------
|
alpar@1
|
1332 |
-- constant_term - create constant term.
|
alpar@1
|
1333 |
--
|
alpar@1
|
1334 |
-- This routine creates the linear form, which is a constant term. */
|
alpar@1
|
1335 |
|
alpar@1
|
1336 |
FORMULA *constant_term(MPL *mpl, double coef)
|
alpar@1
|
1337 |
{ FORMULA *form;
|
alpar@1
|
1338 |
if (coef == 0.0)
|
alpar@1
|
1339 |
form = NULL;
|
alpar@1
|
1340 |
else
|
alpar@1
|
1341 |
{ form = dmp_get_atom(mpl->formulae, sizeof(FORMULA));
|
alpar@1
|
1342 |
form->coef = coef;
|
alpar@1
|
1343 |
form->var = NULL;
|
alpar@1
|
1344 |
form->next = NULL;
|
alpar@1
|
1345 |
}
|
alpar@1
|
1346 |
return form;
|
alpar@1
|
1347 |
}
|
alpar@1
|
1348 |
|
alpar@1
|
1349 |
/*----------------------------------------------------------------------
|
alpar@1
|
1350 |
-- single_variable - create single variable.
|
alpar@1
|
1351 |
--
|
alpar@1
|
1352 |
-- This routine creates the linear form, which is a single elemental
|
alpar@1
|
1353 |
-- variable. */
|
alpar@1
|
1354 |
|
alpar@1
|
1355 |
FORMULA *single_variable
|
alpar@1
|
1356 |
( MPL *mpl,
|
alpar@1
|
1357 |
ELEMVAR *var /* referenced */
|
alpar@1
|
1358 |
)
|
alpar@1
|
1359 |
{ FORMULA *form;
|
alpar@1
|
1360 |
xassert(var != NULL);
|
alpar@1
|
1361 |
form = dmp_get_atom(mpl->formulae, sizeof(FORMULA));
|
alpar@1
|
1362 |
form->coef = 1.0;
|
alpar@1
|
1363 |
form->var = var;
|
alpar@1
|
1364 |
form->next = NULL;
|
alpar@1
|
1365 |
return form;
|
alpar@1
|
1366 |
}
|
alpar@1
|
1367 |
|
alpar@1
|
1368 |
/*----------------------------------------------------------------------
|
alpar@1
|
1369 |
-- copy_formula - make copy of linear form.
|
alpar@1
|
1370 |
--
|
alpar@1
|
1371 |
-- This routine returns an exact copy of linear form. */
|
alpar@1
|
1372 |
|
alpar@1
|
1373 |
FORMULA *copy_formula
|
alpar@1
|
1374 |
( MPL *mpl,
|
alpar@1
|
1375 |
FORMULA *form /* not changed */
|
alpar@1
|
1376 |
)
|
alpar@1
|
1377 |
{ FORMULA *head, *tail;
|
alpar@1
|
1378 |
if (form == NULL)
|
alpar@1
|
1379 |
head = NULL;
|
alpar@1
|
1380 |
else
|
alpar@1
|
1381 |
{ head = tail = dmp_get_atom(mpl->formulae, sizeof(FORMULA));
|
alpar@1
|
1382 |
for (; form != NULL; form = form->next)
|
alpar@1
|
1383 |
{ tail->coef = form->coef;
|
alpar@1
|
1384 |
tail->var = form->var;
|
alpar@1
|
1385 |
if (form->next != NULL)
|
alpar@1
|
1386 |
tail = (tail->next = dmp_get_atom(mpl->formulae, sizeof(FORMULA)));
|
alpar@1
|
1387 |
}
|
alpar@1
|
1388 |
tail->next = NULL;
|
alpar@1
|
1389 |
}
|
alpar@1
|
1390 |
return head;
|
alpar@1
|
1391 |
}
|
alpar@1
|
1392 |
|
alpar@1
|
1393 |
/*----------------------------------------------------------------------
|
alpar@1
|
1394 |
-- delete_formula - delete linear form.
|
alpar@1
|
1395 |
--
|
alpar@1
|
1396 |
-- This routine deletes specified linear form. */
|
alpar@1
|
1397 |
|
alpar@1
|
1398 |
void delete_formula
|
alpar@1
|
1399 |
( MPL *mpl,
|
alpar@1
|
1400 |
FORMULA *form /* destroyed */
|
alpar@1
|
1401 |
)
|
alpar@1
|
1402 |
{ FORMULA *temp;
|
alpar@1
|
1403 |
while (form != NULL)
|
alpar@1
|
1404 |
{ temp = form;
|
alpar@1
|
1405 |
form = form->next;
|
alpar@1
|
1406 |
dmp_free_atom(mpl->formulae, temp, sizeof(FORMULA));
|
alpar@1
|
1407 |
}
|
alpar@1
|
1408 |
return;
|
alpar@1
|
1409 |
}
|
alpar@1
|
1410 |
|
alpar@1
|
1411 |
/*----------------------------------------------------------------------
|
alpar@1
|
1412 |
-- linear_comb - linear combination of two linear forms.
|
alpar@1
|
1413 |
--
|
alpar@1
|
1414 |
-- This routine computes the linear combination:
|
alpar@1
|
1415 |
--
|
alpar@1
|
1416 |
-- a * fx + b * fy,
|
alpar@1
|
1417 |
--
|
alpar@1
|
1418 |
-- where a and b are numeric coefficients, fx and fy are linear forms
|
alpar@1
|
1419 |
-- (destroyed on exit). */
|
alpar@1
|
1420 |
|
alpar@1
|
1421 |
FORMULA *linear_comb
|
alpar@1
|
1422 |
( MPL *mpl,
|
alpar@1
|
1423 |
double a, FORMULA *fx, /* destroyed */
|
alpar@1
|
1424 |
double b, FORMULA *fy /* destroyed */
|
alpar@1
|
1425 |
)
|
alpar@1
|
1426 |
{ FORMULA *form = NULL, *term, *temp;
|
alpar@1
|
1427 |
double c0 = 0.0;
|
alpar@1
|
1428 |
for (term = fx; term != NULL; term = term->next)
|
alpar@1
|
1429 |
{ if (term->var == NULL)
|
alpar@1
|
1430 |
c0 = fp_add(mpl, c0, fp_mul(mpl, a, term->coef));
|
alpar@1
|
1431 |
else
|
alpar@1
|
1432 |
term->var->temp =
|
alpar@1
|
1433 |
fp_add(mpl, term->var->temp, fp_mul(mpl, a, term->coef));
|
alpar@1
|
1434 |
}
|
alpar@1
|
1435 |
for (term = fy; term != NULL; term = term->next)
|
alpar@1
|
1436 |
{ if (term->var == NULL)
|
alpar@1
|
1437 |
c0 = fp_add(mpl, c0, fp_mul(mpl, b, term->coef));
|
alpar@1
|
1438 |
else
|
alpar@1
|
1439 |
term->var->temp =
|
alpar@1
|
1440 |
fp_add(mpl, term->var->temp, fp_mul(mpl, b, term->coef));
|
alpar@1
|
1441 |
}
|
alpar@1
|
1442 |
for (term = fx; term != NULL; term = term->next)
|
alpar@1
|
1443 |
{ if (term->var != NULL && term->var->temp != 0.0)
|
alpar@1
|
1444 |
{ temp = dmp_get_atom(mpl->formulae, sizeof(FORMULA));
|
alpar@1
|
1445 |
temp->coef = term->var->temp, temp->var = term->var;
|
alpar@1
|
1446 |
temp->next = form, form = temp;
|
alpar@1
|
1447 |
term->var->temp = 0.0;
|
alpar@1
|
1448 |
}
|
alpar@1
|
1449 |
}
|
alpar@1
|
1450 |
for (term = fy; term != NULL; term = term->next)
|
alpar@1
|
1451 |
{ if (term->var != NULL && term->var->temp != 0.0)
|
alpar@1
|
1452 |
{ temp = dmp_get_atom(mpl->formulae, sizeof(FORMULA));
|
alpar@1
|
1453 |
temp->coef = term->var->temp, temp->var = term->var;
|
alpar@1
|
1454 |
temp->next = form, form = temp;
|
alpar@1
|
1455 |
term->var->temp = 0.0;
|
alpar@1
|
1456 |
}
|
alpar@1
|
1457 |
}
|
alpar@1
|
1458 |
if (c0 != 0.0)
|
alpar@1
|
1459 |
{ temp = dmp_get_atom(mpl->formulae, sizeof(FORMULA));
|
alpar@1
|
1460 |
temp->coef = c0, temp->var = NULL;
|
alpar@1
|
1461 |
temp->next = form, form = temp;
|
alpar@1
|
1462 |
}
|
alpar@1
|
1463 |
delete_formula(mpl, fx);
|
alpar@1
|
1464 |
delete_formula(mpl, fy);
|
alpar@1
|
1465 |
return form;
|
alpar@1
|
1466 |
}
|
alpar@1
|
1467 |
|
alpar@1
|
1468 |
/*----------------------------------------------------------------------
|
alpar@1
|
1469 |
-- remove_constant - remove constant term from linear form.
|
alpar@1
|
1470 |
--
|
alpar@1
|
1471 |
-- This routine removes constant term from linear form and stores its
|
alpar@1
|
1472 |
-- value to given location. */
|
alpar@1
|
1473 |
|
alpar@1
|
1474 |
FORMULA *remove_constant
|
alpar@1
|
1475 |
( MPL *mpl,
|
alpar@1
|
1476 |
FORMULA *form, /* destroyed */
|
alpar@1
|
1477 |
double *coef /* modified */
|
alpar@1
|
1478 |
)
|
alpar@1
|
1479 |
{ FORMULA *head = NULL, *temp;
|
alpar@1
|
1480 |
*coef = 0.0;
|
alpar@1
|
1481 |
while (form != NULL)
|
alpar@1
|
1482 |
{ temp = form;
|
alpar@1
|
1483 |
form = form->next;
|
alpar@1
|
1484 |
if (temp->var == NULL)
|
alpar@1
|
1485 |
{ /* constant term */
|
alpar@1
|
1486 |
*coef = fp_add(mpl, *coef, temp->coef);
|
alpar@1
|
1487 |
dmp_free_atom(mpl->formulae, temp, sizeof(FORMULA));
|
alpar@1
|
1488 |
}
|
alpar@1
|
1489 |
else
|
alpar@1
|
1490 |
{ /* linear term */
|
alpar@1
|
1491 |
temp->next = head;
|
alpar@1
|
1492 |
head = temp;
|
alpar@1
|
1493 |
}
|
alpar@1
|
1494 |
}
|
alpar@1
|
1495 |
return head;
|
alpar@1
|
1496 |
}
|
alpar@1
|
1497 |
|
alpar@1
|
1498 |
/*----------------------------------------------------------------------
|
alpar@1
|
1499 |
-- reduce_terms - reduce identical terms in linear form.
|
alpar@1
|
1500 |
--
|
alpar@1
|
1501 |
-- This routine reduces identical terms in specified linear form. */
|
alpar@1
|
1502 |
|
alpar@1
|
1503 |
FORMULA *reduce_terms
|
alpar@1
|
1504 |
( MPL *mpl,
|
alpar@1
|
1505 |
FORMULA *form /* destroyed */
|
alpar@1
|
1506 |
)
|
alpar@1
|
1507 |
{ FORMULA *term, *next_term;
|
alpar@1
|
1508 |
double c0 = 0.0;
|
alpar@1
|
1509 |
for (term = form; term != NULL; term = term->next)
|
alpar@1
|
1510 |
{ if (term->var == NULL)
|
alpar@1
|
1511 |
c0 = fp_add(mpl, c0, term->coef);
|
alpar@1
|
1512 |
else
|
alpar@1
|
1513 |
term->var->temp = fp_add(mpl, term->var->temp, term->coef);
|
alpar@1
|
1514 |
}
|
alpar@1
|
1515 |
next_term = form, form = NULL;
|
alpar@1
|
1516 |
for (term = next_term; term != NULL; term = next_term)
|
alpar@1
|
1517 |
{ next_term = term->next;
|
alpar@1
|
1518 |
if (term->var == NULL && c0 != 0.0)
|
alpar@1
|
1519 |
{ term->coef = c0, c0 = 0.0;
|
alpar@1
|
1520 |
term->next = form, form = term;
|
alpar@1
|
1521 |
}
|
alpar@1
|
1522 |
else if (term->var != NULL && term->var->temp != 0.0)
|
alpar@1
|
1523 |
{ term->coef = term->var->temp, term->var->temp = 0.0;
|
alpar@1
|
1524 |
term->next = form, form = term;
|
alpar@1
|
1525 |
}
|
alpar@1
|
1526 |
else
|
alpar@1
|
1527 |
dmp_free_atom(mpl->formulae, term, sizeof(FORMULA));
|
alpar@1
|
1528 |
}
|
alpar@1
|
1529 |
return form;
|
alpar@1
|
1530 |
}
|
alpar@1
|
1531 |
|
alpar@1
|
1532 |
/**********************************************************************/
|
alpar@1
|
1533 |
/* * * ELEMENTAL CONSTRAINTS * * */
|
alpar@1
|
1534 |
/**********************************************************************/
|
alpar@1
|
1535 |
|
alpar@1
|
1536 |
/* (there are no specific routines for elemental constraints) */
|
alpar@1
|
1537 |
|
alpar@1
|
1538 |
/**********************************************************************/
|
alpar@1
|
1539 |
/* * * GENERIC VALUES * * */
|
alpar@1
|
1540 |
/**********************************************************************/
|
alpar@1
|
1541 |
|
alpar@1
|
1542 |
/*----------------------------------------------------------------------
|
alpar@1
|
1543 |
-- delete_value - delete generic value.
|
alpar@1
|
1544 |
--
|
alpar@1
|
1545 |
-- This routine deletes specified generic value.
|
alpar@1
|
1546 |
--
|
alpar@1
|
1547 |
-- NOTE: The generic value to be deleted must be valid. */
|
alpar@1
|
1548 |
|
alpar@1
|
1549 |
void delete_value
|
alpar@1
|
1550 |
( MPL *mpl,
|
alpar@1
|
1551 |
int type,
|
alpar@1
|
1552 |
VALUE *value /* content destroyed */
|
alpar@1
|
1553 |
)
|
alpar@1
|
1554 |
{ xassert(value != NULL);
|
alpar@1
|
1555 |
switch (type)
|
alpar@1
|
1556 |
{ case A_NONE:
|
alpar@1
|
1557 |
value->none = NULL;
|
alpar@1
|
1558 |
break;
|
alpar@1
|
1559 |
case A_NUMERIC:
|
alpar@1
|
1560 |
value->num = 0.0;
|
alpar@1
|
1561 |
break;
|
alpar@1
|
1562 |
case A_SYMBOLIC:
|
alpar@1
|
1563 |
delete_symbol(mpl, value->sym), value->sym = NULL;
|
alpar@1
|
1564 |
break;
|
alpar@1
|
1565 |
case A_LOGICAL:
|
alpar@1
|
1566 |
value->bit = 0;
|
alpar@1
|
1567 |
break;
|
alpar@1
|
1568 |
case A_TUPLE:
|
alpar@1
|
1569 |
delete_tuple(mpl, value->tuple), value->tuple = NULL;
|
alpar@1
|
1570 |
break;
|
alpar@1
|
1571 |
case A_ELEMSET:
|
alpar@1
|
1572 |
delete_elemset(mpl, value->set), value->set = NULL;
|
alpar@1
|
1573 |
break;
|
alpar@1
|
1574 |
case A_ELEMVAR:
|
alpar@1
|
1575 |
value->var = NULL;
|
alpar@1
|
1576 |
break;
|
alpar@1
|
1577 |
case A_FORMULA:
|
alpar@1
|
1578 |
delete_formula(mpl, value->form), value->form = NULL;
|
alpar@1
|
1579 |
break;
|
alpar@1
|
1580 |
case A_ELEMCON:
|
alpar@1
|
1581 |
value->con = NULL;
|
alpar@1
|
1582 |
break;
|
alpar@1
|
1583 |
default:
|
alpar@1
|
1584 |
xassert(type != type);
|
alpar@1
|
1585 |
}
|
alpar@1
|
1586 |
return;
|
alpar@1
|
1587 |
}
|
alpar@1
|
1588 |
|
alpar@1
|
1589 |
/**********************************************************************/
|
alpar@1
|
1590 |
/* * * SYMBOLICALLY INDEXED ARRAYS * * */
|
alpar@1
|
1591 |
/**********************************************************************/
|
alpar@1
|
1592 |
|
alpar@1
|
1593 |
/*----------------------------------------------------------------------
|
alpar@1
|
1594 |
-- create_array - create array.
|
alpar@1
|
1595 |
--
|
alpar@1
|
1596 |
-- This routine creates an array of specified type and dimension. Being
|
alpar@1
|
1597 |
-- created the array is initially empty.
|
alpar@1
|
1598 |
--
|
alpar@1
|
1599 |
-- The type indicator determines generic values, which can be assigned
|
alpar@1
|
1600 |
-- to the array members:
|
alpar@1
|
1601 |
--
|
alpar@1
|
1602 |
-- A_NONE - none (members have no assigned values)
|
alpar@1
|
1603 |
-- A_NUMERIC - floating-point numbers
|
alpar@1
|
1604 |
-- A_SYMBOLIC - symbols
|
alpar@1
|
1605 |
-- A_ELEMSET - elemental sets
|
alpar@1
|
1606 |
-- A_ELEMVAR - elemental variables
|
alpar@1
|
1607 |
-- A_ELEMCON - elemental constraints
|
alpar@1
|
1608 |
--
|
alpar@1
|
1609 |
-- The dimension may be 0, in which case the array consists of the only
|
alpar@1
|
1610 |
-- member (such arrays represent 0-dimensional objects). */
|
alpar@1
|
1611 |
|
alpar@1
|
1612 |
ARRAY *create_array(MPL *mpl, int type, int dim)
|
alpar@1
|
1613 |
{ ARRAY *array;
|
alpar@1
|
1614 |
xassert(type == A_NONE || type == A_NUMERIC ||
|
alpar@1
|
1615 |
type == A_SYMBOLIC || type == A_ELEMSET ||
|
alpar@1
|
1616 |
type == A_ELEMVAR || type == A_ELEMCON);
|
alpar@1
|
1617 |
xassert(dim >= 0);
|
alpar@1
|
1618 |
array = dmp_get_atom(mpl->arrays, sizeof(ARRAY));
|
alpar@1
|
1619 |
array->type = type;
|
alpar@1
|
1620 |
array->dim = dim;
|
alpar@1
|
1621 |
array->size = 0;
|
alpar@1
|
1622 |
array->head = NULL;
|
alpar@1
|
1623 |
array->tail = NULL;
|
alpar@1
|
1624 |
array->tree = NULL;
|
alpar@1
|
1625 |
array->prev = NULL;
|
alpar@1
|
1626 |
array->next = mpl->a_list;
|
alpar@1
|
1627 |
/* include the array in the global array list */
|
alpar@1
|
1628 |
if (array->next != NULL) array->next->prev = array;
|
alpar@1
|
1629 |
mpl->a_list = array;
|
alpar@1
|
1630 |
return array;
|
alpar@1
|
1631 |
}
|
alpar@1
|
1632 |
|
alpar@1
|
1633 |
/*----------------------------------------------------------------------
|
alpar@1
|
1634 |
-- find_member - find array member with given n-tuple.
|
alpar@1
|
1635 |
--
|
alpar@1
|
1636 |
-- This routine finds an array member, which has given n-tuple. If the
|
alpar@1
|
1637 |
-- array is short, the linear search is used. Otherwise the routine
|
alpar@1
|
1638 |
-- autimatically creates the search tree (i.e. the array index) to find
|
alpar@1
|
1639 |
-- members for logarithmic time. */
|
alpar@1
|
1640 |
|
alpar@1
|
1641 |
static int compare_member_tuples(void *info, const void *key1,
|
alpar@1
|
1642 |
const void *key2)
|
alpar@1
|
1643 |
{ /* this is an auxiliary routine used to compare keys, which are
|
alpar@1
|
1644 |
n-tuples assigned to array members */
|
alpar@1
|
1645 |
return compare_tuples((MPL *)info, (TUPLE *)key1, (TUPLE *)key2);
|
alpar@1
|
1646 |
}
|
alpar@1
|
1647 |
|
alpar@1
|
1648 |
MEMBER *find_member
|
alpar@1
|
1649 |
( MPL *mpl,
|
alpar@1
|
1650 |
ARRAY *array, /* not changed */
|
alpar@1
|
1651 |
TUPLE *tuple /* not changed */
|
alpar@1
|
1652 |
)
|
alpar@1
|
1653 |
{ MEMBER *memb;
|
alpar@1
|
1654 |
xassert(array != NULL);
|
alpar@1
|
1655 |
/* the n-tuple must have the same dimension as the array */
|
alpar@1
|
1656 |
xassert(tuple_dimen(mpl, tuple) == array->dim);
|
alpar@1
|
1657 |
/* if the array is large enough, create the search tree and index
|
alpar@1
|
1658 |
all existing members of the array */
|
alpar@1
|
1659 |
if (array->size > 30 && array->tree == NULL)
|
alpar@1
|
1660 |
{ array->tree = avl_create_tree(compare_member_tuples, mpl);
|
alpar@1
|
1661 |
for (memb = array->head; memb != NULL; memb = memb->next)
|
alpar@1
|
1662 |
avl_set_node_link(avl_insert_node(array->tree, memb->tuple),
|
alpar@1
|
1663 |
(void *)memb);
|
alpar@1
|
1664 |
}
|
alpar@1
|
1665 |
/* find a member, which has the given tuple */
|
alpar@1
|
1666 |
if (array->tree == NULL)
|
alpar@1
|
1667 |
{ /* the search tree doesn't exist; use the linear search */
|
alpar@1
|
1668 |
for (memb = array->head; memb != NULL; memb = memb->next)
|
alpar@1
|
1669 |
if (compare_tuples(mpl, memb->tuple, tuple) == 0) break;
|
alpar@1
|
1670 |
}
|
alpar@1
|
1671 |
else
|
alpar@1
|
1672 |
{ /* the search tree exists; use the binary search */
|
alpar@1
|
1673 |
AVLNODE *node;
|
alpar@1
|
1674 |
node = avl_find_node(array->tree, tuple);
|
alpar@1
|
1675 |
memb = (MEMBER *)(node == NULL ? NULL : avl_get_node_link(node));
|
alpar@1
|
1676 |
}
|
alpar@1
|
1677 |
return memb;
|
alpar@1
|
1678 |
}
|
alpar@1
|
1679 |
|
alpar@1
|
1680 |
/*----------------------------------------------------------------------
|
alpar@1
|
1681 |
-- add_member - add new member to array.
|
alpar@1
|
1682 |
--
|
alpar@1
|
1683 |
-- This routine creates a new member with given n-tuple and adds it to
|
alpar@1
|
1684 |
-- specified array.
|
alpar@1
|
1685 |
--
|
alpar@1
|
1686 |
-- For the sake of efficiency this routine doesn't check whether the
|
alpar@1
|
1687 |
-- array already contains a member with the given n-tuple or not. Thus,
|
alpar@1
|
1688 |
-- if necessary, the calling program should use the routine find_member
|
alpar@1
|
1689 |
-- in order to be sure that the array contains no member with the same
|
alpar@1
|
1690 |
-- n-tuple, because members with duplicate n-tuples are not allowed.
|
alpar@1
|
1691 |
--
|
alpar@1
|
1692 |
-- This routine assigns no generic value to the new member, because the
|
alpar@1
|
1693 |
-- calling program must do that. */
|
alpar@1
|
1694 |
|
alpar@1
|
1695 |
MEMBER *add_member
|
alpar@1
|
1696 |
( MPL *mpl,
|
alpar@1
|
1697 |
ARRAY *array, /* modified */
|
alpar@1
|
1698 |
TUPLE *tuple /* destroyed */
|
alpar@1
|
1699 |
)
|
alpar@1
|
1700 |
{ MEMBER *memb;
|
alpar@1
|
1701 |
xassert(array != NULL);
|
alpar@1
|
1702 |
/* the n-tuple must have the same dimension as the array */
|
alpar@1
|
1703 |
xassert(tuple_dimen(mpl, tuple) == array->dim);
|
alpar@1
|
1704 |
/* create new member */
|
alpar@1
|
1705 |
memb = dmp_get_atom(mpl->members, sizeof(MEMBER));
|
alpar@1
|
1706 |
memb->tuple = tuple;
|
alpar@1
|
1707 |
memb->next = NULL;
|
alpar@1
|
1708 |
memset(&memb->value, '?', sizeof(VALUE));
|
alpar@1
|
1709 |
/* and append it to the member list */
|
alpar@1
|
1710 |
array->size++;
|
alpar@1
|
1711 |
if (array->head == NULL)
|
alpar@1
|
1712 |
array->head = memb;
|
alpar@1
|
1713 |
else
|
alpar@1
|
1714 |
array->tail->next = memb;
|
alpar@1
|
1715 |
array->tail = memb;
|
alpar@1
|
1716 |
/* if the search tree exists, index the new member */
|
alpar@1
|
1717 |
if (array->tree != NULL)
|
alpar@1
|
1718 |
avl_set_node_link(avl_insert_node(array->tree, memb->tuple),
|
alpar@1
|
1719 |
(void *)memb);
|
alpar@1
|
1720 |
return memb;
|
alpar@1
|
1721 |
}
|
alpar@1
|
1722 |
|
alpar@1
|
1723 |
/*----------------------------------------------------------------------
|
alpar@1
|
1724 |
-- delete_array - delete array.
|
alpar@1
|
1725 |
--
|
alpar@1
|
1726 |
-- This routine deletes specified array.
|
alpar@1
|
1727 |
--
|
alpar@1
|
1728 |
-- Generic values assigned to the array members are not deleted by this
|
alpar@1
|
1729 |
-- routine. The calling program itself must delete all assigned generic
|
alpar@1
|
1730 |
-- values before deleting the array. */
|
alpar@1
|
1731 |
|
alpar@1
|
1732 |
void delete_array
|
alpar@1
|
1733 |
( MPL *mpl,
|
alpar@1
|
1734 |
ARRAY *array /* destroyed */
|
alpar@1
|
1735 |
)
|
alpar@1
|
1736 |
{ MEMBER *memb;
|
alpar@1
|
1737 |
xassert(array != NULL);
|
alpar@1
|
1738 |
/* delete all existing array members */
|
alpar@1
|
1739 |
while (array->head != NULL)
|
alpar@1
|
1740 |
{ memb = array->head;
|
alpar@1
|
1741 |
array->head = memb->next;
|
alpar@1
|
1742 |
delete_tuple(mpl, memb->tuple);
|
alpar@1
|
1743 |
dmp_free_atom(mpl->members, memb, sizeof(MEMBER));
|
alpar@1
|
1744 |
}
|
alpar@1
|
1745 |
/* if the search tree exists, also delete it */
|
alpar@1
|
1746 |
if (array->tree != NULL) avl_delete_tree(array->tree);
|
alpar@1
|
1747 |
/* remove the array from the global array list */
|
alpar@1
|
1748 |
if (array->prev == NULL)
|
alpar@1
|
1749 |
mpl->a_list = array->next;
|
alpar@1
|
1750 |
else
|
alpar@1
|
1751 |
array->prev->next = array->next;
|
alpar@1
|
1752 |
if (array->next == NULL)
|
alpar@1
|
1753 |
;
|
alpar@1
|
1754 |
else
|
alpar@1
|
1755 |
array->next->prev = array->prev;
|
alpar@1
|
1756 |
/* delete the array descriptor */
|
alpar@1
|
1757 |
dmp_free_atom(mpl->arrays, array, sizeof(ARRAY));
|
alpar@1
|
1758 |
return;
|
alpar@1
|
1759 |
}
|
alpar@1
|
1760 |
|
alpar@1
|
1761 |
/**********************************************************************/
|
alpar@1
|
1762 |
/* * * DOMAINS AND DUMMY INDICES * * */
|
alpar@1
|
1763 |
/**********************************************************************/
|
alpar@1
|
1764 |
|
alpar@1
|
1765 |
/*----------------------------------------------------------------------
|
alpar@1
|
1766 |
-- assign_dummy_index - assign new value to dummy index.
|
alpar@1
|
1767 |
--
|
alpar@1
|
1768 |
-- This routine assigns new value to specified dummy index and, that is
|
alpar@1
|
1769 |
-- important, invalidates all temporary resultant values, which depends
|
alpar@1
|
1770 |
-- on that dummy index. */
|
alpar@1
|
1771 |
|
alpar@1
|
1772 |
void assign_dummy_index
|
alpar@1
|
1773 |
( MPL *mpl,
|
alpar@1
|
1774 |
DOMAIN_SLOT *slot, /* modified */
|
alpar@1
|
1775 |
SYMBOL *value /* not changed */
|
alpar@1
|
1776 |
)
|
alpar@1
|
1777 |
{ CODE *leaf, *code;
|
alpar@1
|
1778 |
xassert(slot != NULL);
|
alpar@1
|
1779 |
xassert(value != NULL);
|
alpar@1
|
1780 |
/* delete the current value assigned to the dummy index */
|
alpar@1
|
1781 |
if (slot->value != NULL)
|
alpar@1
|
1782 |
{ /* if the current value and the new one are identical, actual
|
alpar@1
|
1783 |
assignment is not needed */
|
alpar@1
|
1784 |
if (compare_symbols(mpl, slot->value, value) == 0) goto done;
|
alpar@1
|
1785 |
/* delete a symbol, which is the current value */
|
alpar@1
|
1786 |
delete_symbol(mpl, slot->value), slot->value = NULL;
|
alpar@1
|
1787 |
}
|
alpar@1
|
1788 |
/* now walk through all the pseudo-codes with op = O_INDEX, which
|
alpar@1
|
1789 |
refer to the dummy index to be changed (these pseudo-codes are
|
alpar@1
|
1790 |
leaves in the forest of *all* expressions in the database) */
|
alpar@1
|
1791 |
for (leaf = slot->list; leaf != NULL; leaf = leaf->arg.index.
|
alpar@1
|
1792 |
next)
|
alpar@1
|
1793 |
{ xassert(leaf->op == O_INDEX);
|
alpar@1
|
1794 |
/* invalidate all resultant values, which depend on the dummy
|
alpar@1
|
1795 |
index, walking from the current leaf toward the root of the
|
alpar@1
|
1796 |
corresponding expression tree */
|
alpar@1
|
1797 |
for (code = leaf; code != NULL; code = code->up)
|
alpar@1
|
1798 |
{ if (code->valid)
|
alpar@1
|
1799 |
{ /* invalidate and delete resultant value */
|
alpar@1
|
1800 |
code->valid = 0;
|
alpar@1
|
1801 |
delete_value(mpl, code->type, &code->value);
|
alpar@1
|
1802 |
}
|
alpar@1
|
1803 |
}
|
alpar@1
|
1804 |
}
|
alpar@1
|
1805 |
/* assign new value to the dummy index */
|
alpar@1
|
1806 |
slot->value = copy_symbol(mpl, value);
|
alpar@1
|
1807 |
done: return;
|
alpar@1
|
1808 |
}
|
alpar@1
|
1809 |
|
alpar@1
|
1810 |
/*----------------------------------------------------------------------
|
alpar@1
|
1811 |
-- update_dummy_indices - update current values of dummy indices.
|
alpar@1
|
1812 |
--
|
alpar@1
|
1813 |
-- This routine assigns components of "backup" n-tuple to dummy indices
|
alpar@1
|
1814 |
-- of specified domain block. If no "backup" n-tuple is defined for the
|
alpar@1
|
1815 |
-- domain block, values of the dummy indices remain untouched. */
|
alpar@1
|
1816 |
|
alpar@1
|
1817 |
void update_dummy_indices
|
alpar@1
|
1818 |
( MPL *mpl,
|
alpar@1
|
1819 |
DOMAIN_BLOCK *block /* not changed */
|
alpar@1
|
1820 |
)
|
alpar@1
|
1821 |
{ DOMAIN_SLOT *slot;
|
alpar@1
|
1822 |
TUPLE *temp;
|
alpar@1
|
1823 |
if (block->backup != NULL)
|
alpar@1
|
1824 |
{ for (slot = block->list, temp = block->backup; slot != NULL;
|
alpar@1
|
1825 |
slot = slot->next, temp = temp->next)
|
alpar@1
|
1826 |
{ xassert(temp != NULL);
|
alpar@1
|
1827 |
xassert(temp->sym != NULL);
|
alpar@1
|
1828 |
assign_dummy_index(mpl, slot, temp->sym);
|
alpar@1
|
1829 |
}
|
alpar@1
|
1830 |
}
|
alpar@1
|
1831 |
return;
|
alpar@1
|
1832 |
}
|
alpar@1
|
1833 |
|
alpar@1
|
1834 |
/*----------------------------------------------------------------------
|
alpar@1
|
1835 |
-- enter_domain_block - enter domain block.
|
alpar@1
|
1836 |
--
|
alpar@1
|
1837 |
-- Let specified domain block have the form:
|
alpar@1
|
1838 |
--
|
alpar@1
|
1839 |
-- { ..., (j1, j2, ..., jn) in J, ... }
|
alpar@1
|
1840 |
--
|
alpar@1
|
1841 |
-- where j1, j2, ..., jn are dummy indices, J is a basic set.
|
alpar@1
|
1842 |
--
|
alpar@1
|
1843 |
-- This routine does the following:
|
alpar@1
|
1844 |
--
|
alpar@1
|
1845 |
-- 1. Checks if the given n-tuple is a member of the basic set J. Note
|
alpar@1
|
1846 |
-- that J being *out of the scope* of the domain block cannot depend
|
alpar@1
|
1847 |
-- on the dummy indices in the same and inner domain blocks, so it
|
alpar@1
|
1848 |
-- can be computed before the dummy indices are assigned new values.
|
alpar@1
|
1849 |
-- If this check fails, the routine returns with non-zero code.
|
alpar@1
|
1850 |
--
|
alpar@1
|
1851 |
-- 2. Saves current values of the dummy indices j1, j2, ..., jn.
|
alpar@1
|
1852 |
--
|
alpar@1
|
1853 |
-- 3. Assigns new values, which are components of the given n-tuple, to
|
alpar@1
|
1854 |
-- the dummy indices j1, j2, ..., jn. If dimension of the n-tuple is
|
alpar@1
|
1855 |
-- larger than n, its extra components n+1, n+2, ... are not used.
|
alpar@1
|
1856 |
--
|
alpar@1
|
1857 |
-- 4. Calls the formal routine func which either enters the next domain
|
alpar@1
|
1858 |
-- block or evaluates some code within the domain scope.
|
alpar@1
|
1859 |
--
|
alpar@1
|
1860 |
-- 5. Restores former values of the dummy indices j1, j2, ..., jn.
|
alpar@1
|
1861 |
--
|
alpar@1
|
1862 |
-- Since current values assigned to the dummy indices on entry to this
|
alpar@1
|
1863 |
-- routine are restored on exit, the formal routine func is allowed to
|
alpar@1
|
1864 |
-- call this routine recursively. */
|
alpar@1
|
1865 |
|
alpar@1
|
1866 |
int enter_domain_block
|
alpar@1
|
1867 |
( MPL *mpl,
|
alpar@1
|
1868 |
DOMAIN_BLOCK *block, /* not changed */
|
alpar@1
|
1869 |
TUPLE *tuple, /* not changed */
|
alpar@1
|
1870 |
void *info, void (*func)(MPL *mpl, void *info)
|
alpar@1
|
1871 |
)
|
alpar@1
|
1872 |
{ TUPLE *backup;
|
alpar@1
|
1873 |
int ret = 0;
|
alpar@1
|
1874 |
/* check if the given n-tuple is a member of the basic set */
|
alpar@1
|
1875 |
xassert(block->code != NULL);
|
alpar@1
|
1876 |
if (!is_member(mpl, block->code, tuple))
|
alpar@1
|
1877 |
{ ret = 1;
|
alpar@1
|
1878 |
goto done;
|
alpar@1
|
1879 |
}
|
alpar@1
|
1880 |
/* save reference to "backup" n-tuple, which was used to assign
|
alpar@1
|
1881 |
current values of the dummy indices (it is sufficient to save
|
alpar@1
|
1882 |
reference, not value, because that n-tuple is defined in some
|
alpar@1
|
1883 |
outer level of recursion and therefore cannot be changed on
|
alpar@1
|
1884 |
this and deeper recursive calls) */
|
alpar@1
|
1885 |
backup = block->backup;
|
alpar@1
|
1886 |
/* set up new "backup" n-tuple, which defines new values of the
|
alpar@1
|
1887 |
dummy indices */
|
alpar@1
|
1888 |
block->backup = tuple;
|
alpar@1
|
1889 |
/* assign new values to the dummy indices */
|
alpar@1
|
1890 |
update_dummy_indices(mpl, block);
|
alpar@1
|
1891 |
/* call the formal routine that does the rest part of the job */
|
alpar@1
|
1892 |
func(mpl, info);
|
alpar@1
|
1893 |
/* restore reference to the former "backup" n-tuple */
|
alpar@1
|
1894 |
block->backup = backup;
|
alpar@1
|
1895 |
/* restore former values of the dummy indices; note that if the
|
alpar@1
|
1896 |
domain block just escaped has no other active instances which
|
alpar@1
|
1897 |
may exist due to recursion (it is indicated by a null pointer
|
alpar@1
|
1898 |
to the former n-tuple), former values of the dummy indices are
|
alpar@1
|
1899 |
undefined; therefore in this case the routine keeps currently
|
alpar@1
|
1900 |
assigned values of the dummy indices that involves keeping all
|
alpar@1
|
1901 |
dependent temporary results and thereby, if this domain block
|
alpar@1
|
1902 |
is not used recursively, allows improving efficiency */
|
alpar@1
|
1903 |
update_dummy_indices(mpl, block);
|
alpar@1
|
1904 |
done: return ret;
|
alpar@1
|
1905 |
}
|
alpar@1
|
1906 |
|
alpar@1
|
1907 |
/*----------------------------------------------------------------------
|
alpar@1
|
1908 |
-- eval_within_domain - perform evaluation within domain scope.
|
alpar@1
|
1909 |
--
|
alpar@1
|
1910 |
-- This routine assigns new values (symbols) to all dummy indices of
|
alpar@1
|
1911 |
-- specified domain and calls the formal routine func, which is used to
|
alpar@1
|
1912 |
-- evaluate some code in the domain scope. Each free dummy index in the
|
alpar@1
|
1913 |
-- domain is assigned a value specified in the corresponding component
|
alpar@1
|
1914 |
-- of given n-tuple. Non-free dummy indices are assigned values, which
|
alpar@1
|
1915 |
-- are computed by this routine.
|
alpar@1
|
1916 |
--
|
alpar@1
|
1917 |
-- Number of components in the given n-tuple must be the same as number
|
alpar@1
|
1918 |
-- of free indices in the domain.
|
alpar@1
|
1919 |
--
|
alpar@1
|
1920 |
-- If the given n-tuple is not a member of the domain set, the routine
|
alpar@1
|
1921 |
-- func is not called, and non-zero code is returned.
|
alpar@1
|
1922 |
--
|
alpar@1
|
1923 |
-- For the sake of convenience it is allowed to specify domain as NULL
|
alpar@1
|
1924 |
-- (then n-tuple also must be 0-tuple, i.e. empty), in which case this
|
alpar@1
|
1925 |
-- routine just calls the routine func and returns zero.
|
alpar@1
|
1926 |
--
|
alpar@1
|
1927 |
-- This routine allows recursive calls from the routine func providing
|
alpar@1
|
1928 |
-- correct values of dummy indices for each instance.
|
alpar@1
|
1929 |
--
|
alpar@1
|
1930 |
-- NOTE: The n-tuple passed to this routine must not be changed by any
|
alpar@1
|
1931 |
-- other routines called from the formal routine func until this
|
alpar@1
|
1932 |
-- routine has returned. */
|
alpar@1
|
1933 |
|
alpar@1
|
1934 |
struct eval_domain_info
|
alpar@1
|
1935 |
{ /* working info used by the routine eval_within_domain */
|
alpar@1
|
1936 |
DOMAIN *domain;
|
alpar@1
|
1937 |
/* domain, which has to be entered */
|
alpar@1
|
1938 |
DOMAIN_BLOCK *block;
|
alpar@1
|
1939 |
/* domain block, which is currently processed */
|
alpar@1
|
1940 |
TUPLE *tuple;
|
alpar@1
|
1941 |
/* tail of original n-tuple, whose components have to be assigned
|
alpar@1
|
1942 |
to free dummy indices in the current domain block */
|
alpar@1
|
1943 |
void *info;
|
alpar@1
|
1944 |
/* transit pointer passed to the formal routine func */
|
alpar@1
|
1945 |
void (*func)(MPL *mpl, void *info);
|
alpar@1
|
1946 |
/* routine, which has to be executed in the domain scope */
|
alpar@1
|
1947 |
int failure;
|
alpar@1
|
1948 |
/* this flag indicates that given n-tuple is not a member of the
|
alpar@1
|
1949 |
domain set */
|
alpar@1
|
1950 |
};
|
alpar@1
|
1951 |
|
alpar@1
|
1952 |
static void eval_domain_func(MPL *mpl, void *_my_info)
|
alpar@1
|
1953 |
{ /* this routine recursively enters into the domain scope and then
|
alpar@1
|
1954 |
calls the routine func */
|
alpar@1
|
1955 |
struct eval_domain_info *my_info = _my_info;
|
alpar@1
|
1956 |
if (my_info->block != NULL)
|
alpar@1
|
1957 |
{ /* the current domain block to be entered exists */
|
alpar@1
|
1958 |
DOMAIN_BLOCK *block;
|
alpar@1
|
1959 |
DOMAIN_SLOT *slot;
|
alpar@1
|
1960 |
TUPLE *tuple = NULL, *temp = NULL;
|
alpar@1
|
1961 |
/* save pointer to the current domain block */
|
alpar@1
|
1962 |
block = my_info->block;
|
alpar@1
|
1963 |
/* and get ready to enter the next block (if it exists) */
|
alpar@1
|
1964 |
my_info->block = block->next;
|
alpar@1
|
1965 |
/* construct temporary n-tuple, whose components correspond to
|
alpar@1
|
1966 |
dummy indices (slots) of the current domain; components of
|
alpar@1
|
1967 |
the temporary n-tuple that correspond to free dummy indices
|
alpar@1
|
1968 |
are assigned references (not values!) to symbols specified
|
alpar@1
|
1969 |
in the corresponding components of the given n-tuple, while
|
alpar@1
|
1970 |
other components that correspond to non-free dummy indices
|
alpar@1
|
1971 |
are assigned symbolic values computed here */
|
alpar@1
|
1972 |
for (slot = block->list; slot != NULL; slot = slot->next)
|
alpar@1
|
1973 |
{ /* create component that corresponds to the current slot */
|
alpar@1
|
1974 |
if (tuple == NULL)
|
alpar@1
|
1975 |
tuple = temp = dmp_get_atom(mpl->tuples, sizeof(TUPLE));
|
alpar@1
|
1976 |
else
|
alpar@1
|
1977 |
temp = (temp->next = dmp_get_atom(mpl->tuples, sizeof(TUPLE)));
|
alpar@1
|
1978 |
if (slot->code == NULL)
|
alpar@1
|
1979 |
{ /* dummy index is free; take reference to symbol, which
|
alpar@1
|
1980 |
is specified in the corresponding component of given
|
alpar@1
|
1981 |
n-tuple */
|
alpar@1
|
1982 |
xassert(my_info->tuple != NULL);
|
alpar@1
|
1983 |
temp->sym = my_info->tuple->sym;
|
alpar@1
|
1984 |
xassert(temp->sym != NULL);
|
alpar@1
|
1985 |
my_info->tuple = my_info->tuple->next;
|
alpar@1
|
1986 |
}
|
alpar@1
|
1987 |
else
|
alpar@1
|
1988 |
{ /* dummy index is non-free; compute symbolic value to be
|
alpar@1
|
1989 |
temporarily assigned to the dummy index */
|
alpar@1
|
1990 |
temp->sym = eval_symbolic(mpl, slot->code);
|
alpar@1
|
1991 |
}
|
alpar@1
|
1992 |
}
|
alpar@1
|
1993 |
temp->next = NULL;
|
alpar@1
|
1994 |
/* enter the current domain block */
|
alpar@1
|
1995 |
if (enter_domain_block(mpl, block, tuple, my_info,
|
alpar@1
|
1996 |
eval_domain_func)) my_info->failure = 1;
|
alpar@1
|
1997 |
/* delete temporary n-tuple as well as symbols that correspond
|
alpar@1
|
1998 |
to non-free dummy indices (they were computed here) */
|
alpar@1
|
1999 |
for (slot = block->list; slot != NULL; slot = slot->next)
|
alpar@1
|
2000 |
{ xassert(tuple != NULL);
|
alpar@1
|
2001 |
temp = tuple;
|
alpar@1
|
2002 |
tuple = tuple->next;
|
alpar@1
|
2003 |
if (slot->code != NULL)
|
alpar@1
|
2004 |
{ /* dummy index is non-free; delete symbolic value */
|
alpar@1
|
2005 |
delete_symbol(mpl, temp->sym);
|
alpar@1
|
2006 |
}
|
alpar@1
|
2007 |
/* delete component that corresponds to the current slot */
|
alpar@1
|
2008 |
dmp_free_atom(mpl->tuples, temp, sizeof(TUPLE));
|
alpar@1
|
2009 |
}
|
alpar@1
|
2010 |
}
|
alpar@1
|
2011 |
else
|
alpar@1
|
2012 |
{ /* there are no more domain blocks, i.e. we have reached the
|
alpar@1
|
2013 |
domain scope */
|
alpar@1
|
2014 |
xassert(my_info->tuple == NULL);
|
alpar@1
|
2015 |
/* check optional predicate specified for the domain */
|
alpar@1
|
2016 |
if (my_info->domain->code != NULL && !eval_logical(mpl,
|
alpar@1
|
2017 |
my_info->domain->code))
|
alpar@1
|
2018 |
{ /* the predicate is false */
|
alpar@1
|
2019 |
my_info->failure = 2;
|
alpar@1
|
2020 |
}
|
alpar@1
|
2021 |
else
|
alpar@1
|
2022 |
{ /* the predicate is true; do the job */
|
alpar@1
|
2023 |
my_info->func(mpl, my_info->info);
|
alpar@1
|
2024 |
}
|
alpar@1
|
2025 |
}
|
alpar@1
|
2026 |
return;
|
alpar@1
|
2027 |
}
|
alpar@1
|
2028 |
|
alpar@1
|
2029 |
int eval_within_domain
|
alpar@1
|
2030 |
( MPL *mpl,
|
alpar@1
|
2031 |
DOMAIN *domain, /* not changed */
|
alpar@1
|
2032 |
TUPLE *tuple, /* not changed */
|
alpar@1
|
2033 |
void *info, void (*func)(MPL *mpl, void *info)
|
alpar@1
|
2034 |
)
|
alpar@1
|
2035 |
{ /* this routine performs evaluation within domain scope */
|
alpar@1
|
2036 |
struct eval_domain_info _my_info, *my_info = &_my_info;
|
alpar@1
|
2037 |
if (domain == NULL)
|
alpar@1
|
2038 |
{ xassert(tuple == NULL);
|
alpar@1
|
2039 |
func(mpl, info);
|
alpar@1
|
2040 |
my_info->failure = 0;
|
alpar@1
|
2041 |
}
|
alpar@1
|
2042 |
else
|
alpar@1
|
2043 |
{ xassert(tuple != NULL);
|
alpar@1
|
2044 |
my_info->domain = domain;
|
alpar@1
|
2045 |
my_info->block = domain->list;
|
alpar@1
|
2046 |
my_info->tuple = tuple;
|
alpar@1
|
2047 |
my_info->info = info;
|
alpar@1
|
2048 |
my_info->func = func;
|
alpar@1
|
2049 |
my_info->failure = 0;
|
alpar@1
|
2050 |
/* enter the very first domain block */
|
alpar@1
|
2051 |
eval_domain_func(mpl, my_info);
|
alpar@1
|
2052 |
}
|
alpar@1
|
2053 |
return my_info->failure;
|
alpar@1
|
2054 |
}
|
alpar@1
|
2055 |
|
alpar@1
|
2056 |
/*----------------------------------------------------------------------
|
alpar@1
|
2057 |
-- loop_within_domain - perform iterations within domain scope.
|
alpar@1
|
2058 |
--
|
alpar@1
|
2059 |
-- This routine iteratively assigns new values (symbols) to the dummy
|
alpar@1
|
2060 |
-- indices of specified domain by enumerating all n-tuples, which are
|
alpar@1
|
2061 |
-- members of the domain set, and for every n-tuple it calls the formal
|
alpar@1
|
2062 |
-- routine func to evaluate some code within the domain scope.
|
alpar@1
|
2063 |
--
|
alpar@1
|
2064 |
-- If the routine func returns non-zero, enumeration within the domain
|
alpar@1
|
2065 |
-- is prematurely terminated.
|
alpar@1
|
2066 |
--
|
alpar@1
|
2067 |
-- For the sake of convenience it is allowed to specify domain as NULL,
|
alpar@1
|
2068 |
-- in which case this routine just calls the routine func only once and
|
alpar@1
|
2069 |
-- returns zero.
|
alpar@1
|
2070 |
--
|
alpar@1
|
2071 |
-- This routine allows recursive calls from the routine func providing
|
alpar@1
|
2072 |
-- correct values of dummy indices for each instance. */
|
alpar@1
|
2073 |
|
alpar@1
|
2074 |
struct loop_domain_info
|
alpar@1
|
2075 |
{ /* working info used by the routine loop_within_domain */
|
alpar@1
|
2076 |
DOMAIN *domain;
|
alpar@1
|
2077 |
/* domain, which has to be entered */
|
alpar@1
|
2078 |
DOMAIN_BLOCK *block;
|
alpar@1
|
2079 |
/* domain block, which is currently processed */
|
alpar@1
|
2080 |
int looping;
|
alpar@1
|
2081 |
/* clearing this flag leads to terminating enumeration */
|
alpar@1
|
2082 |
void *info;
|
alpar@1
|
2083 |
/* transit pointer passed to the formal routine func */
|
alpar@1
|
2084 |
int (*func)(MPL *mpl, void *info);
|
alpar@1
|
2085 |
/* routine, which needs to be executed in the domain scope */
|
alpar@1
|
2086 |
};
|
alpar@1
|
2087 |
|
alpar@1
|
2088 |
static void loop_domain_func(MPL *mpl, void *_my_info)
|
alpar@1
|
2089 |
{ /* this routine enumerates all n-tuples in the basic set of the
|
alpar@1
|
2090 |
current domain block, enters recursively into the domain scope
|
alpar@1
|
2091 |
for every n-tuple, and then calls the routine func */
|
alpar@1
|
2092 |
struct loop_domain_info *my_info = _my_info;
|
alpar@1
|
2093 |
if (my_info->block != NULL)
|
alpar@1
|
2094 |
{ /* the current domain block to be entered exists */
|
alpar@1
|
2095 |
DOMAIN_BLOCK *block;
|
alpar@1
|
2096 |
DOMAIN_SLOT *slot;
|
alpar@1
|
2097 |
TUPLE *bound;
|
alpar@1
|
2098 |
/* save pointer to the current domain block */
|
alpar@1
|
2099 |
block = my_info->block;
|
alpar@1
|
2100 |
/* and get ready to enter the next block (if it exists) */
|
alpar@1
|
2101 |
my_info->block = block->next;
|
alpar@1
|
2102 |
/* compute symbolic values, at which non-free dummy indices of
|
alpar@1
|
2103 |
the current domain block are bound; since that values don't
|
alpar@1
|
2104 |
depend on free dummy indices of the current block, they can
|
alpar@1
|
2105 |
be computed once out of the enumeration loop */
|
alpar@1
|
2106 |
bound = create_tuple(mpl);
|
alpar@1
|
2107 |
for (slot = block->list; slot != NULL; slot = slot->next)
|
alpar@1
|
2108 |
{ if (slot->code != NULL)
|
alpar@1
|
2109 |
bound = expand_tuple(mpl, bound, eval_symbolic(mpl,
|
alpar@1
|
2110 |
slot->code));
|
alpar@1
|
2111 |
}
|
alpar@1
|
2112 |
/* start enumeration */
|
alpar@1
|
2113 |
xassert(block->code != NULL);
|
alpar@1
|
2114 |
if (block->code->op == O_DOTS)
|
alpar@1
|
2115 |
{ /* the basic set is "arithmetic", in which case it doesn't
|
alpar@1
|
2116 |
need to be computed explicitly */
|
alpar@1
|
2117 |
TUPLE *tuple;
|
alpar@1
|
2118 |
int n, j;
|
alpar@1
|
2119 |
double t0, tf, dt;
|
alpar@1
|
2120 |
/* compute "parameters" of the basic set */
|
alpar@1
|
2121 |
t0 = eval_numeric(mpl, block->code->arg.arg.x);
|
alpar@1
|
2122 |
tf = eval_numeric(mpl, block->code->arg.arg.y);
|
alpar@1
|
2123 |
if (block->code->arg.arg.z == NULL)
|
alpar@1
|
2124 |
dt = 1.0;
|
alpar@1
|
2125 |
else
|
alpar@1
|
2126 |
dt = eval_numeric(mpl, block->code->arg.arg.z);
|
alpar@1
|
2127 |
/* determine cardinality of the basic set */
|
alpar@1
|
2128 |
n = arelset_size(mpl, t0, tf, dt);
|
alpar@1
|
2129 |
/* create dummy 1-tuple for members of the basic set */
|
alpar@1
|
2130 |
tuple = expand_tuple(mpl, create_tuple(mpl),
|
alpar@1
|
2131 |
create_symbol_num(mpl, 0.0));
|
alpar@1
|
2132 |
/* in case of "arithmetic" set there is exactly one dummy
|
alpar@1
|
2133 |
index, which cannot be non-free */
|
alpar@1
|
2134 |
xassert(bound == NULL);
|
alpar@1
|
2135 |
/* walk through 1-tuples of the basic set */
|
alpar@1
|
2136 |
for (j = 1; j <= n && my_info->looping; j++)
|
alpar@1
|
2137 |
{ /* construct dummy 1-tuple for the current member */
|
alpar@1
|
2138 |
tuple->sym->num = arelset_member(mpl, t0, tf, dt, j);
|
alpar@1
|
2139 |
/* enter the current domain block */
|
alpar@1
|
2140 |
enter_domain_block(mpl, block, tuple, my_info,
|
alpar@1
|
2141 |
loop_domain_func);
|
alpar@1
|
2142 |
}
|
alpar@1
|
2143 |
/* delete dummy 1-tuple */
|
alpar@1
|
2144 |
delete_tuple(mpl, tuple);
|
alpar@1
|
2145 |
}
|
alpar@1
|
2146 |
else
|
alpar@1
|
2147 |
{ /* the basic set is of general kind, in which case it needs
|
alpar@1
|
2148 |
to be explicitly computed */
|
alpar@1
|
2149 |
ELEMSET *set;
|
alpar@1
|
2150 |
MEMBER *memb;
|
alpar@1
|
2151 |
TUPLE *temp1, *temp2;
|
alpar@1
|
2152 |
/* compute the basic set */
|
alpar@1
|
2153 |
set = eval_elemset(mpl, block->code);
|
alpar@1
|
2154 |
/* walk through all n-tuples of the basic set */
|
alpar@1
|
2155 |
for (memb = set->head; memb != NULL && my_info->looping;
|
alpar@1
|
2156 |
memb = memb->next)
|
alpar@1
|
2157 |
{ /* all components of the current n-tuple that correspond
|
alpar@1
|
2158 |
to non-free dummy indices must be feasible; otherwise
|
alpar@1
|
2159 |
the n-tuple is not in the basic set */
|
alpar@1
|
2160 |
temp1 = memb->tuple;
|
alpar@1
|
2161 |
temp2 = bound;
|
alpar@1
|
2162 |
for (slot = block->list; slot != NULL; slot = slot->next)
|
alpar@1
|
2163 |
{ xassert(temp1 != NULL);
|
alpar@1
|
2164 |
if (slot->code != NULL)
|
alpar@1
|
2165 |
{ /* non-free dummy index */
|
alpar@1
|
2166 |
xassert(temp2 != NULL);
|
alpar@1
|
2167 |
if (compare_symbols(mpl, temp1->sym, temp2->sym)
|
alpar@1
|
2168 |
!= 0)
|
alpar@1
|
2169 |
{ /* the n-tuple is not in the basic set */
|
alpar@1
|
2170 |
goto skip;
|
alpar@1
|
2171 |
}
|
alpar@1
|
2172 |
temp2 = temp2->next;
|
alpar@1
|
2173 |
}
|
alpar@1
|
2174 |
temp1 = temp1->next;
|
alpar@1
|
2175 |
}
|
alpar@1
|
2176 |
xassert(temp1 == NULL);
|
alpar@1
|
2177 |
xassert(temp2 == NULL);
|
alpar@1
|
2178 |
/* enter the current domain block */
|
alpar@1
|
2179 |
enter_domain_block(mpl, block, memb->tuple, my_info,
|
alpar@1
|
2180 |
loop_domain_func);
|
alpar@1
|
2181 |
skip: ;
|
alpar@1
|
2182 |
}
|
alpar@1
|
2183 |
/* delete the basic set */
|
alpar@1
|
2184 |
delete_elemset(mpl, set);
|
alpar@1
|
2185 |
}
|
alpar@1
|
2186 |
/* delete symbolic values binding non-free dummy indices */
|
alpar@1
|
2187 |
delete_tuple(mpl, bound);
|
alpar@1
|
2188 |
/* restore pointer to the current domain block */
|
alpar@1
|
2189 |
my_info->block = block;
|
alpar@1
|
2190 |
}
|
alpar@1
|
2191 |
else
|
alpar@1
|
2192 |
{ /* there are no more domain blocks, i.e. we have reached the
|
alpar@1
|
2193 |
domain scope */
|
alpar@1
|
2194 |
/* check optional predicate specified for the domain */
|
alpar@1
|
2195 |
if (my_info->domain->code != NULL && !eval_logical(mpl,
|
alpar@1
|
2196 |
my_info->domain->code))
|
alpar@1
|
2197 |
{ /* the predicate is false */
|
alpar@1
|
2198 |
/* nop */;
|
alpar@1
|
2199 |
}
|
alpar@1
|
2200 |
else
|
alpar@1
|
2201 |
{ /* the predicate is true; do the job */
|
alpar@1
|
2202 |
my_info->looping = !my_info->func(mpl, my_info->info);
|
alpar@1
|
2203 |
}
|
alpar@1
|
2204 |
}
|
alpar@1
|
2205 |
return;
|
alpar@1
|
2206 |
}
|
alpar@1
|
2207 |
|
alpar@1
|
2208 |
void loop_within_domain
|
alpar@1
|
2209 |
( MPL *mpl,
|
alpar@1
|
2210 |
DOMAIN *domain, /* not changed */
|
alpar@1
|
2211 |
void *info, int (*func)(MPL *mpl, void *info)
|
alpar@1
|
2212 |
)
|
alpar@1
|
2213 |
{ /* this routine performs iterations within domain scope */
|
alpar@1
|
2214 |
struct loop_domain_info _my_info, *my_info = &_my_info;
|
alpar@1
|
2215 |
if (domain == NULL)
|
alpar@1
|
2216 |
func(mpl, info);
|
alpar@1
|
2217 |
else
|
alpar@1
|
2218 |
{ my_info->domain = domain;
|
alpar@1
|
2219 |
my_info->block = domain->list;
|
alpar@1
|
2220 |
my_info->looping = 1;
|
alpar@1
|
2221 |
my_info->info = info;
|
alpar@1
|
2222 |
my_info->func = func;
|
alpar@1
|
2223 |
/* enter the very first domain block */
|
alpar@1
|
2224 |
loop_domain_func(mpl, my_info);
|
alpar@1
|
2225 |
}
|
alpar@1
|
2226 |
return;
|
alpar@1
|
2227 |
}
|
alpar@1
|
2228 |
|
alpar@1
|
2229 |
/*----------------------------------------------------------------------
|
alpar@1
|
2230 |
-- out_of_domain - raise domain exception.
|
alpar@1
|
2231 |
--
|
alpar@1
|
2232 |
-- This routine is called when a reference is made to a member of some
|
alpar@1
|
2233 |
-- model object, but its n-tuple is out of the object domain. */
|
alpar@1
|
2234 |
|
alpar@1
|
2235 |
void out_of_domain
|
alpar@1
|
2236 |
( MPL *mpl,
|
alpar@1
|
2237 |
char *name, /* not changed */
|
alpar@1
|
2238 |
TUPLE *tuple /* not changed */
|
alpar@1
|
2239 |
)
|
alpar@1
|
2240 |
{ xassert(name != NULL);
|
alpar@1
|
2241 |
xassert(tuple != NULL);
|
alpar@1
|
2242 |
error(mpl, "%s%s out of domain", name, format_tuple(mpl, '[',
|
alpar@1
|
2243 |
tuple));
|
alpar@1
|
2244 |
/* no return */
|
alpar@1
|
2245 |
}
|
alpar@1
|
2246 |
|
alpar@1
|
2247 |
/*----------------------------------------------------------------------
|
alpar@1
|
2248 |
-- get_domain_tuple - obtain current n-tuple from domain.
|
alpar@1
|
2249 |
--
|
alpar@1
|
2250 |
-- This routine constructs n-tuple, whose components are current values
|
alpar@1
|
2251 |
-- assigned to *free* dummy indices of specified domain.
|
alpar@1
|
2252 |
--
|
alpar@1
|
2253 |
-- For the sake of convenience it is allowed to specify domain as NULL,
|
alpar@1
|
2254 |
-- in which case this routine returns 0-tuple.
|
alpar@1
|
2255 |
--
|
alpar@1
|
2256 |
-- NOTE: This routine must not be called out of domain scope. */
|
alpar@1
|
2257 |
|
alpar@1
|
2258 |
TUPLE *get_domain_tuple
|
alpar@1
|
2259 |
( MPL *mpl,
|
alpar@1
|
2260 |
DOMAIN *domain /* not changed */
|
alpar@1
|
2261 |
)
|
alpar@1
|
2262 |
{ DOMAIN_BLOCK *block;
|
alpar@1
|
2263 |
DOMAIN_SLOT *slot;
|
alpar@1
|
2264 |
TUPLE *tuple;
|
alpar@1
|
2265 |
tuple = create_tuple(mpl);
|
alpar@1
|
2266 |
if (domain != NULL)
|
alpar@1
|
2267 |
{ for (block = domain->list; block != NULL; block = block->next)
|
alpar@1
|
2268 |
{ for (slot = block->list; slot != NULL; slot = slot->next)
|
alpar@1
|
2269 |
{ if (slot->code == NULL)
|
alpar@1
|
2270 |
{ xassert(slot->value != NULL);
|
alpar@1
|
2271 |
tuple = expand_tuple(mpl, tuple, copy_symbol(mpl,
|
alpar@1
|
2272 |
slot->value));
|
alpar@1
|
2273 |
}
|
alpar@1
|
2274 |
}
|
alpar@1
|
2275 |
}
|
alpar@1
|
2276 |
}
|
alpar@1
|
2277 |
return tuple;
|
alpar@1
|
2278 |
}
|
alpar@1
|
2279 |
|
alpar@1
|
2280 |
/*----------------------------------------------------------------------
|
alpar@1
|
2281 |
-- clean_domain - clean domain.
|
alpar@1
|
2282 |
--
|
alpar@1
|
2283 |
-- This routine cleans specified domain that assumes deleting all stuff
|
alpar@1
|
2284 |
-- dynamically allocated during the generation phase. */
|
alpar@1
|
2285 |
|
alpar@1
|
2286 |
void clean_domain(MPL *mpl, DOMAIN *domain)
|
alpar@1
|
2287 |
{ DOMAIN_BLOCK *block;
|
alpar@1
|
2288 |
DOMAIN_SLOT *slot;
|
alpar@1
|
2289 |
/* if no domain is specified, do nothing */
|
alpar@1
|
2290 |
if (domain == NULL) goto done;
|
alpar@1
|
2291 |
/* clean all domain blocks */
|
alpar@1
|
2292 |
for (block = domain->list; block != NULL; block = block->next)
|
alpar@1
|
2293 |
{ /* clean all domain slots */
|
alpar@1
|
2294 |
for (slot = block->list; slot != NULL; slot = slot->next)
|
alpar@1
|
2295 |
{ /* clean pseudo-code for computing bound value */
|
alpar@1
|
2296 |
clean_code(mpl, slot->code);
|
alpar@1
|
2297 |
/* delete symbolic value assigned to dummy index */
|
alpar@1
|
2298 |
if (slot->value != NULL)
|
alpar@1
|
2299 |
delete_symbol(mpl, slot->value), slot->value = NULL;
|
alpar@1
|
2300 |
}
|
alpar@1
|
2301 |
/* clean pseudo-code for computing basic set */
|
alpar@1
|
2302 |
clean_code(mpl, block->code);
|
alpar@1
|
2303 |
}
|
alpar@1
|
2304 |
/* clean pseudo-code for computing domain predicate */
|
alpar@1
|
2305 |
clean_code(mpl, domain->code);
|
alpar@1
|
2306 |
done: return;
|
alpar@1
|
2307 |
}
|
alpar@1
|
2308 |
|
alpar@1
|
2309 |
/**********************************************************************/
|
alpar@1
|
2310 |
/* * * MODEL SETS * * */
|
alpar@1
|
2311 |
/**********************************************************************/
|
alpar@1
|
2312 |
|
alpar@1
|
2313 |
/*----------------------------------------------------------------------
|
alpar@1
|
2314 |
-- check_elem_set - check elemental set assigned to set member.
|
alpar@1
|
2315 |
--
|
alpar@1
|
2316 |
-- This routine checks if given elemental set being assigned to member
|
alpar@1
|
2317 |
-- of specified model set satisfies to all restrictions.
|
alpar@1
|
2318 |
--
|
alpar@1
|
2319 |
-- NOTE: This routine must not be called out of domain scope. */
|
alpar@1
|
2320 |
|
alpar@1
|
2321 |
void check_elem_set
|
alpar@1
|
2322 |
( MPL *mpl,
|
alpar@1
|
2323 |
SET *set, /* not changed */
|
alpar@1
|
2324 |
TUPLE *tuple, /* not changed */
|
alpar@1
|
2325 |
ELEMSET *refer /* not changed */
|
alpar@1
|
2326 |
)
|
alpar@1
|
2327 |
{ WITHIN *within;
|
alpar@1
|
2328 |
MEMBER *memb;
|
alpar@1
|
2329 |
int eqno;
|
alpar@1
|
2330 |
/* elemental set must be within all specified supersets */
|
alpar@1
|
2331 |
for (within = set->within, eqno = 1; within != NULL; within =
|
alpar@1
|
2332 |
within->next, eqno++)
|
alpar@1
|
2333 |
{ xassert(within->code != NULL);
|
alpar@1
|
2334 |
for (memb = refer->head; memb != NULL; memb = memb->next)
|
alpar@1
|
2335 |
{ if (!is_member(mpl, within->code, memb->tuple))
|
alpar@1
|
2336 |
{ char buf[255+1];
|
alpar@1
|
2337 |
strcpy(buf, format_tuple(mpl, '(', memb->tuple));
|
alpar@1
|
2338 |
xassert(strlen(buf) < sizeof(buf));
|
alpar@1
|
2339 |
error(mpl, "%s%s contains %s which not within specified "
|
alpar@1
|
2340 |
"set; see (%d)", set->name, format_tuple(mpl, '[',
|
alpar@1
|
2341 |
tuple), buf, eqno);
|
alpar@1
|
2342 |
}
|
alpar@1
|
2343 |
}
|
alpar@1
|
2344 |
}
|
alpar@1
|
2345 |
return;
|
alpar@1
|
2346 |
}
|
alpar@1
|
2347 |
|
alpar@1
|
2348 |
/*----------------------------------------------------------------------
|
alpar@1
|
2349 |
-- take_member_set - obtain elemental set assigned to set member.
|
alpar@1
|
2350 |
--
|
alpar@1
|
2351 |
-- This routine obtains a reference to elemental set assigned to given
|
alpar@1
|
2352 |
-- member of specified model set and returns it on exit.
|
alpar@1
|
2353 |
--
|
alpar@1
|
2354 |
-- NOTE: This routine must not be called out of domain scope. */
|
alpar@1
|
2355 |
|
alpar@1
|
2356 |
ELEMSET *take_member_set /* returns reference, not value */
|
alpar@1
|
2357 |
( MPL *mpl,
|
alpar@1
|
2358 |
SET *set, /* not changed */
|
alpar@1
|
2359 |
TUPLE *tuple /* not changed */
|
alpar@1
|
2360 |
)
|
alpar@1
|
2361 |
{ MEMBER *memb;
|
alpar@1
|
2362 |
ELEMSET *refer;
|
alpar@1
|
2363 |
/* find member in the set array */
|
alpar@1
|
2364 |
memb = find_member(mpl, set->array, tuple);
|
alpar@1
|
2365 |
if (memb != NULL)
|
alpar@1
|
2366 |
{ /* member exists, so just take the reference */
|
alpar@1
|
2367 |
refer = memb->value.set;
|
alpar@1
|
2368 |
}
|
alpar@1
|
2369 |
else if (set->assign != NULL)
|
alpar@1
|
2370 |
{ /* compute value using assignment expression */
|
alpar@1
|
2371 |
refer = eval_elemset(mpl, set->assign);
|
alpar@1
|
2372 |
add: /* check that the elemental set satisfies to all restrictions,
|
alpar@1
|
2373 |
assign it to new member, and add the member to the array */
|
alpar@1
|
2374 |
check_elem_set(mpl, set, tuple, refer);
|
alpar@1
|
2375 |
memb = add_member(mpl, set->array, copy_tuple(mpl, tuple));
|
alpar@1
|
2376 |
memb->value.set = refer;
|
alpar@1
|
2377 |
}
|
alpar@1
|
2378 |
else if (set->option != NULL)
|
alpar@1
|
2379 |
{ /* compute default elemental set */
|
alpar@1
|
2380 |
refer = eval_elemset(mpl, set->option);
|
alpar@1
|
2381 |
goto add;
|
alpar@1
|
2382 |
}
|
alpar@1
|
2383 |
else
|
alpar@1
|
2384 |
{ /* no value (elemental set) is provided */
|
alpar@1
|
2385 |
error(mpl, "no value for %s%s", set->name, format_tuple(mpl,
|
alpar@1
|
2386 |
'[', tuple));
|
alpar@1
|
2387 |
}
|
alpar@1
|
2388 |
return refer;
|
alpar@1
|
2389 |
}
|
alpar@1
|
2390 |
|
alpar@1
|
2391 |
/*----------------------------------------------------------------------
|
alpar@1
|
2392 |
-- eval_member_set - evaluate elemental set assigned to set member.
|
alpar@1
|
2393 |
--
|
alpar@1
|
2394 |
-- This routine evaluates a reference to elemental set assigned to given
|
alpar@1
|
2395 |
-- member of specified model set and returns it on exit. */
|
alpar@1
|
2396 |
|
alpar@1
|
2397 |
struct eval_set_info
|
alpar@1
|
2398 |
{ /* working info used by the routine eval_member_set */
|
alpar@1
|
2399 |
SET *set;
|
alpar@1
|
2400 |
/* model set */
|
alpar@1
|
2401 |
TUPLE *tuple;
|
alpar@1
|
2402 |
/* n-tuple, which defines set member */
|
alpar@1
|
2403 |
MEMBER *memb;
|
alpar@1
|
2404 |
/* normally this pointer is NULL; the routine uses this pointer
|
alpar@1
|
2405 |
to check data provided in the data section, in which case it
|
alpar@1
|
2406 |
points to a member currently checked; this check is performed
|
alpar@1
|
2407 |
automatically only once when a reference to any member occurs
|
alpar@1
|
2408 |
for the first time */
|
alpar@1
|
2409 |
ELEMSET *refer;
|
alpar@1
|
2410 |
/* evaluated reference to elemental set */
|
alpar@1
|
2411 |
};
|
alpar@1
|
2412 |
|
alpar@1
|
2413 |
static void eval_set_func(MPL *mpl, void *_info)
|
alpar@1
|
2414 |
{ /* this is auxiliary routine to work within domain scope */
|
alpar@1
|
2415 |
struct eval_set_info *info = _info;
|
alpar@1
|
2416 |
if (info->memb != NULL)
|
alpar@1
|
2417 |
{ /* checking call; check elemental set being assigned */
|
alpar@1
|
2418 |
check_elem_set(mpl, info->set, info->memb->tuple,
|
alpar@1
|
2419 |
info->memb->value.set);
|
alpar@1
|
2420 |
}
|
alpar@1
|
2421 |
else
|
alpar@1
|
2422 |
{ /* normal call; evaluate member, which has given n-tuple */
|
alpar@1
|
2423 |
info->refer = take_member_set(mpl, info->set, info->tuple);
|
alpar@1
|
2424 |
}
|
alpar@1
|
2425 |
return;
|
alpar@1
|
2426 |
}
|
alpar@1
|
2427 |
|
alpar@1
|
2428 |
#if 1 /* 12/XII-2008 */
|
alpar@1
|
2429 |
static void saturate_set(MPL *mpl, SET *set)
|
alpar@1
|
2430 |
{ GADGET *gadget = set->gadget;
|
alpar@1
|
2431 |
ELEMSET *data;
|
alpar@1
|
2432 |
MEMBER *elem, *memb;
|
alpar@1
|
2433 |
TUPLE *tuple, *work[20];
|
alpar@1
|
2434 |
int i;
|
alpar@1
|
2435 |
xprintf("Generating %s...\n", set->name);
|
alpar@1
|
2436 |
eval_whole_set(mpl, gadget->set);
|
alpar@1
|
2437 |
/* gadget set must have exactly one member */
|
alpar@1
|
2438 |
xassert(gadget->set->array != NULL);
|
alpar@1
|
2439 |
xassert(gadget->set->array->head != NULL);
|
alpar@1
|
2440 |
xassert(gadget->set->array->head == gadget->set->array->tail);
|
alpar@1
|
2441 |
data = gadget->set->array->head->value.set;
|
alpar@1
|
2442 |
xassert(data->type == A_NONE);
|
alpar@1
|
2443 |
xassert(data->dim == gadget->set->dimen);
|
alpar@1
|
2444 |
/* walk thru all elements of the plain set */
|
alpar@1
|
2445 |
for (elem = data->head; elem != NULL; elem = elem->next)
|
alpar@1
|
2446 |
{ /* create a copy of n-tuple */
|
alpar@1
|
2447 |
tuple = copy_tuple(mpl, elem->tuple);
|
alpar@1
|
2448 |
/* rearrange component of the n-tuple */
|
alpar@1
|
2449 |
for (i = 0; i < gadget->set->dimen; i++)
|
alpar@1
|
2450 |
work[i] = NULL;
|
alpar@1
|
2451 |
for (i = 0; tuple != NULL; tuple = tuple->next)
|
alpar@1
|
2452 |
work[gadget->ind[i++]-1] = tuple;
|
alpar@1
|
2453 |
xassert(i == gadget->set->dimen);
|
alpar@1
|
2454 |
for (i = 0; i < gadget->set->dimen; i++)
|
alpar@1
|
2455 |
{ xassert(work[i] != NULL);
|
alpar@1
|
2456 |
work[i]->next = work[i+1];
|
alpar@1
|
2457 |
}
|
alpar@1
|
2458 |
/* construct subscript list from first set->dim components */
|
alpar@1
|
2459 |
if (set->dim == 0)
|
alpar@1
|
2460 |
tuple = NULL;
|
alpar@1
|
2461 |
else
|
alpar@1
|
2462 |
tuple = work[0], work[set->dim-1]->next = NULL;
|
alpar@1
|
2463 |
/* find corresponding member of the set to be initialized */
|
alpar@1
|
2464 |
memb = find_member(mpl, set->array, tuple);
|
alpar@1
|
2465 |
if (memb == NULL)
|
alpar@1
|
2466 |
{ /* not found; add new member to the set and assign it empty
|
alpar@1
|
2467 |
elemental set */
|
alpar@1
|
2468 |
memb = add_member(mpl, set->array, tuple);
|
alpar@1
|
2469 |
memb->value.set = create_elemset(mpl, set->dimen);
|
alpar@1
|
2470 |
}
|
alpar@1
|
2471 |
else
|
alpar@1
|
2472 |
{ /* found; free subscript list */
|
alpar@1
|
2473 |
delete_tuple(mpl, tuple);
|
alpar@1
|
2474 |
}
|
alpar@1
|
2475 |
/* construct new n-tuple from rest set->dimen components */
|
alpar@1
|
2476 |
tuple = work[set->dim];
|
alpar@1
|
2477 |
xassert(set->dim + set->dimen == gadget->set->dimen);
|
alpar@1
|
2478 |
work[gadget->set->dimen-1]->next = NULL;
|
alpar@1
|
2479 |
/* and add it to the elemental set assigned to the member
|
alpar@1
|
2480 |
(no check for duplicates is needed) */
|
alpar@1
|
2481 |
add_tuple(mpl, memb->value.set, tuple);
|
alpar@1
|
2482 |
}
|
alpar@1
|
2483 |
/* the set has been saturated with data */
|
alpar@1
|
2484 |
set->data = 1;
|
alpar@1
|
2485 |
return;
|
alpar@1
|
2486 |
}
|
alpar@1
|
2487 |
#endif
|
alpar@1
|
2488 |
|
alpar@1
|
2489 |
ELEMSET *eval_member_set /* returns reference, not value */
|
alpar@1
|
2490 |
( MPL *mpl,
|
alpar@1
|
2491 |
SET *set, /* not changed */
|
alpar@1
|
2492 |
TUPLE *tuple /* not changed */
|
alpar@1
|
2493 |
)
|
alpar@1
|
2494 |
{ /* this routine evaluates set member */
|
alpar@1
|
2495 |
struct eval_set_info _info, *info = &_info;
|
alpar@1
|
2496 |
xassert(set->dim == tuple_dimen(mpl, tuple));
|
alpar@1
|
2497 |
info->set = set;
|
alpar@1
|
2498 |
info->tuple = tuple;
|
alpar@1
|
2499 |
#if 1 /* 12/XII-2008 */
|
alpar@1
|
2500 |
if (set->gadget != NULL && set->data == 0)
|
alpar@1
|
2501 |
{ /* initialize the set with data from a plain set */
|
alpar@1
|
2502 |
saturate_set(mpl, set);
|
alpar@1
|
2503 |
}
|
alpar@1
|
2504 |
#endif
|
alpar@1
|
2505 |
if (set->data == 1)
|
alpar@1
|
2506 |
{ /* check data, which are provided in the data section, but not
|
alpar@1
|
2507 |
checked yet */
|
alpar@1
|
2508 |
/* save pointer to the last array member; note that during the
|
alpar@1
|
2509 |
check new members may be added beyond the last member due to
|
alpar@1
|
2510 |
references to the same parameter from default expression as
|
alpar@1
|
2511 |
well as from expressions that define restricting supersets;
|
alpar@1
|
2512 |
however, values assigned to the new members will be checked
|
alpar@1
|
2513 |
by other routine, so we don't need to check them here */
|
alpar@1
|
2514 |
MEMBER *tail = set->array->tail;
|
alpar@1
|
2515 |
/* change the data status to prevent infinite recursive loop
|
alpar@1
|
2516 |
due to references to the same set during the check */
|
alpar@1
|
2517 |
set->data = 2;
|
alpar@1
|
2518 |
/* check elemental sets assigned to array members in the data
|
alpar@1
|
2519 |
section until the marked member has been reached */
|
alpar@1
|
2520 |
for (info->memb = set->array->head; info->memb != NULL;
|
alpar@1
|
2521 |
info->memb = info->memb->next)
|
alpar@1
|
2522 |
{ if (eval_within_domain(mpl, set->domain, info->memb->tuple,
|
alpar@1
|
2523 |
info, eval_set_func))
|
alpar@1
|
2524 |
out_of_domain(mpl, set->name, info->memb->tuple);
|
alpar@1
|
2525 |
if (info->memb == tail) break;
|
alpar@1
|
2526 |
}
|
alpar@1
|
2527 |
/* the check has been finished */
|
alpar@1
|
2528 |
}
|
alpar@1
|
2529 |
/* evaluate member, which has given n-tuple */
|
alpar@1
|
2530 |
info->memb = NULL;
|
alpar@1
|
2531 |
if (eval_within_domain(mpl, info->set->domain, info->tuple, info,
|
alpar@1
|
2532 |
eval_set_func))
|
alpar@1
|
2533 |
out_of_domain(mpl, set->name, info->tuple);
|
alpar@1
|
2534 |
/* bring evaluated reference to the calling program */
|
alpar@1
|
2535 |
return info->refer;
|
alpar@1
|
2536 |
}
|
alpar@1
|
2537 |
|
alpar@1
|
2538 |
/*----------------------------------------------------------------------
|
alpar@1
|
2539 |
-- eval_whole_set - evaluate model set over entire domain.
|
alpar@1
|
2540 |
--
|
alpar@1
|
2541 |
-- This routine evaluates all members of specified model set over entire
|
alpar@1
|
2542 |
-- domain. */
|
alpar@1
|
2543 |
|
alpar@1
|
2544 |
static int whole_set_func(MPL *mpl, void *info)
|
alpar@1
|
2545 |
{ /* this is auxiliary routine to work within domain scope */
|
alpar@1
|
2546 |
SET *set = (SET *)info;
|
alpar@1
|
2547 |
TUPLE *tuple = get_domain_tuple(mpl, set->domain);
|
alpar@1
|
2548 |
eval_member_set(mpl, set, tuple);
|
alpar@1
|
2549 |
delete_tuple(mpl, tuple);
|
alpar@1
|
2550 |
return 0;
|
alpar@1
|
2551 |
}
|
alpar@1
|
2552 |
|
alpar@1
|
2553 |
void eval_whole_set(MPL *mpl, SET *set)
|
alpar@1
|
2554 |
{ loop_within_domain(mpl, set->domain, set, whole_set_func);
|
alpar@1
|
2555 |
return;
|
alpar@1
|
2556 |
}
|
alpar@1
|
2557 |
|
alpar@1
|
2558 |
/*----------------------------------------------------------------------
|
alpar@1
|
2559 |
-- clean set - clean model set.
|
alpar@1
|
2560 |
--
|
alpar@1
|
2561 |
-- This routine cleans specified model set that assumes deleting all
|
alpar@1
|
2562 |
-- stuff dynamically allocated during the generation phase. */
|
alpar@1
|
2563 |
|
alpar@1
|
2564 |
void clean_set(MPL *mpl, SET *set)
|
alpar@1
|
2565 |
{ WITHIN *within;
|
alpar@1
|
2566 |
MEMBER *memb;
|
alpar@1
|
2567 |
/* clean subscript domain */
|
alpar@1
|
2568 |
clean_domain(mpl, set->domain);
|
alpar@1
|
2569 |
/* clean pseudo-code for computing supersets */
|
alpar@1
|
2570 |
for (within = set->within; within != NULL; within = within->next)
|
alpar@1
|
2571 |
clean_code(mpl, within->code);
|
alpar@1
|
2572 |
/* clean pseudo-code for computing assigned value */
|
alpar@1
|
2573 |
clean_code(mpl, set->assign);
|
alpar@1
|
2574 |
/* clean pseudo-code for computing default value */
|
alpar@1
|
2575 |
clean_code(mpl, set->option);
|
alpar@1
|
2576 |
/* reset data status flag */
|
alpar@1
|
2577 |
set->data = 0;
|
alpar@1
|
2578 |
/* delete content array */
|
alpar@1
|
2579 |
for (memb = set->array->head; memb != NULL; memb = memb->next)
|
alpar@1
|
2580 |
delete_value(mpl, set->array->type, &memb->value);
|
alpar@1
|
2581 |
delete_array(mpl, set->array), set->array = NULL;
|
alpar@1
|
2582 |
return;
|
alpar@1
|
2583 |
}
|
alpar@1
|
2584 |
|
alpar@1
|
2585 |
/**********************************************************************/
|
alpar@1
|
2586 |
/* * * MODEL PARAMETERS * * */
|
alpar@1
|
2587 |
/**********************************************************************/
|
alpar@1
|
2588 |
|
alpar@1
|
2589 |
/*----------------------------------------------------------------------
|
alpar@1
|
2590 |
-- check_value_num - check numeric value assigned to parameter member.
|
alpar@1
|
2591 |
--
|
alpar@1
|
2592 |
-- This routine checks if numeric value being assigned to some member
|
alpar@1
|
2593 |
-- of specified numeric model parameter satisfies to all restrictions.
|
alpar@1
|
2594 |
--
|
alpar@1
|
2595 |
-- NOTE: This routine must not be called out of domain scope. */
|
alpar@1
|
2596 |
|
alpar@1
|
2597 |
void check_value_num
|
alpar@1
|
2598 |
( MPL *mpl,
|
alpar@1
|
2599 |
PARAMETER *par, /* not changed */
|
alpar@1
|
2600 |
TUPLE *tuple, /* not changed */
|
alpar@1
|
2601 |
double value
|
alpar@1
|
2602 |
)
|
alpar@1
|
2603 |
{ CONDITION *cond;
|
alpar@1
|
2604 |
WITHIN *in;
|
alpar@1
|
2605 |
int eqno;
|
alpar@1
|
2606 |
/* the value must satisfy to the parameter type */
|
alpar@1
|
2607 |
switch (par->type)
|
alpar@1
|
2608 |
{ case A_NUMERIC:
|
alpar@1
|
2609 |
break;
|
alpar@1
|
2610 |
case A_INTEGER:
|
alpar@1
|
2611 |
if (value != floor(value))
|
alpar@1
|
2612 |
error(mpl, "%s%s = %.*g not integer", par->name,
|
alpar@1
|
2613 |
format_tuple(mpl, '[', tuple), DBL_DIG, value);
|
alpar@1
|
2614 |
break;
|
alpar@1
|
2615 |
case A_BINARY:
|
alpar@1
|
2616 |
if (!(value == 0.0 || value == 1.0))
|
alpar@1
|
2617 |
error(mpl, "%s%s = %.*g not binary", par->name,
|
alpar@1
|
2618 |
format_tuple(mpl, '[', tuple), DBL_DIG, value);
|
alpar@1
|
2619 |
break;
|
alpar@1
|
2620 |
default:
|
alpar@1
|
2621 |
xassert(par != par);
|
alpar@1
|
2622 |
}
|
alpar@1
|
2623 |
/* the value must satisfy to all specified conditions */
|
alpar@1
|
2624 |
for (cond = par->cond, eqno = 1; cond != NULL; cond = cond->next,
|
alpar@1
|
2625 |
eqno++)
|
alpar@1
|
2626 |
{ double bound;
|
alpar@1
|
2627 |
char *rho;
|
alpar@1
|
2628 |
xassert(cond->code != NULL);
|
alpar@1
|
2629 |
bound = eval_numeric(mpl, cond->code);
|
alpar@1
|
2630 |
switch (cond->rho)
|
alpar@1
|
2631 |
{ case O_LT:
|
alpar@1
|
2632 |
if (!(value < bound))
|
alpar@1
|
2633 |
{ rho = "<";
|
alpar@1
|
2634 |
err: error(mpl, "%s%s = %.*g not %s %.*g; see (%d)",
|
alpar@1
|
2635 |
par->name, format_tuple(mpl, '[', tuple), DBL_DIG,
|
alpar@1
|
2636 |
value, rho, DBL_DIG, bound, eqno);
|
alpar@1
|
2637 |
}
|
alpar@1
|
2638 |
break;
|
alpar@1
|
2639 |
case O_LE:
|
alpar@1
|
2640 |
if (!(value <= bound)) { rho = "<="; goto err; }
|
alpar@1
|
2641 |
break;
|
alpar@1
|
2642 |
case O_EQ:
|
alpar@1
|
2643 |
if (!(value == bound)) { rho = "="; goto err; }
|
alpar@1
|
2644 |
break;
|
alpar@1
|
2645 |
case O_GE:
|
alpar@1
|
2646 |
if (!(value >= bound)) { rho = ">="; goto err; }
|
alpar@1
|
2647 |
break;
|
alpar@1
|
2648 |
case O_GT:
|
alpar@1
|
2649 |
if (!(value > bound)) { rho = ">"; goto err; }
|
alpar@1
|
2650 |
break;
|
alpar@1
|
2651 |
case O_NE:
|
alpar@1
|
2652 |
if (!(value != bound)) { rho = "<>"; goto err; }
|
alpar@1
|
2653 |
break;
|
alpar@1
|
2654 |
default:
|
alpar@1
|
2655 |
xassert(cond != cond);
|
alpar@1
|
2656 |
}
|
alpar@1
|
2657 |
}
|
alpar@1
|
2658 |
/* the value must be in all specified supersets */
|
alpar@1
|
2659 |
for (in = par->in, eqno = 1; in != NULL; in = in->next, eqno++)
|
alpar@1
|
2660 |
{ TUPLE *dummy;
|
alpar@1
|
2661 |
xassert(in->code != NULL);
|
alpar@1
|
2662 |
xassert(in->code->dim == 1);
|
alpar@1
|
2663 |
dummy = expand_tuple(mpl, create_tuple(mpl),
|
alpar@1
|
2664 |
create_symbol_num(mpl, value));
|
alpar@1
|
2665 |
if (!is_member(mpl, in->code, dummy))
|
alpar@1
|
2666 |
error(mpl, "%s%s = %.*g not in specified set; see (%d)",
|
alpar@1
|
2667 |
par->name, format_tuple(mpl, '[', tuple), DBL_DIG,
|
alpar@1
|
2668 |
value, eqno);
|
alpar@1
|
2669 |
delete_tuple(mpl, dummy);
|
alpar@1
|
2670 |
}
|
alpar@1
|
2671 |
return;
|
alpar@1
|
2672 |
}
|
alpar@1
|
2673 |
|
alpar@1
|
2674 |
/*----------------------------------------------------------------------
|
alpar@1
|
2675 |
-- take_member_num - obtain num. value assigned to parameter member.
|
alpar@1
|
2676 |
--
|
alpar@1
|
2677 |
-- This routine obtains a numeric value assigned to member of specified
|
alpar@1
|
2678 |
-- numeric model parameter and returns it on exit.
|
alpar@1
|
2679 |
--
|
alpar@1
|
2680 |
-- NOTE: This routine must not be called out of domain scope. */
|
alpar@1
|
2681 |
|
alpar@1
|
2682 |
double take_member_num
|
alpar@1
|
2683 |
( MPL *mpl,
|
alpar@1
|
2684 |
PARAMETER *par, /* not changed */
|
alpar@1
|
2685 |
TUPLE *tuple /* not changed */
|
alpar@1
|
2686 |
)
|
alpar@1
|
2687 |
{ MEMBER *memb;
|
alpar@1
|
2688 |
double value;
|
alpar@1
|
2689 |
/* find member in the parameter array */
|
alpar@1
|
2690 |
memb = find_member(mpl, par->array, tuple);
|
alpar@1
|
2691 |
if (memb != NULL)
|
alpar@1
|
2692 |
{ /* member exists, so just take its value */
|
alpar@1
|
2693 |
value = memb->value.num;
|
alpar@1
|
2694 |
}
|
alpar@1
|
2695 |
else if (par->assign != NULL)
|
alpar@1
|
2696 |
{ /* compute value using assignment expression */
|
alpar@1
|
2697 |
value = eval_numeric(mpl, par->assign);
|
alpar@1
|
2698 |
add: /* check that the value satisfies to all restrictions, assign
|
alpar@1
|
2699 |
it to new member, and add the member to the array */
|
alpar@1
|
2700 |
check_value_num(mpl, par, tuple, value);
|
alpar@1
|
2701 |
memb = add_member(mpl, par->array, copy_tuple(mpl, tuple));
|
alpar@1
|
2702 |
memb->value.num = value;
|
alpar@1
|
2703 |
}
|
alpar@1
|
2704 |
else if (par->option != NULL)
|
alpar@1
|
2705 |
{ /* compute default value */
|
alpar@1
|
2706 |
value = eval_numeric(mpl, par->option);
|
alpar@1
|
2707 |
goto add;
|
alpar@1
|
2708 |
}
|
alpar@1
|
2709 |
else if (par->defval != NULL)
|
alpar@1
|
2710 |
{ /* take default value provided in the data section */
|
alpar@1
|
2711 |
if (par->defval->str != NULL)
|
alpar@1
|
2712 |
error(mpl, "cannot convert %s to floating-point number",
|
alpar@1
|
2713 |
format_symbol(mpl, par->defval));
|
alpar@1
|
2714 |
value = par->defval->num;
|
alpar@1
|
2715 |
goto add;
|
alpar@1
|
2716 |
}
|
alpar@1
|
2717 |
else
|
alpar@1
|
2718 |
{ /* no value is provided */
|
alpar@1
|
2719 |
error(mpl, "no value for %s%s", par->name, format_tuple(mpl,
|
alpar@1
|
2720 |
'[', tuple));
|
alpar@1
|
2721 |
}
|
alpar@1
|
2722 |
return value;
|
alpar@1
|
2723 |
}
|
alpar@1
|
2724 |
|
alpar@1
|
2725 |
/*----------------------------------------------------------------------
|
alpar@1
|
2726 |
-- eval_member_num - evaluate num. value assigned to parameter member.
|
alpar@1
|
2727 |
--
|
alpar@1
|
2728 |
-- This routine evaluates a numeric value assigned to given member of
|
alpar@1
|
2729 |
-- specified numeric model parameter and returns it on exit. */
|
alpar@1
|
2730 |
|
alpar@1
|
2731 |
struct eval_num_info
|
alpar@1
|
2732 |
{ /* working info used by the routine eval_member_num */
|
alpar@1
|
2733 |
PARAMETER *par;
|
alpar@1
|
2734 |
/* model parameter */
|
alpar@1
|
2735 |
TUPLE *tuple;
|
alpar@1
|
2736 |
/* n-tuple, which defines parameter member */
|
alpar@1
|
2737 |
MEMBER *memb;
|
alpar@1
|
2738 |
/* normally this pointer is NULL; the routine uses this pointer
|
alpar@1
|
2739 |
to check data provided in the data section, in which case it
|
alpar@1
|
2740 |
points to a member currently checked; this check is performed
|
alpar@1
|
2741 |
automatically only once when a reference to any member occurs
|
alpar@1
|
2742 |
for the first time */
|
alpar@1
|
2743 |
double value;
|
alpar@1
|
2744 |
/* evaluated numeric value */
|
alpar@1
|
2745 |
};
|
alpar@1
|
2746 |
|
alpar@1
|
2747 |
static void eval_num_func(MPL *mpl, void *_info)
|
alpar@1
|
2748 |
{ /* this is auxiliary routine to work within domain scope */
|
alpar@1
|
2749 |
struct eval_num_info *info = _info;
|
alpar@1
|
2750 |
if (info->memb != NULL)
|
alpar@1
|
2751 |
{ /* checking call; check numeric value being assigned */
|
alpar@1
|
2752 |
check_value_num(mpl, info->par, info->memb->tuple,
|
alpar@1
|
2753 |
info->memb->value.num);
|
alpar@1
|
2754 |
}
|
alpar@1
|
2755 |
else
|
alpar@1
|
2756 |
{ /* normal call; evaluate member, which has given n-tuple */
|
alpar@1
|
2757 |
info->value = take_member_num(mpl, info->par, info->tuple);
|
alpar@1
|
2758 |
}
|
alpar@1
|
2759 |
return;
|
alpar@1
|
2760 |
}
|
alpar@1
|
2761 |
|
alpar@1
|
2762 |
double eval_member_num
|
alpar@1
|
2763 |
( MPL *mpl,
|
alpar@1
|
2764 |
PARAMETER *par, /* not changed */
|
alpar@1
|
2765 |
TUPLE *tuple /* not changed */
|
alpar@1
|
2766 |
)
|
alpar@1
|
2767 |
{ /* this routine evaluates numeric parameter member */
|
alpar@1
|
2768 |
struct eval_num_info _info, *info = &_info;
|
alpar@1
|
2769 |
xassert(par->type == A_NUMERIC || par->type == A_INTEGER ||
|
alpar@1
|
2770 |
par->type == A_BINARY);
|
alpar@1
|
2771 |
xassert(par->dim == tuple_dimen(mpl, tuple));
|
alpar@1
|
2772 |
info->par = par;
|
alpar@1
|
2773 |
info->tuple = tuple;
|
alpar@1
|
2774 |
if (par->data == 1)
|
alpar@1
|
2775 |
{ /* check data, which are provided in the data section, but not
|
alpar@1
|
2776 |
checked yet */
|
alpar@1
|
2777 |
/* save pointer to the last array member; note that during the
|
alpar@1
|
2778 |
check new members may be added beyond the last member due to
|
alpar@1
|
2779 |
references to the same parameter from default expression as
|
alpar@1
|
2780 |
well as from expressions that define restricting conditions;
|
alpar@1
|
2781 |
however, values assigned to the new members will be checked
|
alpar@1
|
2782 |
by other routine, so we don't need to check them here */
|
alpar@1
|
2783 |
MEMBER *tail = par->array->tail;
|
alpar@1
|
2784 |
/* change the data status to prevent infinite recursive loop
|
alpar@1
|
2785 |
due to references to the same parameter during the check */
|
alpar@1
|
2786 |
par->data = 2;
|
alpar@1
|
2787 |
/* check values assigned to array members in the data section
|
alpar@1
|
2788 |
until the marked member has been reached */
|
alpar@1
|
2789 |
for (info->memb = par->array->head; info->memb != NULL;
|
alpar@1
|
2790 |
info->memb = info->memb->next)
|
alpar@1
|
2791 |
{ if (eval_within_domain(mpl, par->domain, info->memb->tuple,
|
alpar@1
|
2792 |
info, eval_num_func))
|
alpar@1
|
2793 |
out_of_domain(mpl, par->name, info->memb->tuple);
|
alpar@1
|
2794 |
if (info->memb == tail) break;
|
alpar@1
|
2795 |
}
|
alpar@1
|
2796 |
/* the check has been finished */
|
alpar@1
|
2797 |
}
|
alpar@1
|
2798 |
/* evaluate member, which has given n-tuple */
|
alpar@1
|
2799 |
info->memb = NULL;
|
alpar@1
|
2800 |
if (eval_within_domain(mpl, info->par->domain, info->tuple, info,
|
alpar@1
|
2801 |
eval_num_func))
|
alpar@1
|
2802 |
out_of_domain(mpl, par->name, info->tuple);
|
alpar@1
|
2803 |
/* bring evaluated value to the calling program */
|
alpar@1
|
2804 |
return info->value;
|
alpar@1
|
2805 |
}
|
alpar@1
|
2806 |
|
alpar@1
|
2807 |
/*----------------------------------------------------------------------
|
alpar@1
|
2808 |
-- check_value_sym - check symbolic value assigned to parameter member.
|
alpar@1
|
2809 |
--
|
alpar@1
|
2810 |
-- This routine checks if symbolic value being assigned to some member
|
alpar@1
|
2811 |
-- of specified symbolic model parameter satisfies to all restrictions.
|
alpar@1
|
2812 |
--
|
alpar@1
|
2813 |
-- NOTE: This routine must not be called out of domain scope. */
|
alpar@1
|
2814 |
|
alpar@1
|
2815 |
void check_value_sym
|
alpar@1
|
2816 |
( MPL *mpl,
|
alpar@1
|
2817 |
PARAMETER *par, /* not changed */
|
alpar@1
|
2818 |
TUPLE *tuple, /* not changed */
|
alpar@1
|
2819 |
SYMBOL *value /* not changed */
|
alpar@1
|
2820 |
)
|
alpar@1
|
2821 |
{ CONDITION *cond;
|
alpar@1
|
2822 |
WITHIN *in;
|
alpar@1
|
2823 |
int eqno;
|
alpar@1
|
2824 |
/* the value must satisfy to all specified conditions */
|
alpar@1
|
2825 |
for (cond = par->cond, eqno = 1; cond != NULL; cond = cond->next,
|
alpar@1
|
2826 |
eqno++)
|
alpar@1
|
2827 |
{ SYMBOL *bound;
|
alpar@1
|
2828 |
char buf[255+1];
|
alpar@1
|
2829 |
xassert(cond->code != NULL);
|
alpar@1
|
2830 |
bound = eval_symbolic(mpl, cond->code);
|
alpar@1
|
2831 |
switch (cond->rho)
|
alpar@1
|
2832 |
{
|
alpar@1
|
2833 |
#if 1 /* 13/VIII-2008 */
|
alpar@1
|
2834 |
case O_LT:
|
alpar@1
|
2835 |
if (!(compare_symbols(mpl, value, bound) < 0))
|
alpar@1
|
2836 |
{ strcpy(buf, format_symbol(mpl, bound));
|
alpar@1
|
2837 |
xassert(strlen(buf) < sizeof(buf));
|
alpar@1
|
2838 |
error(mpl, "%s%s = %s not < %s",
|
alpar@1
|
2839 |
par->name, format_tuple(mpl, '[', tuple),
|
alpar@1
|
2840 |
format_symbol(mpl, value), buf, eqno);
|
alpar@1
|
2841 |
}
|
alpar@1
|
2842 |
break;
|
alpar@1
|
2843 |
case O_LE:
|
alpar@1
|
2844 |
if (!(compare_symbols(mpl, value, bound) <= 0))
|
alpar@1
|
2845 |
{ strcpy(buf, format_symbol(mpl, bound));
|
alpar@1
|
2846 |
xassert(strlen(buf) < sizeof(buf));
|
alpar@1
|
2847 |
error(mpl, "%s%s = %s not <= %s",
|
alpar@1
|
2848 |
par->name, format_tuple(mpl, '[', tuple),
|
alpar@1
|
2849 |
format_symbol(mpl, value), buf, eqno);
|
alpar@1
|
2850 |
}
|
alpar@1
|
2851 |
break;
|
alpar@1
|
2852 |
#endif
|
alpar@1
|
2853 |
case O_EQ:
|
alpar@1
|
2854 |
if (!(compare_symbols(mpl, value, bound) == 0))
|
alpar@1
|
2855 |
{ strcpy(buf, format_symbol(mpl, bound));
|
alpar@1
|
2856 |
xassert(strlen(buf) < sizeof(buf));
|
alpar@1
|
2857 |
error(mpl, "%s%s = %s not = %s",
|
alpar@1
|
2858 |
par->name, format_tuple(mpl, '[', tuple),
|
alpar@1
|
2859 |
format_symbol(mpl, value), buf, eqno);
|
alpar@1
|
2860 |
}
|
alpar@1
|
2861 |
break;
|
alpar@1
|
2862 |
#if 1 /* 13/VIII-2008 */
|
alpar@1
|
2863 |
case O_GE:
|
alpar@1
|
2864 |
if (!(compare_symbols(mpl, value, bound) >= 0))
|
alpar@1
|
2865 |
{ strcpy(buf, format_symbol(mpl, bound));
|
alpar@1
|
2866 |
xassert(strlen(buf) < sizeof(buf));
|
alpar@1
|
2867 |
error(mpl, "%s%s = %s not >= %s",
|
alpar@1
|
2868 |
par->name, format_tuple(mpl, '[', tuple),
|
alpar@1
|
2869 |
format_symbol(mpl, value), buf, eqno);
|
alpar@1
|
2870 |
}
|
alpar@1
|
2871 |
break;
|
alpar@1
|
2872 |
case O_GT:
|
alpar@1
|
2873 |
if (!(compare_symbols(mpl, value, bound) > 0))
|
alpar@1
|
2874 |
{ strcpy(buf, format_symbol(mpl, bound));
|
alpar@1
|
2875 |
xassert(strlen(buf) < sizeof(buf));
|
alpar@1
|
2876 |
error(mpl, "%s%s = %s not > %s",
|
alpar@1
|
2877 |
par->name, format_tuple(mpl, '[', tuple),
|
alpar@1
|
2878 |
format_symbol(mpl, value), buf, eqno);
|
alpar@1
|
2879 |
}
|
alpar@1
|
2880 |
break;
|
alpar@1
|
2881 |
#endif
|
alpar@1
|
2882 |
case O_NE:
|
alpar@1
|
2883 |
if (!(compare_symbols(mpl, value, bound) != 0))
|
alpar@1
|
2884 |
{ strcpy(buf, format_symbol(mpl, bound));
|
alpar@1
|
2885 |
xassert(strlen(buf) < sizeof(buf));
|
alpar@1
|
2886 |
error(mpl, "%s%s = %s not <> %s",
|
alpar@1
|
2887 |
par->name, format_tuple(mpl, '[', tuple),
|
alpar@1
|
2888 |
format_symbol(mpl, value), buf, eqno);
|
alpar@1
|
2889 |
}
|
alpar@1
|
2890 |
break;
|
alpar@1
|
2891 |
default:
|
alpar@1
|
2892 |
xassert(cond != cond);
|
alpar@1
|
2893 |
}
|
alpar@1
|
2894 |
delete_symbol(mpl, bound);
|
alpar@1
|
2895 |
}
|
alpar@1
|
2896 |
/* the value must be in all specified supersets */
|
alpar@1
|
2897 |
for (in = par->in, eqno = 1; in != NULL; in = in->next, eqno++)
|
alpar@1
|
2898 |
{ TUPLE *dummy;
|
alpar@1
|
2899 |
xassert(in->code != NULL);
|
alpar@1
|
2900 |
xassert(in->code->dim == 1);
|
alpar@1
|
2901 |
dummy = expand_tuple(mpl, create_tuple(mpl), copy_symbol(mpl,
|
alpar@1
|
2902 |
value));
|
alpar@1
|
2903 |
if (!is_member(mpl, in->code, dummy))
|
alpar@1
|
2904 |
error(mpl, "%s%s = %s not in specified set; see (%d)",
|
alpar@1
|
2905 |
par->name, format_tuple(mpl, '[', tuple),
|
alpar@1
|
2906 |
format_symbol(mpl, value), eqno);
|
alpar@1
|
2907 |
delete_tuple(mpl, dummy);
|
alpar@1
|
2908 |
}
|
alpar@1
|
2909 |
return;
|
alpar@1
|
2910 |
}
|
alpar@1
|
2911 |
|
alpar@1
|
2912 |
/*----------------------------------------------------------------------
|
alpar@1
|
2913 |
-- take_member_sym - obtain symb. value assigned to parameter member.
|
alpar@1
|
2914 |
--
|
alpar@1
|
2915 |
-- This routine obtains a symbolic value assigned to member of specified
|
alpar@1
|
2916 |
-- symbolic model parameter and returns it on exit.
|
alpar@1
|
2917 |
--
|
alpar@1
|
2918 |
-- NOTE: This routine must not be called out of domain scope. */
|
alpar@1
|
2919 |
|
alpar@1
|
2920 |
SYMBOL *take_member_sym /* returns value, not reference */
|
alpar@1
|
2921 |
( MPL *mpl,
|
alpar@1
|
2922 |
PARAMETER *par, /* not changed */
|
alpar@1
|
2923 |
TUPLE *tuple /* not changed */
|
alpar@1
|
2924 |
)
|
alpar@1
|
2925 |
{ MEMBER *memb;
|
alpar@1
|
2926 |
SYMBOL *value;
|
alpar@1
|
2927 |
/* find member in the parameter array */
|
alpar@1
|
2928 |
memb = find_member(mpl, par->array, tuple);
|
alpar@1
|
2929 |
if (memb != NULL)
|
alpar@1
|
2930 |
{ /* member exists, so just take its value */
|
alpar@1
|
2931 |
value = copy_symbol(mpl, memb->value.sym);
|
alpar@1
|
2932 |
}
|
alpar@1
|
2933 |
else if (par->assign != NULL)
|
alpar@1
|
2934 |
{ /* compute value using assignment expression */
|
alpar@1
|
2935 |
value = eval_symbolic(mpl, par->assign);
|
alpar@1
|
2936 |
add: /* check that the value satisfies to all restrictions, assign
|
alpar@1
|
2937 |
it to new member, and add the member to the array */
|
alpar@1
|
2938 |
check_value_sym(mpl, par, tuple, value);
|
alpar@1
|
2939 |
memb = add_member(mpl, par->array, copy_tuple(mpl, tuple));
|
alpar@1
|
2940 |
memb->value.sym = copy_symbol(mpl, value);
|
alpar@1
|
2941 |
}
|
alpar@1
|
2942 |
else if (par->option != NULL)
|
alpar@1
|
2943 |
{ /* compute default value */
|
alpar@1
|
2944 |
value = eval_symbolic(mpl, par->option);
|
alpar@1
|
2945 |
goto add;
|
alpar@1
|
2946 |
}
|
alpar@1
|
2947 |
else if (par->defval != NULL)
|
alpar@1
|
2948 |
{ /* take default value provided in the data section */
|
alpar@1
|
2949 |
value = copy_symbol(mpl, par->defval);
|
alpar@1
|
2950 |
goto add;
|
alpar@1
|
2951 |
}
|
alpar@1
|
2952 |
else
|
alpar@1
|
2953 |
{ /* no value is provided */
|
alpar@1
|
2954 |
error(mpl, "no value for %s%s", par->name, format_tuple(mpl,
|
alpar@1
|
2955 |
'[', tuple));
|
alpar@1
|
2956 |
}
|
alpar@1
|
2957 |
return value;
|
alpar@1
|
2958 |
}
|
alpar@1
|
2959 |
|
alpar@1
|
2960 |
/*----------------------------------------------------------------------
|
alpar@1
|
2961 |
-- eval_member_sym - evaluate symb. value assigned to parameter member.
|
alpar@1
|
2962 |
--
|
alpar@1
|
2963 |
-- This routine evaluates a symbolic value assigned to given member of
|
alpar@1
|
2964 |
-- specified symbolic model parameter and returns it on exit. */
|
alpar@1
|
2965 |
|
alpar@1
|
2966 |
struct eval_sym_info
|
alpar@1
|
2967 |
{ /* working info used by the routine eval_member_sym */
|
alpar@1
|
2968 |
PARAMETER *par;
|
alpar@1
|
2969 |
/* model parameter */
|
alpar@1
|
2970 |
TUPLE *tuple;
|
alpar@1
|
2971 |
/* n-tuple, which defines parameter member */
|
alpar@1
|
2972 |
MEMBER *memb;
|
alpar@1
|
2973 |
/* normally this pointer is NULL; the routine uses this pointer
|
alpar@1
|
2974 |
to check data provided in the data section, in which case it
|
alpar@1
|
2975 |
points to a member currently checked; this check is performed
|
alpar@1
|
2976 |
automatically only once when a reference to any member occurs
|
alpar@1
|
2977 |
for the first time */
|
alpar@1
|
2978 |
SYMBOL *value;
|
alpar@1
|
2979 |
/* evaluated symbolic value */
|
alpar@1
|
2980 |
};
|
alpar@1
|
2981 |
|
alpar@1
|
2982 |
static void eval_sym_func(MPL *mpl, void *_info)
|
alpar@1
|
2983 |
{ /* this is auxiliary routine to work within domain scope */
|
alpar@1
|
2984 |
struct eval_sym_info *info = _info;
|
alpar@1
|
2985 |
if (info->memb != NULL)
|
alpar@1
|
2986 |
{ /* checking call; check symbolic value being assigned */
|
alpar@1
|
2987 |
check_value_sym(mpl, info->par, info->memb->tuple,
|
alpar@1
|
2988 |
info->memb->value.sym);
|
alpar@1
|
2989 |
}
|
alpar@1
|
2990 |
else
|
alpar@1
|
2991 |
{ /* normal call; evaluate member, which has given n-tuple */
|
alpar@1
|
2992 |
info->value = take_member_sym(mpl, info->par, info->tuple);
|
alpar@1
|
2993 |
}
|
alpar@1
|
2994 |
return;
|
alpar@1
|
2995 |
}
|
alpar@1
|
2996 |
|
alpar@1
|
2997 |
SYMBOL *eval_member_sym /* returns value, not reference */
|
alpar@1
|
2998 |
( MPL *mpl,
|
alpar@1
|
2999 |
PARAMETER *par, /* not changed */
|
alpar@1
|
3000 |
TUPLE *tuple /* not changed */
|
alpar@1
|
3001 |
)
|
alpar@1
|
3002 |
{ /* this routine evaluates symbolic parameter member */
|
alpar@1
|
3003 |
struct eval_sym_info _info, *info = &_info;
|
alpar@1
|
3004 |
xassert(par->type == A_SYMBOLIC);
|
alpar@1
|
3005 |
xassert(par->dim == tuple_dimen(mpl, tuple));
|
alpar@1
|
3006 |
info->par = par;
|
alpar@1
|
3007 |
info->tuple = tuple;
|
alpar@1
|
3008 |
if (par->data == 1)
|
alpar@1
|
3009 |
{ /* check data, which are provided in the data section, but not
|
alpar@1
|
3010 |
checked yet */
|
alpar@1
|
3011 |
/* save pointer to the last array member; note that during the
|
alpar@1
|
3012 |
check new members may be added beyond the last member due to
|
alpar@1
|
3013 |
references to the same parameter from default expression as
|
alpar@1
|
3014 |
well as from expressions that define restricting conditions;
|
alpar@1
|
3015 |
however, values assigned to the new members will be checked
|
alpar@1
|
3016 |
by other routine, so we don't need to check them here */
|
alpar@1
|
3017 |
MEMBER *tail = par->array->tail;
|
alpar@1
|
3018 |
/* change the data status to prevent infinite recursive loop
|
alpar@1
|
3019 |
due to references to the same parameter during the check */
|
alpar@1
|
3020 |
par->data = 2;
|
alpar@1
|
3021 |
/* check values assigned to array members in the data section
|
alpar@1
|
3022 |
until the marked member has been reached */
|
alpar@1
|
3023 |
for (info->memb = par->array->head; info->memb != NULL;
|
alpar@1
|
3024 |
info->memb = info->memb->next)
|
alpar@1
|
3025 |
{ if (eval_within_domain(mpl, par->domain, info->memb->tuple,
|
alpar@1
|
3026 |
info, eval_sym_func))
|
alpar@1
|
3027 |
out_of_domain(mpl, par->name, info->memb->tuple);
|
alpar@1
|
3028 |
if (info->memb == tail) break;
|
alpar@1
|
3029 |
}
|
alpar@1
|
3030 |
/* the check has been finished */
|
alpar@1
|
3031 |
}
|
alpar@1
|
3032 |
/* evaluate member, which has given n-tuple */
|
alpar@1
|
3033 |
info->memb = NULL;
|
alpar@1
|
3034 |
if (eval_within_domain(mpl, info->par->domain, info->tuple, info,
|
alpar@1
|
3035 |
eval_sym_func))
|
alpar@1
|
3036 |
out_of_domain(mpl, par->name, info->tuple);
|
alpar@1
|
3037 |
/* bring evaluated value to the calling program */
|
alpar@1
|
3038 |
return info->value;
|
alpar@1
|
3039 |
}
|
alpar@1
|
3040 |
|
alpar@1
|
3041 |
/*----------------------------------------------------------------------
|
alpar@1
|
3042 |
-- eval_whole_par - evaluate model parameter over entire domain.
|
alpar@1
|
3043 |
--
|
alpar@1
|
3044 |
-- This routine evaluates all members of specified model parameter over
|
alpar@1
|
3045 |
-- entire domain. */
|
alpar@1
|
3046 |
|
alpar@1
|
3047 |
static int whole_par_func(MPL *mpl, void *info)
|
alpar@1
|
3048 |
{ /* this is auxiliary routine to work within domain scope */
|
alpar@1
|
3049 |
PARAMETER *par = (PARAMETER *)info;
|
alpar@1
|
3050 |
TUPLE *tuple = get_domain_tuple(mpl, par->domain);
|
alpar@1
|
3051 |
switch (par->type)
|
alpar@1
|
3052 |
{ case A_NUMERIC:
|
alpar@1
|
3053 |
case A_INTEGER:
|
alpar@1
|
3054 |
case A_BINARY:
|
alpar@1
|
3055 |
eval_member_num(mpl, par, tuple);
|
alpar@1
|
3056 |
break;
|
alpar@1
|
3057 |
case A_SYMBOLIC:
|
alpar@1
|
3058 |
delete_symbol(mpl, eval_member_sym(mpl, par, tuple));
|
alpar@1
|
3059 |
break;
|
alpar@1
|
3060 |
default:
|
alpar@1
|
3061 |
xassert(par != par);
|
alpar@1
|
3062 |
}
|
alpar@1
|
3063 |
delete_tuple(mpl, tuple);
|
alpar@1
|
3064 |
return 0;
|
alpar@1
|
3065 |
}
|
alpar@1
|
3066 |
|
alpar@1
|
3067 |
void eval_whole_par(MPL *mpl, PARAMETER *par)
|
alpar@1
|
3068 |
{ loop_within_domain(mpl, par->domain, par, whole_par_func);
|
alpar@1
|
3069 |
return;
|
alpar@1
|
3070 |
}
|
alpar@1
|
3071 |
|
alpar@1
|
3072 |
/*----------------------------------------------------------------------
|
alpar@1
|
3073 |
-- clean_parameter - clean model parameter.
|
alpar@1
|
3074 |
--
|
alpar@1
|
3075 |
-- This routine cleans specified model parameter that assumes deleting
|
alpar@1
|
3076 |
-- all stuff dynamically allocated during the generation phase. */
|
alpar@1
|
3077 |
|
alpar@1
|
3078 |
void clean_parameter(MPL *mpl, PARAMETER *par)
|
alpar@1
|
3079 |
{ CONDITION *cond;
|
alpar@1
|
3080 |
WITHIN *in;
|
alpar@1
|
3081 |
MEMBER *memb;
|
alpar@1
|
3082 |
/* clean subscript domain */
|
alpar@1
|
3083 |
clean_domain(mpl, par->domain);
|
alpar@1
|
3084 |
/* clean pseudo-code for computing restricting conditions */
|
alpar@1
|
3085 |
for (cond = par->cond; cond != NULL; cond = cond->next)
|
alpar@1
|
3086 |
clean_code(mpl, cond->code);
|
alpar@1
|
3087 |
/* clean pseudo-code for computing restricting supersets */
|
alpar@1
|
3088 |
for (in = par->in; in != NULL; in = in->next)
|
alpar@1
|
3089 |
clean_code(mpl, in->code);
|
alpar@1
|
3090 |
/* clean pseudo-code for computing assigned value */
|
alpar@1
|
3091 |
clean_code(mpl, par->assign);
|
alpar@1
|
3092 |
/* clean pseudo-code for computing default value */
|
alpar@1
|
3093 |
clean_code(mpl, par->option);
|
alpar@1
|
3094 |
/* reset data status flag */
|
alpar@1
|
3095 |
par->data = 0;
|
alpar@1
|
3096 |
/* delete default symbolic value */
|
alpar@1
|
3097 |
if (par->defval != NULL)
|
alpar@1
|
3098 |
delete_symbol(mpl, par->defval), par->defval = NULL;
|
alpar@1
|
3099 |
/* delete content array */
|
alpar@1
|
3100 |
for (memb = par->array->head; memb != NULL; memb = memb->next)
|
alpar@1
|
3101 |
delete_value(mpl, par->array->type, &memb->value);
|
alpar@1
|
3102 |
delete_array(mpl, par->array), par->array = NULL;
|
alpar@1
|
3103 |
return;
|
alpar@1
|
3104 |
}
|
alpar@1
|
3105 |
|
alpar@1
|
3106 |
/**********************************************************************/
|
alpar@1
|
3107 |
/* * * MODEL VARIABLES * * */
|
alpar@1
|
3108 |
/**********************************************************************/
|
alpar@1
|
3109 |
|
alpar@1
|
3110 |
/*----------------------------------------------------------------------
|
alpar@1
|
3111 |
-- take_member_var - obtain reference to elemental variable.
|
alpar@1
|
3112 |
--
|
alpar@1
|
3113 |
-- This routine obtains a reference to elemental variable assigned to
|
alpar@1
|
3114 |
-- given member of specified model variable and returns it on exit. If
|
alpar@1
|
3115 |
-- necessary, new elemental variable is created.
|
alpar@1
|
3116 |
--
|
alpar@1
|
3117 |
-- NOTE: This routine must not be called out of domain scope. */
|
alpar@1
|
3118 |
|
alpar@1
|
3119 |
ELEMVAR *take_member_var /* returns reference */
|
alpar@1
|
3120 |
( MPL *mpl,
|
alpar@1
|
3121 |
VARIABLE *var, /* not changed */
|
alpar@1
|
3122 |
TUPLE *tuple /* not changed */
|
alpar@1
|
3123 |
)
|
alpar@1
|
3124 |
{ MEMBER *memb;
|
alpar@1
|
3125 |
ELEMVAR *refer;
|
alpar@1
|
3126 |
/* find member in the variable array */
|
alpar@1
|
3127 |
memb = find_member(mpl, var->array, tuple);
|
alpar@1
|
3128 |
if (memb != NULL)
|
alpar@1
|
3129 |
{ /* member exists, so just take the reference */
|
alpar@1
|
3130 |
refer = memb->value.var;
|
alpar@1
|
3131 |
}
|
alpar@1
|
3132 |
else
|
alpar@1
|
3133 |
{ /* member is referenced for the first time and therefore does
|
alpar@1
|
3134 |
not exist; create new elemental variable, assign it to new
|
alpar@1
|
3135 |
member, and add the member to the variable array */
|
alpar@1
|
3136 |
memb = add_member(mpl, var->array, copy_tuple(mpl, tuple));
|
alpar@1
|
3137 |
refer = (memb->value.var =
|
alpar@1
|
3138 |
dmp_get_atom(mpl->elemvars, sizeof(ELEMVAR)));
|
alpar@1
|
3139 |
refer->j = 0;
|
alpar@1
|
3140 |
refer->var = var;
|
alpar@1
|
3141 |
refer->memb = memb;
|
alpar@1
|
3142 |
/* compute lower bound */
|
alpar@1
|
3143 |
if (var->lbnd == NULL)
|
alpar@1
|
3144 |
refer->lbnd = 0.0;
|
alpar@1
|
3145 |
else
|
alpar@1
|
3146 |
refer->lbnd = eval_numeric(mpl, var->lbnd);
|
alpar@1
|
3147 |
/* compute upper bound */
|
alpar@1
|
3148 |
if (var->ubnd == NULL)
|
alpar@1
|
3149 |
refer->ubnd = 0.0;
|
alpar@1
|
3150 |
else if (var->ubnd == var->lbnd)
|
alpar@1
|
3151 |
refer->ubnd = refer->lbnd;
|
alpar@1
|
3152 |
else
|
alpar@1
|
3153 |
refer->ubnd = eval_numeric(mpl, var->ubnd);
|
alpar@1
|
3154 |
/* nullify working quantity */
|
alpar@1
|
3155 |
refer->temp = 0.0;
|
alpar@1
|
3156 |
#if 1 /* 15/V-2010 */
|
alpar@1
|
3157 |
/* solution has not been obtained by the solver yet */
|
alpar@1
|
3158 |
refer->stat = 0;
|
alpar@1
|
3159 |
refer->prim = refer->dual = 0.0;
|
alpar@1
|
3160 |
#endif
|
alpar@1
|
3161 |
}
|
alpar@1
|
3162 |
return refer;
|
alpar@1
|
3163 |
}
|
alpar@1
|
3164 |
|
alpar@1
|
3165 |
/*----------------------------------------------------------------------
|
alpar@1
|
3166 |
-- eval_member_var - evaluate reference to elemental variable.
|
alpar@1
|
3167 |
--
|
alpar@1
|
3168 |
-- This routine evaluates a reference to elemental variable assigned to
|
alpar@1
|
3169 |
-- member of specified model variable and returns it on exit. */
|
alpar@1
|
3170 |
|
alpar@1
|
3171 |
struct eval_var_info
|
alpar@1
|
3172 |
{ /* working info used by the routine eval_member_var */
|
alpar@1
|
3173 |
VARIABLE *var;
|
alpar@1
|
3174 |
/* model variable */
|
alpar@1
|
3175 |
TUPLE *tuple;
|
alpar@1
|
3176 |
/* n-tuple, which defines variable member */
|
alpar@1
|
3177 |
ELEMVAR *refer;
|
alpar@1
|
3178 |
/* evaluated reference to elemental variable */
|
alpar@1
|
3179 |
};
|
alpar@1
|
3180 |
|
alpar@1
|
3181 |
static void eval_var_func(MPL *mpl, void *_info)
|
alpar@1
|
3182 |
{ /* this is auxiliary routine to work within domain scope */
|
alpar@1
|
3183 |
struct eval_var_info *info = _info;
|
alpar@1
|
3184 |
info->refer = take_member_var(mpl, info->var, info->tuple);
|
alpar@1
|
3185 |
return;
|
alpar@1
|
3186 |
}
|
alpar@1
|
3187 |
|
alpar@1
|
3188 |
ELEMVAR *eval_member_var /* returns reference */
|
alpar@1
|
3189 |
( MPL *mpl,
|
alpar@1
|
3190 |
VARIABLE *var, /* not changed */
|
alpar@1
|
3191 |
TUPLE *tuple /* not changed */
|
alpar@1
|
3192 |
)
|
alpar@1
|
3193 |
{ /* this routine evaluates variable member */
|
alpar@1
|
3194 |
struct eval_var_info _info, *info = &_info;
|
alpar@1
|
3195 |
xassert(var->dim == tuple_dimen(mpl, tuple));
|
alpar@1
|
3196 |
info->var = var;
|
alpar@1
|
3197 |
info->tuple = tuple;
|
alpar@1
|
3198 |
/* evaluate member, which has given n-tuple */
|
alpar@1
|
3199 |
if (eval_within_domain(mpl, info->var->domain, info->tuple, info,
|
alpar@1
|
3200 |
eval_var_func))
|
alpar@1
|
3201 |
out_of_domain(mpl, var->name, info->tuple);
|
alpar@1
|
3202 |
/* bring evaluated reference to the calling program */
|
alpar@1
|
3203 |
return info->refer;
|
alpar@1
|
3204 |
}
|
alpar@1
|
3205 |
|
alpar@1
|
3206 |
/*----------------------------------------------------------------------
|
alpar@1
|
3207 |
-- eval_whole_var - evaluate model variable over entire domain.
|
alpar@1
|
3208 |
--
|
alpar@1
|
3209 |
-- This routine evaluates all members of specified model variable over
|
alpar@1
|
3210 |
-- entire domain. */
|
alpar@1
|
3211 |
|
alpar@1
|
3212 |
static int whole_var_func(MPL *mpl, void *info)
|
alpar@1
|
3213 |
{ /* this is auxiliary routine to work within domain scope */
|
alpar@1
|
3214 |
VARIABLE *var = (VARIABLE *)info;
|
alpar@1
|
3215 |
TUPLE *tuple = get_domain_tuple(mpl, var->domain);
|
alpar@1
|
3216 |
eval_member_var(mpl, var, tuple);
|
alpar@1
|
3217 |
delete_tuple(mpl, tuple);
|
alpar@1
|
3218 |
return 0;
|
alpar@1
|
3219 |
}
|
alpar@1
|
3220 |
|
alpar@1
|
3221 |
void eval_whole_var(MPL *mpl, VARIABLE *var)
|
alpar@1
|
3222 |
{ loop_within_domain(mpl, var->domain, var, whole_var_func);
|
alpar@1
|
3223 |
return;
|
alpar@1
|
3224 |
}
|
alpar@1
|
3225 |
|
alpar@1
|
3226 |
/*----------------------------------------------------------------------
|
alpar@1
|
3227 |
-- clean_variable - clean model variable.
|
alpar@1
|
3228 |
--
|
alpar@1
|
3229 |
-- This routine cleans specified model variable that assumes deleting
|
alpar@1
|
3230 |
-- all stuff dynamically allocated during the generation phase. */
|
alpar@1
|
3231 |
|
alpar@1
|
3232 |
void clean_variable(MPL *mpl, VARIABLE *var)
|
alpar@1
|
3233 |
{ MEMBER *memb;
|
alpar@1
|
3234 |
/* clean subscript domain */
|
alpar@1
|
3235 |
clean_domain(mpl, var->domain);
|
alpar@1
|
3236 |
/* clean code for computing lower bound */
|
alpar@1
|
3237 |
clean_code(mpl, var->lbnd);
|
alpar@1
|
3238 |
/* clean code for computing upper bound */
|
alpar@1
|
3239 |
if (var->ubnd != var->lbnd) clean_code(mpl, var->ubnd);
|
alpar@1
|
3240 |
/* delete content array */
|
alpar@1
|
3241 |
for (memb = var->array->head; memb != NULL; memb = memb->next)
|
alpar@1
|
3242 |
dmp_free_atom(mpl->elemvars, memb->value.var, sizeof(ELEMVAR));
|
alpar@1
|
3243 |
delete_array(mpl, var->array), var->array = NULL;
|
alpar@1
|
3244 |
return;
|
alpar@1
|
3245 |
}
|
alpar@1
|
3246 |
|
alpar@1
|
3247 |
/**********************************************************************/
|
alpar@1
|
3248 |
/* * * MODEL CONSTRAINTS AND OBJECTIVES * * */
|
alpar@1
|
3249 |
/**********************************************************************/
|
alpar@1
|
3250 |
|
alpar@1
|
3251 |
/*----------------------------------------------------------------------
|
alpar@1
|
3252 |
-- take_member_con - obtain reference to elemental constraint.
|
alpar@1
|
3253 |
--
|
alpar@1
|
3254 |
-- This routine obtains a reference to elemental constraint assigned
|
alpar@1
|
3255 |
-- to given member of specified model constraint and returns it on exit.
|
alpar@1
|
3256 |
-- If necessary, new elemental constraint is created.
|
alpar@1
|
3257 |
--
|
alpar@1
|
3258 |
-- NOTE: This routine must not be called out of domain scope. */
|
alpar@1
|
3259 |
|
alpar@1
|
3260 |
ELEMCON *take_member_con /* returns reference */
|
alpar@1
|
3261 |
( MPL *mpl,
|
alpar@1
|
3262 |
CONSTRAINT *con, /* not changed */
|
alpar@1
|
3263 |
TUPLE *tuple /* not changed */
|
alpar@1
|
3264 |
)
|
alpar@1
|
3265 |
{ MEMBER *memb;
|
alpar@1
|
3266 |
ELEMCON *refer;
|
alpar@1
|
3267 |
/* find member in the constraint array */
|
alpar@1
|
3268 |
memb = find_member(mpl, con->array, tuple);
|
alpar@1
|
3269 |
if (memb != NULL)
|
alpar@1
|
3270 |
{ /* member exists, so just take the reference */
|
alpar@1
|
3271 |
refer = memb->value.con;
|
alpar@1
|
3272 |
}
|
alpar@1
|
3273 |
else
|
alpar@1
|
3274 |
{ /* member is referenced for the first time and therefore does
|
alpar@1
|
3275 |
not exist; create new elemental constraint, assign it to new
|
alpar@1
|
3276 |
member, and add the member to the constraint array */
|
alpar@1
|
3277 |
memb = add_member(mpl, con->array, copy_tuple(mpl, tuple));
|
alpar@1
|
3278 |
refer = (memb->value.con =
|
alpar@1
|
3279 |
dmp_get_atom(mpl->elemcons, sizeof(ELEMCON)));
|
alpar@1
|
3280 |
refer->i = 0;
|
alpar@1
|
3281 |
refer->con = con;
|
alpar@1
|
3282 |
refer->memb = memb;
|
alpar@1
|
3283 |
/* compute linear form */
|
alpar@1
|
3284 |
xassert(con->code != NULL);
|
alpar@1
|
3285 |
refer->form = eval_formula(mpl, con->code);
|
alpar@1
|
3286 |
/* compute lower and upper bounds */
|
alpar@1
|
3287 |
if (con->lbnd == NULL && con->ubnd == NULL)
|
alpar@1
|
3288 |
{ /* objective has no bounds */
|
alpar@1
|
3289 |
double temp;
|
alpar@1
|
3290 |
xassert(con->type == A_MINIMIZE || con->type == A_MAXIMIZE);
|
alpar@1
|
3291 |
/* carry the constant term to the right-hand side */
|
alpar@1
|
3292 |
refer->form = remove_constant(mpl, refer->form, &temp);
|
alpar@1
|
3293 |
refer->lbnd = refer->ubnd = - temp;
|
alpar@1
|
3294 |
}
|
alpar@1
|
3295 |
else if (con->lbnd != NULL && con->ubnd == NULL)
|
alpar@1
|
3296 |
{ /* constraint a * x + b >= c * y + d is transformed to the
|
alpar@1
|
3297 |
standard form a * x - c * y >= d - b */
|
alpar@1
|
3298 |
double temp;
|
alpar@1
|
3299 |
xassert(con->type == A_CONSTRAINT);
|
alpar@1
|
3300 |
refer->form = linear_comb(mpl,
|
alpar@1
|
3301 |
+1.0, refer->form,
|
alpar@1
|
3302 |
-1.0, eval_formula(mpl, con->lbnd));
|
alpar@1
|
3303 |
refer->form = remove_constant(mpl, refer->form, &temp);
|
alpar@1
|
3304 |
refer->lbnd = - temp;
|
alpar@1
|
3305 |
refer->ubnd = 0.0;
|
alpar@1
|
3306 |
}
|
alpar@1
|
3307 |
else if (con->lbnd == NULL && con->ubnd != NULL)
|
alpar@1
|
3308 |
{ /* constraint a * x + b <= c * y + d is transformed to the
|
alpar@1
|
3309 |
standard form a * x - c * y <= d - b */
|
alpar@1
|
3310 |
double temp;
|
alpar@1
|
3311 |
xassert(con->type == A_CONSTRAINT);
|
alpar@1
|
3312 |
refer->form = linear_comb(mpl,
|
alpar@1
|
3313 |
+1.0, refer->form,
|
alpar@1
|
3314 |
-1.0, eval_formula(mpl, con->ubnd));
|
alpar@1
|
3315 |
refer->form = remove_constant(mpl, refer->form, &temp);
|
alpar@1
|
3316 |
refer->lbnd = 0.0;
|
alpar@1
|
3317 |
refer->ubnd = - temp;
|
alpar@1
|
3318 |
}
|
alpar@1
|
3319 |
else if (con->lbnd == con->ubnd)
|
alpar@1
|
3320 |
{ /* constraint a * x + b = c * y + d is transformed to the
|
alpar@1
|
3321 |
standard form a * x - c * y = d - b */
|
alpar@1
|
3322 |
double temp;
|
alpar@1
|
3323 |
xassert(con->type == A_CONSTRAINT);
|
alpar@1
|
3324 |
refer->form = linear_comb(mpl,
|
alpar@1
|
3325 |
+1.0, refer->form,
|
alpar@1
|
3326 |
-1.0, eval_formula(mpl, con->lbnd));
|
alpar@1
|
3327 |
refer->form = remove_constant(mpl, refer->form, &temp);
|
alpar@1
|
3328 |
refer->lbnd = refer->ubnd = - temp;
|
alpar@1
|
3329 |
}
|
alpar@1
|
3330 |
else
|
alpar@1
|
3331 |
{ /* ranged constraint c <= a * x + b <= d is transformed to
|
alpar@1
|
3332 |
the standard form c - b <= a * x <= d - b */
|
alpar@1
|
3333 |
double temp, temp1, temp2;
|
alpar@1
|
3334 |
xassert(con->type == A_CONSTRAINT);
|
alpar@1
|
3335 |
refer->form = remove_constant(mpl, refer->form, &temp);
|
alpar@1
|
3336 |
xassert(remove_constant(mpl, eval_formula(mpl, con->lbnd),
|
alpar@1
|
3337 |
&temp1) == NULL);
|
alpar@1
|
3338 |
xassert(remove_constant(mpl, eval_formula(mpl, con->ubnd),
|
alpar@1
|
3339 |
&temp2) == NULL);
|
alpar@1
|
3340 |
refer->lbnd = fp_sub(mpl, temp1, temp);
|
alpar@1
|
3341 |
refer->ubnd = fp_sub(mpl, temp2, temp);
|
alpar@1
|
3342 |
}
|
alpar@1
|
3343 |
#if 1 /* 15/V-2010 */
|
alpar@1
|
3344 |
/* solution has not been obtained by the solver yet */
|
alpar@1
|
3345 |
refer->stat = 0;
|
alpar@1
|
3346 |
refer->prim = refer->dual = 0.0;
|
alpar@1
|
3347 |
#endif
|
alpar@1
|
3348 |
}
|
alpar@1
|
3349 |
return refer;
|
alpar@1
|
3350 |
}
|
alpar@1
|
3351 |
|
alpar@1
|
3352 |
/*----------------------------------------------------------------------
|
alpar@1
|
3353 |
-- eval_member_con - evaluate reference to elemental constraint.
|
alpar@1
|
3354 |
--
|
alpar@1
|
3355 |
-- This routine evaluates a reference to elemental constraint assigned
|
alpar@1
|
3356 |
-- to member of specified model constraint and returns it on exit. */
|
alpar@1
|
3357 |
|
alpar@1
|
3358 |
struct eval_con_info
|
alpar@1
|
3359 |
{ /* working info used by the routine eval_member_con */
|
alpar@1
|
3360 |
CONSTRAINT *con;
|
alpar@1
|
3361 |
/* model constraint */
|
alpar@1
|
3362 |
TUPLE *tuple;
|
alpar@1
|
3363 |
/* n-tuple, which defines constraint member */
|
alpar@1
|
3364 |
ELEMCON *refer;
|
alpar@1
|
3365 |
/* evaluated reference to elemental constraint */
|
alpar@1
|
3366 |
};
|
alpar@1
|
3367 |
|
alpar@1
|
3368 |
static void eval_con_func(MPL *mpl, void *_info)
|
alpar@1
|
3369 |
{ /* this is auxiliary routine to work within domain scope */
|
alpar@1
|
3370 |
struct eval_con_info *info = _info;
|
alpar@1
|
3371 |
info->refer = take_member_con(mpl, info->con, info->tuple);
|
alpar@1
|
3372 |
return;
|
alpar@1
|
3373 |
}
|
alpar@1
|
3374 |
|
alpar@1
|
3375 |
ELEMCON *eval_member_con /* returns reference */
|
alpar@1
|
3376 |
( MPL *mpl,
|
alpar@1
|
3377 |
CONSTRAINT *con, /* not changed */
|
alpar@1
|
3378 |
TUPLE *tuple /* not changed */
|
alpar@1
|
3379 |
)
|
alpar@1
|
3380 |
{ /* this routine evaluates constraint member */
|
alpar@1
|
3381 |
struct eval_con_info _info, *info = &_info;
|
alpar@1
|
3382 |
xassert(con->dim == tuple_dimen(mpl, tuple));
|
alpar@1
|
3383 |
info->con = con;
|
alpar@1
|
3384 |
info->tuple = tuple;
|
alpar@1
|
3385 |
/* evaluate member, which has given n-tuple */
|
alpar@1
|
3386 |
if (eval_within_domain(mpl, info->con->domain, info->tuple, info,
|
alpar@1
|
3387 |
eval_con_func))
|
alpar@1
|
3388 |
out_of_domain(mpl, con->name, info->tuple);
|
alpar@1
|
3389 |
/* bring evaluated reference to the calling program */
|
alpar@1
|
3390 |
return info->refer;
|
alpar@1
|
3391 |
}
|
alpar@1
|
3392 |
|
alpar@1
|
3393 |
/*----------------------------------------------------------------------
|
alpar@1
|
3394 |
-- eval_whole_con - evaluate model constraint over entire domain.
|
alpar@1
|
3395 |
--
|
alpar@1
|
3396 |
-- This routine evaluates all members of specified model constraint over
|
alpar@1
|
3397 |
-- entire domain. */
|
alpar@1
|
3398 |
|
alpar@1
|
3399 |
static int whole_con_func(MPL *mpl, void *info)
|
alpar@1
|
3400 |
{ /* this is auxiliary routine to work within domain scope */
|
alpar@1
|
3401 |
CONSTRAINT *con = (CONSTRAINT *)info;
|
alpar@1
|
3402 |
TUPLE *tuple = get_domain_tuple(mpl, con->domain);
|
alpar@1
|
3403 |
eval_member_con(mpl, con, tuple);
|
alpar@1
|
3404 |
delete_tuple(mpl, tuple);
|
alpar@1
|
3405 |
return 0;
|
alpar@1
|
3406 |
}
|
alpar@1
|
3407 |
|
alpar@1
|
3408 |
void eval_whole_con(MPL *mpl, CONSTRAINT *con)
|
alpar@1
|
3409 |
{ loop_within_domain(mpl, con->domain, con, whole_con_func);
|
alpar@1
|
3410 |
return;
|
alpar@1
|
3411 |
}
|
alpar@1
|
3412 |
|
alpar@1
|
3413 |
/*----------------------------------------------------------------------
|
alpar@1
|
3414 |
-- clean_constraint - clean model constraint.
|
alpar@1
|
3415 |
--
|
alpar@1
|
3416 |
-- This routine cleans specified model constraint that assumes deleting
|
alpar@1
|
3417 |
-- all stuff dynamically allocated during the generation phase. */
|
alpar@1
|
3418 |
|
alpar@1
|
3419 |
void clean_constraint(MPL *mpl, CONSTRAINT *con)
|
alpar@1
|
3420 |
{ MEMBER *memb;
|
alpar@1
|
3421 |
/* clean subscript domain */
|
alpar@1
|
3422 |
clean_domain(mpl, con->domain);
|
alpar@1
|
3423 |
/* clean code for computing main linear form */
|
alpar@1
|
3424 |
clean_code(mpl, con->code);
|
alpar@1
|
3425 |
/* clean code for computing lower bound */
|
alpar@1
|
3426 |
clean_code(mpl, con->lbnd);
|
alpar@1
|
3427 |
/* clean code for computing upper bound */
|
alpar@1
|
3428 |
if (con->ubnd != con->lbnd) clean_code(mpl, con->ubnd);
|
alpar@1
|
3429 |
/* delete content array */
|
alpar@1
|
3430 |
for (memb = con->array->head; memb != NULL; memb = memb->next)
|
alpar@1
|
3431 |
{ delete_formula(mpl, memb->value.con->form);
|
alpar@1
|
3432 |
dmp_free_atom(mpl->elemcons, memb->value.con, sizeof(ELEMCON));
|
alpar@1
|
3433 |
}
|
alpar@1
|
3434 |
delete_array(mpl, con->array), con->array = NULL;
|
alpar@1
|
3435 |
return;
|
alpar@1
|
3436 |
}
|
alpar@1
|
3437 |
|
alpar@1
|
3438 |
/**********************************************************************/
|
alpar@1
|
3439 |
/* * * PSEUDO-CODE * * */
|
alpar@1
|
3440 |
/**********************************************************************/
|
alpar@1
|
3441 |
|
alpar@1
|
3442 |
/*----------------------------------------------------------------------
|
alpar@1
|
3443 |
-- eval_numeric - evaluate pseudo-code to determine numeric value.
|
alpar@1
|
3444 |
--
|
alpar@1
|
3445 |
-- This routine evaluates specified pseudo-code to determine resultant
|
alpar@1
|
3446 |
-- numeric value, which is returned on exit. */
|
alpar@1
|
3447 |
|
alpar@1
|
3448 |
struct iter_num_info
|
alpar@1
|
3449 |
{ /* working info used by the routine iter_num_func */
|
alpar@1
|
3450 |
CODE *code;
|
alpar@1
|
3451 |
/* pseudo-code for iterated operation to be performed */
|
alpar@1
|
3452 |
double value;
|
alpar@1
|
3453 |
/* resultant value */
|
alpar@1
|
3454 |
};
|
alpar@1
|
3455 |
|
alpar@1
|
3456 |
static int iter_num_func(MPL *mpl, void *_info)
|
alpar@1
|
3457 |
{ /* this is auxiliary routine used to perform iterated operation
|
alpar@1
|
3458 |
on numeric "integrand" within domain scope */
|
alpar@1
|
3459 |
struct iter_num_info *info = _info;
|
alpar@1
|
3460 |
double temp;
|
alpar@1
|
3461 |
temp = eval_numeric(mpl, info->code->arg.loop.x);
|
alpar@1
|
3462 |
switch (info->code->op)
|
alpar@1
|
3463 |
{ case O_SUM:
|
alpar@1
|
3464 |
/* summation over domain */
|
alpar@1
|
3465 |
info->value = fp_add(mpl, info->value, temp);
|
alpar@1
|
3466 |
break;
|
alpar@1
|
3467 |
case O_PROD:
|
alpar@1
|
3468 |
/* multiplication over domain */
|
alpar@1
|
3469 |
info->value = fp_mul(mpl, info->value, temp);
|
alpar@1
|
3470 |
break;
|
alpar@1
|
3471 |
case O_MINIMUM:
|
alpar@1
|
3472 |
/* minimum over domain */
|
alpar@1
|
3473 |
if (info->value > temp) info->value = temp;
|
alpar@1
|
3474 |
break;
|
alpar@1
|
3475 |
case O_MAXIMUM:
|
alpar@1
|
3476 |
/* maximum over domain */
|
alpar@1
|
3477 |
if (info->value < temp) info->value = temp;
|
alpar@1
|
3478 |
break;
|
alpar@1
|
3479 |
default:
|
alpar@1
|
3480 |
xassert(info != info);
|
alpar@1
|
3481 |
}
|
alpar@1
|
3482 |
return 0;
|
alpar@1
|
3483 |
}
|
alpar@1
|
3484 |
|
alpar@1
|
3485 |
double eval_numeric(MPL *mpl, CODE *code)
|
alpar@1
|
3486 |
{ double value;
|
alpar@1
|
3487 |
xassert(code != NULL);
|
alpar@1
|
3488 |
xassert(code->type == A_NUMERIC);
|
alpar@1
|
3489 |
xassert(code->dim == 0);
|
alpar@1
|
3490 |
/* if the operation has a side effect, invalidate and delete the
|
alpar@1
|
3491 |
resultant value */
|
alpar@1
|
3492 |
if (code->vflag && code->valid)
|
alpar@1
|
3493 |
{ code->valid = 0;
|
alpar@1
|
3494 |
delete_value(mpl, code->type, &code->value);
|
alpar@1
|
3495 |
}
|
alpar@1
|
3496 |
/* if resultant value is valid, no evaluation is needed */
|
alpar@1
|
3497 |
if (code->valid)
|
alpar@1
|
3498 |
{ value = code->value.num;
|
alpar@1
|
3499 |
goto done;
|
alpar@1
|
3500 |
}
|
alpar@1
|
3501 |
/* evaluate pseudo-code recursively */
|
alpar@1
|
3502 |
switch (code->op)
|
alpar@1
|
3503 |
{ case O_NUMBER:
|
alpar@1
|
3504 |
/* take floating-point number */
|
alpar@1
|
3505 |
value = code->arg.num;
|
alpar@1
|
3506 |
break;
|
alpar@1
|
3507 |
case O_MEMNUM:
|
alpar@1
|
3508 |
/* take member of numeric parameter */
|
alpar@1
|
3509 |
{ TUPLE *tuple;
|
alpar@1
|
3510 |
ARG_LIST *e;
|
alpar@1
|
3511 |
tuple = create_tuple(mpl);
|
alpar@1
|
3512 |
for (e = code->arg.par.list; e != NULL; e = e->next)
|
alpar@1
|
3513 |
tuple = expand_tuple(mpl, tuple, eval_symbolic(mpl,
|
alpar@1
|
3514 |
e->x));
|
alpar@1
|
3515 |
value = eval_member_num(mpl, code->arg.par.par, tuple);
|
alpar@1
|
3516 |
delete_tuple(mpl, tuple);
|
alpar@1
|
3517 |
}
|
alpar@1
|
3518 |
break;
|
alpar@1
|
3519 |
case O_MEMVAR:
|
alpar@1
|
3520 |
/* take computed value of elemental variable */
|
alpar@1
|
3521 |
{ TUPLE *tuple;
|
alpar@1
|
3522 |
ARG_LIST *e;
|
alpar@1
|
3523 |
#if 1 /* 15/V-2010 */
|
alpar@1
|
3524 |
ELEMVAR *var;
|
alpar@1
|
3525 |
#endif
|
alpar@1
|
3526 |
tuple = create_tuple(mpl);
|
alpar@1
|
3527 |
for (e = code->arg.var.list; e != NULL; e = e->next)
|
alpar@1
|
3528 |
tuple = expand_tuple(mpl, tuple, eval_symbolic(mpl,
|
alpar@1
|
3529 |
e->x));
|
alpar@1
|
3530 |
#if 0 /* 15/V-2010 */
|
alpar@1
|
3531 |
value = eval_member_var(mpl, code->arg.var.var, tuple)
|
alpar@1
|
3532 |
->value;
|
alpar@1
|
3533 |
#else
|
alpar@1
|
3534 |
var = eval_member_var(mpl, code->arg.var.var, tuple);
|
alpar@1
|
3535 |
switch (code->arg.var.suff)
|
alpar@1
|
3536 |
{ case DOT_LB:
|
alpar@1
|
3537 |
if (var->var->lbnd == NULL)
|
alpar@1
|
3538 |
value = -DBL_MAX;
|
alpar@1
|
3539 |
else
|
alpar@1
|
3540 |
value = var->lbnd;
|
alpar@1
|
3541 |
break;
|
alpar@1
|
3542 |
case DOT_UB:
|
alpar@1
|
3543 |
if (var->var->ubnd == NULL)
|
alpar@1
|
3544 |
value = +DBL_MAX;
|
alpar@1
|
3545 |
else
|
alpar@1
|
3546 |
value = var->ubnd;
|
alpar@1
|
3547 |
break;
|
alpar@1
|
3548 |
case DOT_STATUS:
|
alpar@1
|
3549 |
value = var->stat;
|
alpar@1
|
3550 |
break;
|
alpar@1
|
3551 |
case DOT_VAL:
|
alpar@1
|
3552 |
value = var->prim;
|
alpar@1
|
3553 |
break;
|
alpar@1
|
3554 |
case DOT_DUAL:
|
alpar@1
|
3555 |
value = var->dual;
|
alpar@1
|
3556 |
break;
|
alpar@1
|
3557 |
default:
|
alpar@1
|
3558 |
xassert(code != code);
|
alpar@1
|
3559 |
}
|
alpar@1
|
3560 |
#endif
|
alpar@1
|
3561 |
delete_tuple(mpl, tuple);
|
alpar@1
|
3562 |
}
|
alpar@1
|
3563 |
break;
|
alpar@1
|
3564 |
#if 1 /* 15/V-2010 */
|
alpar@1
|
3565 |
case O_MEMCON:
|
alpar@1
|
3566 |
/* take computed value of elemental constraint */
|
alpar@1
|
3567 |
{ TUPLE *tuple;
|
alpar@1
|
3568 |
ARG_LIST *e;
|
alpar@1
|
3569 |
ELEMCON *con;
|
alpar@1
|
3570 |
tuple = create_tuple(mpl);
|
alpar@1
|
3571 |
for (e = code->arg.con.list; e != NULL; e = e->next)
|
alpar@1
|
3572 |
tuple = expand_tuple(mpl, tuple, eval_symbolic(mpl,
|
alpar@1
|
3573 |
e->x));
|
alpar@1
|
3574 |
con = eval_member_con(mpl, code->arg.con.con, tuple);
|
alpar@1
|
3575 |
switch (code->arg.con.suff)
|
alpar@1
|
3576 |
{ case DOT_LB:
|
alpar@1
|
3577 |
if (con->con->lbnd == NULL)
|
alpar@1
|
3578 |
value = -DBL_MAX;
|
alpar@1
|
3579 |
else
|
alpar@1
|
3580 |
value = con->lbnd;
|
alpar@1
|
3581 |
break;
|
alpar@1
|
3582 |
case DOT_UB:
|
alpar@1
|
3583 |
if (con->con->ubnd == NULL)
|
alpar@1
|
3584 |
value = +DBL_MAX;
|
alpar@1
|
3585 |
else
|
alpar@1
|
3586 |
value = con->ubnd;
|
alpar@1
|
3587 |
break;
|
alpar@1
|
3588 |
case DOT_STATUS:
|
alpar@1
|
3589 |
value = con->stat;
|
alpar@1
|
3590 |
break;
|
alpar@1
|
3591 |
case DOT_VAL:
|
alpar@1
|
3592 |
value = con->prim;
|
alpar@1
|
3593 |
break;
|
alpar@1
|
3594 |
case DOT_DUAL:
|
alpar@1
|
3595 |
value = con->dual;
|
alpar@1
|
3596 |
break;
|
alpar@1
|
3597 |
default:
|
alpar@1
|
3598 |
xassert(code != code);
|
alpar@1
|
3599 |
}
|
alpar@1
|
3600 |
delete_tuple(mpl, tuple);
|
alpar@1
|
3601 |
}
|
alpar@1
|
3602 |
break;
|
alpar@1
|
3603 |
#endif
|
alpar@1
|
3604 |
case O_IRAND224:
|
alpar@1
|
3605 |
/* pseudo-random in [0, 2^24-1] */
|
alpar@1
|
3606 |
value = fp_irand224(mpl);
|
alpar@1
|
3607 |
break;
|
alpar@1
|
3608 |
case O_UNIFORM01:
|
alpar@1
|
3609 |
/* pseudo-random in [0, 1) */
|
alpar@1
|
3610 |
value = fp_uniform01(mpl);
|
alpar@1
|
3611 |
break;
|
alpar@1
|
3612 |
case O_NORMAL01:
|
alpar@1
|
3613 |
/* gaussian random, mu = 0, sigma = 1 */
|
alpar@1
|
3614 |
value = fp_normal01(mpl);
|
alpar@1
|
3615 |
break;
|
alpar@1
|
3616 |
case O_GMTIME:
|
alpar@1
|
3617 |
/* current calendar time */
|
alpar@1
|
3618 |
value = fn_gmtime(mpl);
|
alpar@1
|
3619 |
break;
|
alpar@1
|
3620 |
case O_CVTNUM:
|
alpar@1
|
3621 |
/* conversion to numeric */
|
alpar@1
|
3622 |
{ SYMBOL *sym;
|
alpar@1
|
3623 |
sym = eval_symbolic(mpl, code->arg.arg.x);
|
alpar@1
|
3624 |
#if 0 /* 23/XI-2008 */
|
alpar@1
|
3625 |
if (sym->str != NULL)
|
alpar@1
|
3626 |
error(mpl, "cannot convert %s to floating-point numbe"
|
alpar@1
|
3627 |
"r", format_symbol(mpl, sym));
|
alpar@1
|
3628 |
value = sym->num;
|
alpar@1
|
3629 |
#else
|
alpar@1
|
3630 |
if (sym->str == NULL)
|
alpar@1
|
3631 |
value = sym->num;
|
alpar@1
|
3632 |
else
|
alpar@1
|
3633 |
{ if (str2num(sym->str, &value))
|
alpar@1
|
3634 |
error(mpl, "cannot convert %s to floating-point nu"
|
alpar@1
|
3635 |
"mber", format_symbol(mpl, sym));
|
alpar@1
|
3636 |
}
|
alpar@1
|
3637 |
#endif
|
alpar@1
|
3638 |
delete_symbol(mpl, sym);
|
alpar@1
|
3639 |
}
|
alpar@1
|
3640 |
break;
|
alpar@1
|
3641 |
case O_PLUS:
|
alpar@1
|
3642 |
/* unary plus */
|
alpar@1
|
3643 |
value = + eval_numeric(mpl, code->arg.arg.x);
|
alpar@1
|
3644 |
break;
|
alpar@1
|
3645 |
case O_MINUS:
|
alpar@1
|
3646 |
/* unary minus */
|
alpar@1
|
3647 |
value = - eval_numeric(mpl, code->arg.arg.x);
|
alpar@1
|
3648 |
break;
|
alpar@1
|
3649 |
case O_ABS:
|
alpar@1
|
3650 |
/* absolute value */
|
alpar@1
|
3651 |
value = fabs(eval_numeric(mpl, code->arg.arg.x));
|
alpar@1
|
3652 |
break;
|
alpar@1
|
3653 |
case O_CEIL:
|
alpar@1
|
3654 |
/* round upward ("ceiling of x") */
|
alpar@1
|
3655 |
value = ceil(eval_numeric(mpl, code->arg.arg.x));
|
alpar@1
|
3656 |
break;
|
alpar@1
|
3657 |
case O_FLOOR:
|
alpar@1
|
3658 |
/* round downward ("floor of x") */
|
alpar@1
|
3659 |
value = floor(eval_numeric(mpl, code->arg.arg.x));
|
alpar@1
|
3660 |
break;
|
alpar@1
|
3661 |
case O_EXP:
|
alpar@1
|
3662 |
/* base-e exponential */
|
alpar@1
|
3663 |
value = fp_exp(mpl, eval_numeric(mpl, code->arg.arg.x));
|
alpar@1
|
3664 |
break;
|
alpar@1
|
3665 |
case O_LOG:
|
alpar@1
|
3666 |
/* natural logarithm */
|
alpar@1
|
3667 |
value = fp_log(mpl, eval_numeric(mpl, code->arg.arg.x));
|
alpar@1
|
3668 |
break;
|
alpar@1
|
3669 |
case O_LOG10:
|
alpar@1
|
3670 |
/* common (decimal) logarithm */
|
alpar@1
|
3671 |
value = fp_log10(mpl, eval_numeric(mpl, code->arg.arg.x));
|
alpar@1
|
3672 |
break;
|
alpar@1
|
3673 |
case O_SQRT:
|
alpar@1
|
3674 |
/* square root */
|
alpar@1
|
3675 |
value = fp_sqrt(mpl, eval_numeric(mpl, code->arg.arg.x));
|
alpar@1
|
3676 |
break;
|
alpar@1
|
3677 |
case O_SIN:
|
alpar@1
|
3678 |
/* trigonometric sine */
|
alpar@1
|
3679 |
value = fp_sin(mpl, eval_numeric(mpl, code->arg.arg.x));
|
alpar@1
|
3680 |
break;
|
alpar@1
|
3681 |
case O_COS:
|
alpar@1
|
3682 |
/* trigonometric cosine */
|
alpar@1
|
3683 |
value = fp_cos(mpl, eval_numeric(mpl, code->arg.arg.x));
|
alpar@1
|
3684 |
break;
|
alpar@1
|
3685 |
case O_ATAN:
|
alpar@1
|
3686 |
/* trigonometric arctangent (one argument) */
|
alpar@1
|
3687 |
value = fp_atan(mpl, eval_numeric(mpl, code->arg.arg.x));
|
alpar@1
|
3688 |
break;
|
alpar@1
|
3689 |
case O_ATAN2:
|
alpar@1
|
3690 |
/* trigonometric arctangent (two arguments) */
|
alpar@1
|
3691 |
value = fp_atan2(mpl,
|
alpar@1
|
3692 |
eval_numeric(mpl, code->arg.arg.x),
|
alpar@1
|
3693 |
eval_numeric(mpl, code->arg.arg.y));
|
alpar@1
|
3694 |
break;
|
alpar@1
|
3695 |
case O_ROUND:
|
alpar@1
|
3696 |
/* round to nearest integer */
|
alpar@1
|
3697 |
value = fp_round(mpl,
|
alpar@1
|
3698 |
eval_numeric(mpl, code->arg.arg.x), 0.0);
|
alpar@1
|
3699 |
break;
|
alpar@1
|
3700 |
case O_ROUND2:
|
alpar@1
|
3701 |
/* round to n fractional digits */
|
alpar@1
|
3702 |
value = fp_round(mpl,
|
alpar@1
|
3703 |
eval_numeric(mpl, code->arg.arg.x),
|
alpar@1
|
3704 |
eval_numeric(mpl, code->arg.arg.y));
|
alpar@1
|
3705 |
break;
|
alpar@1
|
3706 |
case O_TRUNC:
|
alpar@1
|
3707 |
/* truncate to nearest integer */
|
alpar@1
|
3708 |
value = fp_trunc(mpl,
|
alpar@1
|
3709 |
eval_numeric(mpl, code->arg.arg.x), 0.0);
|
alpar@1
|
3710 |
break;
|
alpar@1
|
3711 |
case O_TRUNC2:
|
alpar@1
|
3712 |
/* truncate to n fractional digits */
|
alpar@1
|
3713 |
value = fp_trunc(mpl,
|
alpar@1
|
3714 |
eval_numeric(mpl, code->arg.arg.x),
|
alpar@1
|
3715 |
eval_numeric(mpl, code->arg.arg.y));
|
alpar@1
|
3716 |
break;
|
alpar@1
|
3717 |
case O_ADD:
|
alpar@1
|
3718 |
/* addition */
|
alpar@1
|
3719 |
value = fp_add(mpl,
|
alpar@1
|
3720 |
eval_numeric(mpl, code->arg.arg.x),
|
alpar@1
|
3721 |
eval_numeric(mpl, code->arg.arg.y));
|
alpar@1
|
3722 |
break;
|
alpar@1
|
3723 |
case O_SUB:
|
alpar@1
|
3724 |
/* subtraction */
|
alpar@1
|
3725 |
value = fp_sub(mpl,
|
alpar@1
|
3726 |
eval_numeric(mpl, code->arg.arg.x),
|
alpar@1
|
3727 |
eval_numeric(mpl, code->arg.arg.y));
|
alpar@1
|
3728 |
break;
|
alpar@1
|
3729 |
case O_LESS:
|
alpar@1
|
3730 |
/* non-negative subtraction */
|
alpar@1
|
3731 |
value = fp_less(mpl,
|
alpar@1
|
3732 |
eval_numeric(mpl, code->arg.arg.x),
|
alpar@1
|
3733 |
eval_numeric(mpl, code->arg.arg.y));
|
alpar@1
|
3734 |
break;
|
alpar@1
|
3735 |
case O_MUL:
|
alpar@1
|
3736 |
/* multiplication */
|
alpar@1
|
3737 |
value = fp_mul(mpl,
|
alpar@1
|
3738 |
eval_numeric(mpl, code->arg.arg.x),
|
alpar@1
|
3739 |
eval_numeric(mpl, code->arg.arg.y));
|
alpar@1
|
3740 |
break;
|
alpar@1
|
3741 |
case O_DIV:
|
alpar@1
|
3742 |
/* division */
|
alpar@1
|
3743 |
value = fp_div(mpl,
|
alpar@1
|
3744 |
eval_numeric(mpl, code->arg.arg.x),
|
alpar@1
|
3745 |
eval_numeric(mpl, code->arg.arg.y));
|
alpar@1
|
3746 |
break;
|
alpar@1
|
3747 |
case O_IDIV:
|
alpar@1
|
3748 |
/* quotient of exact division */
|
alpar@1
|
3749 |
value = fp_idiv(mpl,
|
alpar@1
|
3750 |
eval_numeric(mpl, code->arg.arg.x),
|
alpar@1
|
3751 |
eval_numeric(mpl, code->arg.arg.y));
|
alpar@1
|
3752 |
break;
|
alpar@1
|
3753 |
case O_MOD:
|
alpar@1
|
3754 |
/* remainder of exact division */
|
alpar@1
|
3755 |
value = fp_mod(mpl,
|
alpar@1
|
3756 |
eval_numeric(mpl, code->arg.arg.x),
|
alpar@1
|
3757 |
eval_numeric(mpl, code->arg.arg.y));
|
alpar@1
|
3758 |
break;
|
alpar@1
|
3759 |
case O_POWER:
|
alpar@1
|
3760 |
/* exponentiation (raise to power) */
|
alpar@1
|
3761 |
value = fp_power(mpl,
|
alpar@1
|
3762 |
eval_numeric(mpl, code->arg.arg.x),
|
alpar@1
|
3763 |
eval_numeric(mpl, code->arg.arg.y));
|
alpar@1
|
3764 |
break;
|
alpar@1
|
3765 |
case O_UNIFORM:
|
alpar@1
|
3766 |
/* pseudo-random in [a, b) */
|
alpar@1
|
3767 |
value = fp_uniform(mpl,
|
alpar@1
|
3768 |
eval_numeric(mpl, code->arg.arg.x),
|
alpar@1
|
3769 |
eval_numeric(mpl, code->arg.arg.y));
|
alpar@1
|
3770 |
break;
|
alpar@1
|
3771 |
case O_NORMAL:
|
alpar@1
|
3772 |
/* gaussian random, given mu and sigma */
|
alpar@1
|
3773 |
value = fp_normal(mpl,
|
alpar@1
|
3774 |
eval_numeric(mpl, code->arg.arg.x),
|
alpar@1
|
3775 |
eval_numeric(mpl, code->arg.arg.y));
|
alpar@1
|
3776 |
break;
|
alpar@1
|
3777 |
case O_CARD:
|
alpar@1
|
3778 |
{ ELEMSET *set;
|
alpar@1
|
3779 |
set = eval_elemset(mpl, code->arg.arg.x);
|
alpar@1
|
3780 |
value = set->size;
|
alpar@1
|
3781 |
delete_array(mpl, set);
|
alpar@1
|
3782 |
}
|
alpar@1
|
3783 |
break;
|
alpar@1
|
3784 |
case O_LENGTH:
|
alpar@1
|
3785 |
{ SYMBOL *sym;
|
alpar@1
|
3786 |
char str[MAX_LENGTH+1];
|
alpar@1
|
3787 |
sym = eval_symbolic(mpl, code->arg.arg.x);
|
alpar@1
|
3788 |
if (sym->str == NULL)
|
alpar@1
|
3789 |
sprintf(str, "%.*g", DBL_DIG, sym->num);
|
alpar@1
|
3790 |
else
|
alpar@1
|
3791 |
fetch_string(mpl, sym->str, str);
|
alpar@1
|
3792 |
delete_symbol(mpl, sym);
|
alpar@1
|
3793 |
value = strlen(str);
|
alpar@1
|
3794 |
}
|
alpar@1
|
3795 |
break;
|
alpar@1
|
3796 |
case O_STR2TIME:
|
alpar@1
|
3797 |
{ SYMBOL *sym;
|
alpar@1
|
3798 |
char str[MAX_LENGTH+1], fmt[MAX_LENGTH+1];
|
alpar@1
|
3799 |
sym = eval_symbolic(mpl, code->arg.arg.x);
|
alpar@1
|
3800 |
if (sym->str == NULL)
|
alpar@1
|
3801 |
sprintf(str, "%.*g", DBL_DIG, sym->num);
|
alpar@1
|
3802 |
else
|
alpar@1
|
3803 |
fetch_string(mpl, sym->str, str);
|
alpar@1
|
3804 |
delete_symbol(mpl, sym);
|
alpar@1
|
3805 |
sym = eval_symbolic(mpl, code->arg.arg.y);
|
alpar@1
|
3806 |
if (sym->str == NULL)
|
alpar@1
|
3807 |
sprintf(fmt, "%.*g", DBL_DIG, sym->num);
|
alpar@1
|
3808 |
else
|
alpar@1
|
3809 |
fetch_string(mpl, sym->str, fmt);
|
alpar@1
|
3810 |
delete_symbol(mpl, sym);
|
alpar@1
|
3811 |
value = fn_str2time(mpl, str, fmt);
|
alpar@1
|
3812 |
}
|
alpar@1
|
3813 |
break;
|
alpar@1
|
3814 |
case O_FORK:
|
alpar@1
|
3815 |
/* if-then-else */
|
alpar@1
|
3816 |
if (eval_logical(mpl, code->arg.arg.x))
|
alpar@1
|
3817 |
value = eval_numeric(mpl, code->arg.arg.y);
|
alpar@1
|
3818 |
else if (code->arg.arg.z == NULL)
|
alpar@1
|
3819 |
value = 0.0;
|
alpar@1
|
3820 |
else
|
alpar@1
|
3821 |
value = eval_numeric(mpl, code->arg.arg.z);
|
alpar@1
|
3822 |
break;
|
alpar@1
|
3823 |
case O_MIN:
|
alpar@1
|
3824 |
/* minimal value (n-ary) */
|
alpar@1
|
3825 |
{ ARG_LIST *e;
|
alpar@1
|
3826 |
double temp;
|
alpar@1
|
3827 |
value = +DBL_MAX;
|
alpar@1
|
3828 |
for (e = code->arg.list; e != NULL; e = e->next)
|
alpar@1
|
3829 |
{ temp = eval_numeric(mpl, e->x);
|
alpar@1
|
3830 |
if (value > temp) value = temp;
|
alpar@1
|
3831 |
}
|
alpar@1
|
3832 |
}
|
alpar@1
|
3833 |
break;
|
alpar@1
|
3834 |
case O_MAX:
|
alpar@1
|
3835 |
/* maximal value (n-ary) */
|
alpar@1
|
3836 |
{ ARG_LIST *e;
|
alpar@1
|
3837 |
double temp;
|
alpar@1
|
3838 |
value = -DBL_MAX;
|
alpar@1
|
3839 |
for (e = code->arg.list; e != NULL; e = e->next)
|
alpar@1
|
3840 |
{ temp = eval_numeric(mpl, e->x);
|
alpar@1
|
3841 |
if (value < temp) value = temp;
|
alpar@1
|
3842 |
}
|
alpar@1
|
3843 |
}
|
alpar@1
|
3844 |
break;
|
alpar@1
|
3845 |
case O_SUM:
|
alpar@1
|
3846 |
/* summation over domain */
|
alpar@1
|
3847 |
{ struct iter_num_info _info, *info = &_info;
|
alpar@1
|
3848 |
info->code = code;
|
alpar@1
|
3849 |
info->value = 0.0;
|
alpar@1
|
3850 |
loop_within_domain(mpl, code->arg.loop.domain, info,
|
alpar@1
|
3851 |
iter_num_func);
|
alpar@1
|
3852 |
value = info->value;
|
alpar@1
|
3853 |
}
|
alpar@1
|
3854 |
break;
|
alpar@1
|
3855 |
case O_PROD:
|
alpar@1
|
3856 |
/* multiplication over domain */
|
alpar@1
|
3857 |
{ struct iter_num_info _info, *info = &_info;
|
alpar@1
|
3858 |
info->code = code;
|
alpar@1
|
3859 |
info->value = 1.0;
|
alpar@1
|
3860 |
loop_within_domain(mpl, code->arg.loop.domain, info,
|
alpar@1
|
3861 |
iter_num_func);
|
alpar@1
|
3862 |
value = info->value;
|
alpar@1
|
3863 |
}
|
alpar@1
|
3864 |
break;
|
alpar@1
|
3865 |
case O_MINIMUM:
|
alpar@1
|
3866 |
/* minimum over domain */
|
alpar@1
|
3867 |
{ struct iter_num_info _info, *info = &_info;
|
alpar@1
|
3868 |
info->code = code;
|
alpar@1
|
3869 |
info->value = +DBL_MAX;
|
alpar@1
|
3870 |
loop_within_domain(mpl, code->arg.loop.domain, info,
|
alpar@1
|
3871 |
iter_num_func);
|
alpar@1
|
3872 |
if (info->value == +DBL_MAX)
|
alpar@1
|
3873 |
error(mpl, "min{} over empty set; result undefined");
|
alpar@1
|
3874 |
value = info->value;
|
alpar@1
|
3875 |
}
|
alpar@1
|
3876 |
break;
|
alpar@1
|
3877 |
case O_MAXIMUM:
|
alpar@1
|
3878 |
/* maximum over domain */
|
alpar@1
|
3879 |
{ struct iter_num_info _info, *info = &_info;
|
alpar@1
|
3880 |
info->code = code;
|
alpar@1
|
3881 |
info->value = -DBL_MAX;
|
alpar@1
|
3882 |
loop_within_domain(mpl, code->arg.loop.domain, info,
|
alpar@1
|
3883 |
iter_num_func);
|
alpar@1
|
3884 |
if (info->value == -DBL_MAX)
|
alpar@1
|
3885 |
error(mpl, "max{} over empty set; result undefined");
|
alpar@1
|
3886 |
value = info->value;
|
alpar@1
|
3887 |
}
|
alpar@1
|
3888 |
break;
|
alpar@1
|
3889 |
default:
|
alpar@1
|
3890 |
xassert(code != code);
|
alpar@1
|
3891 |
}
|
alpar@1
|
3892 |
/* save resultant value */
|
alpar@1
|
3893 |
xassert(!code->valid);
|
alpar@1
|
3894 |
code->valid = 1;
|
alpar@1
|
3895 |
code->value.num = value;
|
alpar@1
|
3896 |
done: return value;
|
alpar@1
|
3897 |
}
|
alpar@1
|
3898 |
|
alpar@1
|
3899 |
/*----------------------------------------------------------------------
|
alpar@1
|
3900 |
-- eval_symbolic - evaluate pseudo-code to determine symbolic value.
|
alpar@1
|
3901 |
--
|
alpar@1
|
3902 |
-- This routine evaluates specified pseudo-code to determine resultant
|
alpar@1
|
3903 |
-- symbolic value, which is returned on exit. */
|
alpar@1
|
3904 |
|
alpar@1
|
3905 |
SYMBOL *eval_symbolic(MPL *mpl, CODE *code)
|
alpar@1
|
3906 |
{ SYMBOL *value;
|
alpar@1
|
3907 |
xassert(code != NULL);
|
alpar@1
|
3908 |
xassert(code->type == A_SYMBOLIC);
|
alpar@1
|
3909 |
xassert(code->dim == 0);
|
alpar@1
|
3910 |
/* if the operation has a side effect, invalidate and delete the
|
alpar@1
|
3911 |
resultant value */
|
alpar@1
|
3912 |
if (code->vflag && code->valid)
|
alpar@1
|
3913 |
{ code->valid = 0;
|
alpar@1
|
3914 |
delete_value(mpl, code->type, &code->value);
|
alpar@1
|
3915 |
}
|
alpar@1
|
3916 |
/* if resultant value is valid, no evaluation is needed */
|
alpar@1
|
3917 |
if (code->valid)
|
alpar@1
|
3918 |
{ value = copy_symbol(mpl, code->value.sym);
|
alpar@1
|
3919 |
goto done;
|
alpar@1
|
3920 |
}
|
alpar@1
|
3921 |
/* evaluate pseudo-code recursively */
|
alpar@1
|
3922 |
switch (code->op)
|
alpar@1
|
3923 |
{ case O_STRING:
|
alpar@1
|
3924 |
/* take character string */
|
alpar@1
|
3925 |
value = create_symbol_str(mpl, create_string(mpl,
|
alpar@1
|
3926 |
code->arg.str));
|
alpar@1
|
3927 |
break;
|
alpar@1
|
3928 |
case O_INDEX:
|
alpar@1
|
3929 |
/* take dummy index */
|
alpar@1
|
3930 |
xassert(code->arg.index.slot->value != NULL);
|
alpar@1
|
3931 |
value = copy_symbol(mpl, code->arg.index.slot->value);
|
alpar@1
|
3932 |
break;
|
alpar@1
|
3933 |
case O_MEMSYM:
|
alpar@1
|
3934 |
/* take member of symbolic parameter */
|
alpar@1
|
3935 |
{ TUPLE *tuple;
|
alpar@1
|
3936 |
ARG_LIST *e;
|
alpar@1
|
3937 |
tuple = create_tuple(mpl);
|
alpar@1
|
3938 |
for (e = code->arg.par.list; e != NULL; e = e->next)
|
alpar@1
|
3939 |
tuple = expand_tuple(mpl, tuple, eval_symbolic(mpl,
|
alpar@1
|
3940 |
e->x));
|
alpar@1
|
3941 |
value = eval_member_sym(mpl, code->arg.par.par, tuple);
|
alpar@1
|
3942 |
delete_tuple(mpl, tuple);
|
alpar@1
|
3943 |
}
|
alpar@1
|
3944 |
break;
|
alpar@1
|
3945 |
case O_CVTSYM:
|
alpar@1
|
3946 |
/* conversion to symbolic */
|
alpar@1
|
3947 |
value = create_symbol_num(mpl, eval_numeric(mpl,
|
alpar@1
|
3948 |
code->arg.arg.x));
|
alpar@1
|
3949 |
break;
|
alpar@1
|
3950 |
case O_CONCAT:
|
alpar@1
|
3951 |
/* concatenation */
|
alpar@1
|
3952 |
value = concat_symbols(mpl,
|
alpar@1
|
3953 |
eval_symbolic(mpl, code->arg.arg.x),
|
alpar@1
|
3954 |
eval_symbolic(mpl, code->arg.arg.y));
|
alpar@1
|
3955 |
break;
|
alpar@1
|
3956 |
case O_FORK:
|
alpar@1
|
3957 |
/* if-then-else */
|
alpar@1
|
3958 |
if (eval_logical(mpl, code->arg.arg.x))
|
alpar@1
|
3959 |
value = eval_symbolic(mpl, code->arg.arg.y);
|
alpar@1
|
3960 |
else if (code->arg.arg.z == NULL)
|
alpar@1
|
3961 |
value = create_symbol_num(mpl, 0.0);
|
alpar@1
|
3962 |
else
|
alpar@1
|
3963 |
value = eval_symbolic(mpl, code->arg.arg.z);
|
alpar@1
|
3964 |
break;
|
alpar@1
|
3965 |
case O_SUBSTR:
|
alpar@1
|
3966 |
case O_SUBSTR3:
|
alpar@1
|
3967 |
{ double pos, len;
|
alpar@1
|
3968 |
char str[MAX_LENGTH+1];
|
alpar@1
|
3969 |
value = eval_symbolic(mpl, code->arg.arg.x);
|
alpar@1
|
3970 |
if (value->str == NULL)
|
alpar@1
|
3971 |
sprintf(str, "%.*g", DBL_DIG, value->num);
|
alpar@1
|
3972 |
else
|
alpar@1
|
3973 |
fetch_string(mpl, value->str, str);
|
alpar@1
|
3974 |
delete_symbol(mpl, value);
|
alpar@1
|
3975 |
if (code->op == O_SUBSTR)
|
alpar@1
|
3976 |
{ pos = eval_numeric(mpl, code->arg.arg.y);
|
alpar@1
|
3977 |
if (pos != floor(pos))
|
alpar@1
|
3978 |
error(mpl, "substr('...', %.*g); non-integer secon"
|
alpar@1
|
3979 |
"d argument", DBL_DIG, pos);
|
alpar@1
|
3980 |
if (pos < 1 || pos > strlen(str) + 1)
|
alpar@1
|
3981 |
error(mpl, "substr('...', %.*g); substring out of "
|
alpar@1
|
3982 |
"range", DBL_DIG, pos);
|
alpar@1
|
3983 |
}
|
alpar@1
|
3984 |
else
|
alpar@1
|
3985 |
{ pos = eval_numeric(mpl, code->arg.arg.y);
|
alpar@1
|
3986 |
len = eval_numeric(mpl, code->arg.arg.z);
|
alpar@1
|
3987 |
if (pos != floor(pos) || len != floor(len))
|
alpar@1
|
3988 |
error(mpl, "substr('...', %.*g, %.*g); non-integer"
|
alpar@1
|
3989 |
" second and/or third argument", DBL_DIG, pos,
|
alpar@1
|
3990 |
DBL_DIG, len);
|
alpar@1
|
3991 |
if (pos < 1 || len < 0 || pos + len > strlen(str) + 1)
|
alpar@1
|
3992 |
error(mpl, "substr('...', %.*g, %.*g); substring o"
|
alpar@1
|
3993 |
"ut of range", DBL_DIG, pos, DBL_DIG, len);
|
alpar@1
|
3994 |
str[(int)pos + (int)len - 1] = '\0';
|
alpar@1
|
3995 |
}
|
alpar@1
|
3996 |
value = create_symbol_str(mpl, create_string(mpl, str +
|
alpar@1
|
3997 |
(int)pos - 1));
|
alpar@1
|
3998 |
}
|
alpar@1
|
3999 |
break;
|
alpar@1
|
4000 |
case O_TIME2STR:
|
alpar@1
|
4001 |
{ double num;
|
alpar@1
|
4002 |
SYMBOL *sym;
|
alpar@1
|
4003 |
char str[MAX_LENGTH+1], fmt[MAX_LENGTH+1];
|
alpar@1
|
4004 |
num = eval_numeric(mpl, code->arg.arg.x);
|
alpar@1
|
4005 |
sym = eval_symbolic(mpl, code->arg.arg.y);
|
alpar@1
|
4006 |
if (sym->str == NULL)
|
alpar@1
|
4007 |
sprintf(fmt, "%.*g", DBL_DIG, sym->num);
|
alpar@1
|
4008 |
else
|
alpar@1
|
4009 |
fetch_string(mpl, sym->str, fmt);
|
alpar@1
|
4010 |
delete_symbol(mpl, sym);
|
alpar@1
|
4011 |
fn_time2str(mpl, str, num, fmt);
|
alpar@1
|
4012 |
value = create_symbol_str(mpl, create_string(mpl, str));
|
alpar@1
|
4013 |
}
|
alpar@1
|
4014 |
break;
|
alpar@1
|
4015 |
default:
|
alpar@1
|
4016 |
xassert(code != code);
|
alpar@1
|
4017 |
}
|
alpar@1
|
4018 |
/* save resultant value */
|
alpar@1
|
4019 |
xassert(!code->valid);
|
alpar@1
|
4020 |
code->valid = 1;
|
alpar@1
|
4021 |
code->value.sym = copy_symbol(mpl, value);
|
alpar@1
|
4022 |
done: return value;
|
alpar@1
|
4023 |
}
|
alpar@1
|
4024 |
|
alpar@1
|
4025 |
/*----------------------------------------------------------------------
|
alpar@1
|
4026 |
-- eval_logical - evaluate pseudo-code to determine logical value.
|
alpar@1
|
4027 |
--
|
alpar@1
|
4028 |
-- This routine evaluates specified pseudo-code to determine resultant
|
alpar@1
|
4029 |
-- logical value, which is returned on exit. */
|
alpar@1
|
4030 |
|
alpar@1
|
4031 |
struct iter_log_info
|
alpar@1
|
4032 |
{ /* working info used by the routine iter_log_func */
|
alpar@1
|
4033 |
CODE *code;
|
alpar@1
|
4034 |
/* pseudo-code for iterated operation to be performed */
|
alpar@1
|
4035 |
int value;
|
alpar@1
|
4036 |
/* resultant value */
|
alpar@1
|
4037 |
};
|
alpar@1
|
4038 |
|
alpar@1
|
4039 |
static int iter_log_func(MPL *mpl, void *_info)
|
alpar@1
|
4040 |
{ /* this is auxiliary routine used to perform iterated operation
|
alpar@1
|
4041 |
on logical "integrand" within domain scope */
|
alpar@1
|
4042 |
struct iter_log_info *info = _info;
|
alpar@1
|
4043 |
int ret = 0;
|
alpar@1
|
4044 |
switch (info->code->op)
|
alpar@1
|
4045 |
{ case O_FORALL:
|
alpar@1
|
4046 |
/* conjunction over domain */
|
alpar@1
|
4047 |
info->value &= eval_logical(mpl, info->code->arg.loop.x);
|
alpar@1
|
4048 |
if (!info->value) ret = 1;
|
alpar@1
|
4049 |
break;
|
alpar@1
|
4050 |
case O_EXISTS:
|
alpar@1
|
4051 |
/* disjunction over domain */
|
alpar@1
|
4052 |
info->value |= eval_logical(mpl, info->code->arg.loop.x);
|
alpar@1
|
4053 |
if (info->value) ret = 1;
|
alpar@1
|
4054 |
break;
|
alpar@1
|
4055 |
default:
|
alpar@1
|
4056 |
xassert(info != info);
|
alpar@1
|
4057 |
}
|
alpar@1
|
4058 |
return ret;
|
alpar@1
|
4059 |
}
|
alpar@1
|
4060 |
|
alpar@1
|
4061 |
int eval_logical(MPL *mpl, CODE *code)
|
alpar@1
|
4062 |
{ int value;
|
alpar@1
|
4063 |
xassert(code->type == A_LOGICAL);
|
alpar@1
|
4064 |
xassert(code->dim == 0);
|
alpar@1
|
4065 |
/* if the operation has a side effect, invalidate and delete the
|
alpar@1
|
4066 |
resultant value */
|
alpar@1
|
4067 |
if (code->vflag && code->valid)
|
alpar@1
|
4068 |
{ code->valid = 0;
|
alpar@1
|
4069 |
delete_value(mpl, code->type, &code->value);
|
alpar@1
|
4070 |
}
|
alpar@1
|
4071 |
/* if resultant value is valid, no evaluation is needed */
|
alpar@1
|
4072 |
if (code->valid)
|
alpar@1
|
4073 |
{ value = code->value.bit;
|
alpar@1
|
4074 |
goto done;
|
alpar@1
|
4075 |
}
|
alpar@1
|
4076 |
/* evaluate pseudo-code recursively */
|
alpar@1
|
4077 |
switch (code->op)
|
alpar@1
|
4078 |
{ case O_CVTLOG:
|
alpar@1
|
4079 |
/* conversion to logical */
|
alpar@1
|
4080 |
value = (eval_numeric(mpl, code->arg.arg.x) != 0.0);
|
alpar@1
|
4081 |
break;
|
alpar@1
|
4082 |
case O_NOT:
|
alpar@1
|
4083 |
/* negation (logical "not") */
|
alpar@1
|
4084 |
value = !eval_logical(mpl, code->arg.arg.x);
|
alpar@1
|
4085 |
break;
|
alpar@1
|
4086 |
case O_LT:
|
alpar@1
|
4087 |
/* comparison on 'less than' */
|
alpar@1
|
4088 |
#if 0 /* 02/VIII-2008 */
|
alpar@1
|
4089 |
value = (eval_numeric(mpl, code->arg.arg.x) <
|
alpar@1
|
4090 |
eval_numeric(mpl, code->arg.arg.y));
|
alpar@1
|
4091 |
#else
|
alpar@1
|
4092 |
xassert(code->arg.arg.x != NULL);
|
alpar@1
|
4093 |
if (code->arg.arg.x->type == A_NUMERIC)
|
alpar@1
|
4094 |
value = (eval_numeric(mpl, code->arg.arg.x) <
|
alpar@1
|
4095 |
eval_numeric(mpl, code->arg.arg.y));
|
alpar@1
|
4096 |
else
|
alpar@1
|
4097 |
{ SYMBOL *sym1 = eval_symbolic(mpl, code->arg.arg.x);
|
alpar@1
|
4098 |
SYMBOL *sym2 = eval_symbolic(mpl, code->arg.arg.y);
|
alpar@1
|
4099 |
value = (compare_symbols(mpl, sym1, sym2) < 0);
|
alpar@1
|
4100 |
delete_symbol(mpl, sym1);
|
alpar@1
|
4101 |
delete_symbol(mpl, sym2);
|
alpar@1
|
4102 |
}
|
alpar@1
|
4103 |
#endif
|
alpar@1
|
4104 |
break;
|
alpar@1
|
4105 |
case O_LE:
|
alpar@1
|
4106 |
/* comparison on 'not greater than' */
|
alpar@1
|
4107 |
#if 0 /* 02/VIII-2008 */
|
alpar@1
|
4108 |
value = (eval_numeric(mpl, code->arg.arg.x) <=
|
alpar@1
|
4109 |
eval_numeric(mpl, code->arg.arg.y));
|
alpar@1
|
4110 |
#else
|
alpar@1
|
4111 |
xassert(code->arg.arg.x != NULL);
|
alpar@1
|
4112 |
if (code->arg.arg.x->type == A_NUMERIC)
|
alpar@1
|
4113 |
value = (eval_numeric(mpl, code->arg.arg.x) <=
|
alpar@1
|
4114 |
eval_numeric(mpl, code->arg.arg.y));
|
alpar@1
|
4115 |
else
|
alpar@1
|
4116 |
{ SYMBOL *sym1 = eval_symbolic(mpl, code->arg.arg.x);
|
alpar@1
|
4117 |
SYMBOL *sym2 = eval_symbolic(mpl, code->arg.arg.y);
|
alpar@1
|
4118 |
value = (compare_symbols(mpl, sym1, sym2) <= 0);
|
alpar@1
|
4119 |
delete_symbol(mpl, sym1);
|
alpar@1
|
4120 |
delete_symbol(mpl, sym2);
|
alpar@1
|
4121 |
}
|
alpar@1
|
4122 |
#endif
|
alpar@1
|
4123 |
break;
|
alpar@1
|
4124 |
case O_EQ:
|
alpar@1
|
4125 |
/* comparison on 'equal to' */
|
alpar@1
|
4126 |
xassert(code->arg.arg.x != NULL);
|
alpar@1
|
4127 |
if (code->arg.arg.x->type == A_NUMERIC)
|
alpar@1
|
4128 |
value = (eval_numeric(mpl, code->arg.arg.x) ==
|
alpar@1
|
4129 |
eval_numeric(mpl, code->arg.arg.y));
|
alpar@1
|
4130 |
else
|
alpar@1
|
4131 |
{ SYMBOL *sym1 = eval_symbolic(mpl, code->arg.arg.x);
|
alpar@1
|
4132 |
SYMBOL *sym2 = eval_symbolic(mpl, code->arg.arg.y);
|
alpar@1
|
4133 |
value = (compare_symbols(mpl, sym1, sym2) == 0);
|
alpar@1
|
4134 |
delete_symbol(mpl, sym1);
|
alpar@1
|
4135 |
delete_symbol(mpl, sym2);
|
alpar@1
|
4136 |
}
|
alpar@1
|
4137 |
break;
|
alpar@1
|
4138 |
case O_GE:
|
alpar@1
|
4139 |
/* comparison on 'not less than' */
|
alpar@1
|
4140 |
#if 0 /* 02/VIII-2008 */
|
alpar@1
|
4141 |
value = (eval_numeric(mpl, code->arg.arg.x) >=
|
alpar@1
|
4142 |
eval_numeric(mpl, code->arg.arg.y));
|
alpar@1
|
4143 |
#else
|
alpar@1
|
4144 |
xassert(code->arg.arg.x != NULL);
|
alpar@1
|
4145 |
if (code->arg.arg.x->type == A_NUMERIC)
|
alpar@1
|
4146 |
value = (eval_numeric(mpl, code->arg.arg.x) >=
|
alpar@1
|
4147 |
eval_numeric(mpl, code->arg.arg.y));
|
alpar@1
|
4148 |
else
|
alpar@1
|
4149 |
{ SYMBOL *sym1 = eval_symbolic(mpl, code->arg.arg.x);
|
alpar@1
|
4150 |
SYMBOL *sym2 = eval_symbolic(mpl, code->arg.arg.y);
|
alpar@1
|
4151 |
value = (compare_symbols(mpl, sym1, sym2) >= 0);
|
alpar@1
|
4152 |
delete_symbol(mpl, sym1);
|
alpar@1
|
4153 |
delete_symbol(mpl, sym2);
|
alpar@1
|
4154 |
}
|
alpar@1
|
4155 |
#endif
|
alpar@1
|
4156 |
break;
|
alpar@1
|
4157 |
case O_GT:
|
alpar@1
|
4158 |
/* comparison on 'greater than' */
|
alpar@1
|
4159 |
#if 0 /* 02/VIII-2008 */
|
alpar@1
|
4160 |
value = (eval_numeric(mpl, code->arg.arg.x) >
|
alpar@1
|
4161 |
eval_numeric(mpl, code->arg.arg.y));
|
alpar@1
|
4162 |
#else
|
alpar@1
|
4163 |
xassert(code->arg.arg.x != NULL);
|
alpar@1
|
4164 |
if (code->arg.arg.x->type == A_NUMERIC)
|
alpar@1
|
4165 |
value = (eval_numeric(mpl, code->arg.arg.x) >
|
alpar@1
|
4166 |
eval_numeric(mpl, code->arg.arg.y));
|
alpar@1
|
4167 |
else
|
alpar@1
|
4168 |
{ SYMBOL *sym1 = eval_symbolic(mpl, code->arg.arg.x);
|
alpar@1
|
4169 |
SYMBOL *sym2 = eval_symbolic(mpl, code->arg.arg.y);
|
alpar@1
|
4170 |
value = (compare_symbols(mpl, sym1, sym2) > 0);
|
alpar@1
|
4171 |
delete_symbol(mpl, sym1);
|
alpar@1
|
4172 |
delete_symbol(mpl, sym2);
|
alpar@1
|
4173 |
}
|
alpar@1
|
4174 |
#endif
|
alpar@1
|
4175 |
break;
|
alpar@1
|
4176 |
case O_NE:
|
alpar@1
|
4177 |
/* comparison on 'not equal to' */
|
alpar@1
|
4178 |
xassert(code->arg.arg.x != NULL);
|
alpar@1
|
4179 |
if (code->arg.arg.x->type == A_NUMERIC)
|
alpar@1
|
4180 |
value = (eval_numeric(mpl, code->arg.arg.x) !=
|
alpar@1
|
4181 |
eval_numeric(mpl, code->arg.arg.y));
|
alpar@1
|
4182 |
else
|
alpar@1
|
4183 |
{ SYMBOL *sym1 = eval_symbolic(mpl, code->arg.arg.x);
|
alpar@1
|
4184 |
SYMBOL *sym2 = eval_symbolic(mpl, code->arg.arg.y);
|
alpar@1
|
4185 |
value = (compare_symbols(mpl, sym1, sym2) != 0);
|
alpar@1
|
4186 |
delete_symbol(mpl, sym1);
|
alpar@1
|
4187 |
delete_symbol(mpl, sym2);
|
alpar@1
|
4188 |
}
|
alpar@1
|
4189 |
break;
|
alpar@1
|
4190 |
case O_AND:
|
alpar@1
|
4191 |
/* conjunction (logical "and") */
|
alpar@1
|
4192 |
value = eval_logical(mpl, code->arg.arg.x) &&
|
alpar@1
|
4193 |
eval_logical(mpl, code->arg.arg.y);
|
alpar@1
|
4194 |
break;
|
alpar@1
|
4195 |
case O_OR:
|
alpar@1
|
4196 |
/* disjunction (logical "or") */
|
alpar@1
|
4197 |
value = eval_logical(mpl, code->arg.arg.x) ||
|
alpar@1
|
4198 |
eval_logical(mpl, code->arg.arg.y);
|
alpar@1
|
4199 |
break;
|
alpar@1
|
4200 |
case O_IN:
|
alpar@1
|
4201 |
/* test on 'x in Y' */
|
alpar@1
|
4202 |
{ TUPLE *tuple;
|
alpar@1
|
4203 |
tuple = eval_tuple(mpl, code->arg.arg.x);
|
alpar@1
|
4204 |
value = is_member(mpl, code->arg.arg.y, tuple);
|
alpar@1
|
4205 |
delete_tuple(mpl, tuple);
|
alpar@1
|
4206 |
}
|
alpar@1
|
4207 |
break;
|
alpar@1
|
4208 |
case O_NOTIN:
|
alpar@1
|
4209 |
/* test on 'x not in Y' */
|
alpar@1
|
4210 |
{ TUPLE *tuple;
|
alpar@1
|
4211 |
tuple = eval_tuple(mpl, code->arg.arg.x);
|
alpar@1
|
4212 |
value = !is_member(mpl, code->arg.arg.y, tuple);
|
alpar@1
|
4213 |
delete_tuple(mpl, tuple);
|
alpar@1
|
4214 |
}
|
alpar@1
|
4215 |
break;
|
alpar@1
|
4216 |
case O_WITHIN:
|
alpar@1
|
4217 |
/* test on 'X within Y' */
|
alpar@1
|
4218 |
{ ELEMSET *set;
|
alpar@1
|
4219 |
MEMBER *memb;
|
alpar@1
|
4220 |
set = eval_elemset(mpl, code->arg.arg.x);
|
alpar@1
|
4221 |
value = 1;
|
alpar@1
|
4222 |
for (memb = set->head; memb != NULL; memb = memb->next)
|
alpar@1
|
4223 |
{ if (!is_member(mpl, code->arg.arg.y, memb->tuple))
|
alpar@1
|
4224 |
{ value = 0;
|
alpar@1
|
4225 |
break;
|
alpar@1
|
4226 |
}
|
alpar@1
|
4227 |
}
|
alpar@1
|
4228 |
delete_elemset(mpl, set);
|
alpar@1
|
4229 |
}
|
alpar@1
|
4230 |
break;
|
alpar@1
|
4231 |
case O_NOTWITHIN:
|
alpar@1
|
4232 |
/* test on 'X not within Y' */
|
alpar@1
|
4233 |
{ ELEMSET *set;
|
alpar@1
|
4234 |
MEMBER *memb;
|
alpar@1
|
4235 |
set = eval_elemset(mpl, code->arg.arg.x);
|
alpar@1
|
4236 |
value = 1;
|
alpar@1
|
4237 |
for (memb = set->head; memb != NULL; memb = memb->next)
|
alpar@1
|
4238 |
{ if (is_member(mpl, code->arg.arg.y, memb->tuple))
|
alpar@1
|
4239 |
{ value = 0;
|
alpar@1
|
4240 |
break;
|
alpar@1
|
4241 |
}
|
alpar@1
|
4242 |
}
|
alpar@1
|
4243 |
delete_elemset(mpl, set);
|
alpar@1
|
4244 |
}
|
alpar@1
|
4245 |
break;
|
alpar@1
|
4246 |
case O_FORALL:
|
alpar@1
|
4247 |
/* conjunction (A-quantification) */
|
alpar@1
|
4248 |
{ struct iter_log_info _info, *info = &_info;
|
alpar@1
|
4249 |
info->code = code;
|
alpar@1
|
4250 |
info->value = 1;
|
alpar@1
|
4251 |
loop_within_domain(mpl, code->arg.loop.domain, info,
|
alpar@1
|
4252 |
iter_log_func);
|
alpar@1
|
4253 |
value = info->value;
|
alpar@1
|
4254 |
}
|
alpar@1
|
4255 |
break;
|
alpar@1
|
4256 |
case O_EXISTS:
|
alpar@1
|
4257 |
/* disjunction (E-quantification) */
|
alpar@1
|
4258 |
{ struct iter_log_info _info, *info = &_info;
|
alpar@1
|
4259 |
info->code = code;
|
alpar@1
|
4260 |
info->value = 0;
|
alpar@1
|
4261 |
loop_within_domain(mpl, code->arg.loop.domain, info,
|
alpar@1
|
4262 |
iter_log_func);
|
alpar@1
|
4263 |
value = info->value;
|
alpar@1
|
4264 |
}
|
alpar@1
|
4265 |
break;
|
alpar@1
|
4266 |
default:
|
alpar@1
|
4267 |
xassert(code != code);
|
alpar@1
|
4268 |
}
|
alpar@1
|
4269 |
/* save resultant value */
|
alpar@1
|
4270 |
xassert(!code->valid);
|
alpar@1
|
4271 |
code->valid = 1;
|
alpar@1
|
4272 |
code->value.bit = value;
|
alpar@1
|
4273 |
done: return value;
|
alpar@1
|
4274 |
}
|
alpar@1
|
4275 |
|
alpar@1
|
4276 |
/*----------------------------------------------------------------------
|
alpar@1
|
4277 |
-- eval_tuple - evaluate pseudo-code to construct n-tuple.
|
alpar@1
|
4278 |
--
|
alpar@1
|
4279 |
-- This routine evaluates specified pseudo-code to construct resultant
|
alpar@1
|
4280 |
-- n-tuple, which is returned on exit. */
|
alpar@1
|
4281 |
|
alpar@1
|
4282 |
TUPLE *eval_tuple(MPL *mpl, CODE *code)
|
alpar@1
|
4283 |
{ TUPLE *value;
|
alpar@1
|
4284 |
xassert(code != NULL);
|
alpar@1
|
4285 |
xassert(code->type == A_TUPLE);
|
alpar@1
|
4286 |
xassert(code->dim > 0);
|
alpar@1
|
4287 |
/* if the operation has a side effect, invalidate and delete the
|
alpar@1
|
4288 |
resultant value */
|
alpar@1
|
4289 |
if (code->vflag && code->valid)
|
alpar@1
|
4290 |
{ code->valid = 0;
|
alpar@1
|
4291 |
delete_value(mpl, code->type, &code->value);
|
alpar@1
|
4292 |
}
|
alpar@1
|
4293 |
/* if resultant value is valid, no evaluation is needed */
|
alpar@1
|
4294 |
if (code->valid)
|
alpar@1
|
4295 |
{ value = copy_tuple(mpl, code->value.tuple);
|
alpar@1
|
4296 |
goto done;
|
alpar@1
|
4297 |
}
|
alpar@1
|
4298 |
/* evaluate pseudo-code recursively */
|
alpar@1
|
4299 |
switch (code->op)
|
alpar@1
|
4300 |
{ case O_TUPLE:
|
alpar@1
|
4301 |
/* make n-tuple */
|
alpar@1
|
4302 |
{ ARG_LIST *e;
|
alpar@1
|
4303 |
value = create_tuple(mpl);
|
alpar@1
|
4304 |
for (e = code->arg.list; e != NULL; e = e->next)
|
alpar@1
|
4305 |
value = expand_tuple(mpl, value, eval_symbolic(mpl,
|
alpar@1
|
4306 |
e->x));
|
alpar@1
|
4307 |
}
|
alpar@1
|
4308 |
break;
|
alpar@1
|
4309 |
case O_CVTTUP:
|
alpar@1
|
4310 |
/* convert to 1-tuple */
|
alpar@1
|
4311 |
value = expand_tuple(mpl, create_tuple(mpl),
|
alpar@1
|
4312 |
eval_symbolic(mpl, code->arg.arg.x));
|
alpar@1
|
4313 |
break;
|
alpar@1
|
4314 |
default:
|
alpar@1
|
4315 |
xassert(code != code);
|
alpar@1
|
4316 |
}
|
alpar@1
|
4317 |
/* save resultant value */
|
alpar@1
|
4318 |
xassert(!code->valid);
|
alpar@1
|
4319 |
code->valid = 1;
|
alpar@1
|
4320 |
code->value.tuple = copy_tuple(mpl, value);
|
alpar@1
|
4321 |
done: return value;
|
alpar@1
|
4322 |
}
|
alpar@1
|
4323 |
|
alpar@1
|
4324 |
/*----------------------------------------------------------------------
|
alpar@1
|
4325 |
-- eval_elemset - evaluate pseudo-code to construct elemental set.
|
alpar@1
|
4326 |
--
|
alpar@1
|
4327 |
-- This routine evaluates specified pseudo-code to construct resultant
|
alpar@1
|
4328 |
-- elemental set, which is returned on exit. */
|
alpar@1
|
4329 |
|
alpar@1
|
4330 |
struct iter_set_info
|
alpar@1
|
4331 |
{ /* working info used by the routine iter_set_func */
|
alpar@1
|
4332 |
CODE *code;
|
alpar@1
|
4333 |
/* pseudo-code for iterated operation to be performed */
|
alpar@1
|
4334 |
ELEMSET *value;
|
alpar@1
|
4335 |
/* resultant value */
|
alpar@1
|
4336 |
};
|
alpar@1
|
4337 |
|
alpar@1
|
4338 |
static int iter_set_func(MPL *mpl, void *_info)
|
alpar@1
|
4339 |
{ /* this is auxiliary routine used to perform iterated operation
|
alpar@1
|
4340 |
on n-tuple "integrand" within domain scope */
|
alpar@1
|
4341 |
struct iter_set_info *info = _info;
|
alpar@1
|
4342 |
TUPLE *tuple;
|
alpar@1
|
4343 |
switch (info->code->op)
|
alpar@1
|
4344 |
{ case O_SETOF:
|
alpar@1
|
4345 |
/* compute next n-tuple and add it to the set; in this case
|
alpar@1
|
4346 |
duplicate n-tuples are silently ignored */
|
alpar@1
|
4347 |
tuple = eval_tuple(mpl, info->code->arg.loop.x);
|
alpar@1
|
4348 |
if (find_tuple(mpl, info->value, tuple) == NULL)
|
alpar@1
|
4349 |
add_tuple(mpl, info->value, tuple);
|
alpar@1
|
4350 |
else
|
alpar@1
|
4351 |
delete_tuple(mpl, tuple);
|
alpar@1
|
4352 |
break;
|
alpar@1
|
4353 |
case O_BUILD:
|
alpar@1
|
4354 |
/* construct next n-tuple using current values assigned to
|
alpar@1
|
4355 |
*free* dummy indices as its components and add it to the
|
alpar@1
|
4356 |
set; in this case duplicate n-tuples cannot appear */
|
alpar@1
|
4357 |
add_tuple(mpl, info->value, get_domain_tuple(mpl,
|
alpar@1
|
4358 |
info->code->arg.loop.domain));
|
alpar@1
|
4359 |
break;
|
alpar@1
|
4360 |
default:
|
alpar@1
|
4361 |
xassert(info != info);
|
alpar@1
|
4362 |
}
|
alpar@1
|
4363 |
return 0;
|
alpar@1
|
4364 |
}
|
alpar@1
|
4365 |
|
alpar@1
|
4366 |
ELEMSET *eval_elemset(MPL *mpl, CODE *code)
|
alpar@1
|
4367 |
{ ELEMSET *value;
|
alpar@1
|
4368 |
xassert(code != NULL);
|
alpar@1
|
4369 |
xassert(code->type == A_ELEMSET);
|
alpar@1
|
4370 |
xassert(code->dim > 0);
|
alpar@1
|
4371 |
/* if the operation has a side effect, invalidate and delete the
|
alpar@1
|
4372 |
resultant value */
|
alpar@1
|
4373 |
if (code->vflag && code->valid)
|
alpar@1
|
4374 |
{ code->valid = 0;
|
alpar@1
|
4375 |
delete_value(mpl, code->type, &code->value);
|
alpar@1
|
4376 |
}
|
alpar@1
|
4377 |
/* if resultant value is valid, no evaluation is needed */
|
alpar@1
|
4378 |
if (code->valid)
|
alpar@1
|
4379 |
{ value = copy_elemset(mpl, code->value.set);
|
alpar@1
|
4380 |
goto done;
|
alpar@1
|
4381 |
}
|
alpar@1
|
4382 |
/* evaluate pseudo-code recursively */
|
alpar@1
|
4383 |
switch (code->op)
|
alpar@1
|
4384 |
{ case O_MEMSET:
|
alpar@1
|
4385 |
/* take member of set */
|
alpar@1
|
4386 |
{ TUPLE *tuple;
|
alpar@1
|
4387 |
ARG_LIST *e;
|
alpar@1
|
4388 |
tuple = create_tuple(mpl);
|
alpar@1
|
4389 |
for (e = code->arg.set.list; e != NULL; e = e->next)
|
alpar@1
|
4390 |
tuple = expand_tuple(mpl, tuple, eval_symbolic(mpl,
|
alpar@1
|
4391 |
e->x));
|
alpar@1
|
4392 |
value = copy_elemset(mpl,
|
alpar@1
|
4393 |
eval_member_set(mpl, code->arg.set.set, tuple));
|
alpar@1
|
4394 |
delete_tuple(mpl, tuple);
|
alpar@1
|
4395 |
}
|
alpar@1
|
4396 |
break;
|
alpar@1
|
4397 |
case O_MAKE:
|
alpar@1
|
4398 |
/* make elemental set of n-tuples */
|
alpar@1
|
4399 |
{ ARG_LIST *e;
|
alpar@1
|
4400 |
value = create_elemset(mpl, code->dim);
|
alpar@1
|
4401 |
for (e = code->arg.list; e != NULL; e = e->next)
|
alpar@1
|
4402 |
check_then_add(mpl, value, eval_tuple(mpl, e->x));
|
alpar@1
|
4403 |
}
|
alpar@1
|
4404 |
break;
|
alpar@1
|
4405 |
case O_UNION:
|
alpar@1
|
4406 |
/* union of two elemental sets */
|
alpar@1
|
4407 |
value = set_union(mpl,
|
alpar@1
|
4408 |
eval_elemset(mpl, code->arg.arg.x),
|
alpar@1
|
4409 |
eval_elemset(mpl, code->arg.arg.y));
|
alpar@1
|
4410 |
break;
|
alpar@1
|
4411 |
case O_DIFF:
|
alpar@1
|
4412 |
/* difference between two elemental sets */
|
alpar@1
|
4413 |
value = set_diff(mpl,
|
alpar@1
|
4414 |
eval_elemset(mpl, code->arg.arg.x),
|
alpar@1
|
4415 |
eval_elemset(mpl, code->arg.arg.y));
|
alpar@1
|
4416 |
break;
|
alpar@1
|
4417 |
case O_SYMDIFF:
|
alpar@1
|
4418 |
/* symmetric difference between two elemental sets */
|
alpar@1
|
4419 |
value = set_symdiff(mpl,
|
alpar@1
|
4420 |
eval_elemset(mpl, code->arg.arg.x),
|
alpar@1
|
4421 |
eval_elemset(mpl, code->arg.arg.y));
|
alpar@1
|
4422 |
break;
|
alpar@1
|
4423 |
case O_INTER:
|
alpar@1
|
4424 |
/* intersection of two elemental sets */
|
alpar@1
|
4425 |
value = set_inter(mpl,
|
alpar@1
|
4426 |
eval_elemset(mpl, code->arg.arg.x),
|
alpar@1
|
4427 |
eval_elemset(mpl, code->arg.arg.y));
|
alpar@1
|
4428 |
break;
|
alpar@1
|
4429 |
case O_CROSS:
|
alpar@1
|
4430 |
/* cross (Cartesian) product of two elemental sets */
|
alpar@1
|
4431 |
value = set_cross(mpl,
|
alpar@1
|
4432 |
eval_elemset(mpl, code->arg.arg.x),
|
alpar@1
|
4433 |
eval_elemset(mpl, code->arg.arg.y));
|
alpar@1
|
4434 |
break;
|
alpar@1
|
4435 |
case O_DOTS:
|
alpar@1
|
4436 |
/* build "arithmetic" elemental set */
|
alpar@1
|
4437 |
value = create_arelset(mpl,
|
alpar@1
|
4438 |
eval_numeric(mpl, code->arg.arg.x),
|
alpar@1
|
4439 |
eval_numeric(mpl, code->arg.arg.y),
|
alpar@1
|
4440 |
code->arg.arg.z == NULL ? 1.0 : eval_numeric(mpl,
|
alpar@1
|
4441 |
code->arg.arg.z));
|
alpar@1
|
4442 |
break;
|
alpar@1
|
4443 |
case O_FORK:
|
alpar@1
|
4444 |
/* if-then-else */
|
alpar@1
|
4445 |
if (eval_logical(mpl, code->arg.arg.x))
|
alpar@1
|
4446 |
value = eval_elemset(mpl, code->arg.arg.y);
|
alpar@1
|
4447 |
else
|
alpar@1
|
4448 |
value = eval_elemset(mpl, code->arg.arg.z);
|
alpar@1
|
4449 |
break;
|
alpar@1
|
4450 |
case O_SETOF:
|
alpar@1
|
4451 |
/* compute elemental set */
|
alpar@1
|
4452 |
{ struct iter_set_info _info, *info = &_info;
|
alpar@1
|
4453 |
info->code = code;
|
alpar@1
|
4454 |
info->value = create_elemset(mpl, code->dim);
|
alpar@1
|
4455 |
loop_within_domain(mpl, code->arg.loop.domain, info,
|
alpar@1
|
4456 |
iter_set_func);
|
alpar@1
|
4457 |
value = info->value;
|
alpar@1
|
4458 |
}
|
alpar@1
|
4459 |
break;
|
alpar@1
|
4460 |
case O_BUILD:
|
alpar@1
|
4461 |
/* build elemental set identical to domain set */
|
alpar@1
|
4462 |
{ struct iter_set_info _info, *info = &_info;
|
alpar@1
|
4463 |
info->code = code;
|
alpar@1
|
4464 |
info->value = create_elemset(mpl, code->dim);
|
alpar@1
|
4465 |
loop_within_domain(mpl, code->arg.loop.domain, info,
|
alpar@1
|
4466 |
iter_set_func);
|
alpar@1
|
4467 |
value = info->value;
|
alpar@1
|
4468 |
}
|
alpar@1
|
4469 |
break;
|
alpar@1
|
4470 |
default:
|
alpar@1
|
4471 |
xassert(code != code);
|
alpar@1
|
4472 |
}
|
alpar@1
|
4473 |
/* save resultant value */
|
alpar@1
|
4474 |
xassert(!code->valid);
|
alpar@1
|
4475 |
code->valid = 1;
|
alpar@1
|
4476 |
code->value.set = copy_elemset(mpl, value);
|
alpar@1
|
4477 |
done: return value;
|
alpar@1
|
4478 |
}
|
alpar@1
|
4479 |
|
alpar@1
|
4480 |
/*----------------------------------------------------------------------
|
alpar@1
|
4481 |
-- is_member - check if n-tuple is in set specified by pseudo-code.
|
alpar@1
|
4482 |
--
|
alpar@1
|
4483 |
-- This routine checks if given n-tuple is a member of elemental set
|
alpar@1
|
4484 |
-- specified in the form of pseudo-code (i.e. by expression).
|
alpar@1
|
4485 |
--
|
alpar@1
|
4486 |
-- The n-tuple may have more components that dimension of the elemental
|
alpar@1
|
4487 |
-- set, in which case the extra components are ignored. */
|
alpar@1
|
4488 |
|
alpar@1
|
4489 |
static void null_func(MPL *mpl, void *info)
|
alpar@1
|
4490 |
{ /* this is dummy routine used to enter the domain scope */
|
alpar@1
|
4491 |
xassert(mpl == mpl);
|
alpar@1
|
4492 |
xassert(info == NULL);
|
alpar@1
|
4493 |
return;
|
alpar@1
|
4494 |
}
|
alpar@1
|
4495 |
|
alpar@1
|
4496 |
int is_member(MPL *mpl, CODE *code, TUPLE *tuple)
|
alpar@1
|
4497 |
{ int value;
|
alpar@1
|
4498 |
xassert(code != NULL);
|
alpar@1
|
4499 |
xassert(code->type == A_ELEMSET);
|
alpar@1
|
4500 |
xassert(code->dim > 0);
|
alpar@1
|
4501 |
xassert(tuple != NULL);
|
alpar@1
|
4502 |
switch (code->op)
|
alpar@1
|
4503 |
{ case O_MEMSET:
|
alpar@1
|
4504 |
/* check if given n-tuple is member of elemental set, which
|
alpar@1
|
4505 |
is assigned to member of model set */
|
alpar@1
|
4506 |
{ ARG_LIST *e;
|
alpar@1
|
4507 |
TUPLE *temp;
|
alpar@1
|
4508 |
ELEMSET *set;
|
alpar@1
|
4509 |
/* evaluate reference to elemental set */
|
alpar@1
|
4510 |
temp = create_tuple(mpl);
|
alpar@1
|
4511 |
for (e = code->arg.set.list; e != NULL; e = e->next)
|
alpar@1
|
4512 |
temp = expand_tuple(mpl, temp, eval_symbolic(mpl,
|
alpar@1
|
4513 |
e->x));
|
alpar@1
|
4514 |
set = eval_member_set(mpl, code->arg.set.set, temp);
|
alpar@1
|
4515 |
delete_tuple(mpl, temp);
|
alpar@1
|
4516 |
/* check if the n-tuple is contained in the set array */
|
alpar@1
|
4517 |
temp = build_subtuple(mpl, tuple, set->dim);
|
alpar@1
|
4518 |
value = (find_tuple(mpl, set, temp) != NULL);
|
alpar@1
|
4519 |
delete_tuple(mpl, temp);
|
alpar@1
|
4520 |
}
|
alpar@1
|
4521 |
break;
|
alpar@1
|
4522 |
case O_MAKE:
|
alpar@1
|
4523 |
/* check if given n-tuple is member of literal set */
|
alpar@1
|
4524 |
{ ARG_LIST *e;
|
alpar@1
|
4525 |
TUPLE *temp, *that;
|
alpar@1
|
4526 |
value = 0;
|
alpar@1
|
4527 |
temp = build_subtuple(mpl, tuple, code->dim);
|
alpar@1
|
4528 |
for (e = code->arg.list; e != NULL; e = e->next)
|
alpar@1
|
4529 |
{ that = eval_tuple(mpl, e->x);
|
alpar@1
|
4530 |
value = (compare_tuples(mpl, temp, that) == 0);
|
alpar@1
|
4531 |
delete_tuple(mpl, that);
|
alpar@1
|
4532 |
if (value) break;
|
alpar@1
|
4533 |
}
|
alpar@1
|
4534 |
delete_tuple(mpl, temp);
|
alpar@1
|
4535 |
}
|
alpar@1
|
4536 |
break;
|
alpar@1
|
4537 |
case O_UNION:
|
alpar@1
|
4538 |
value = is_member(mpl, code->arg.arg.x, tuple) ||
|
alpar@1
|
4539 |
is_member(mpl, code->arg.arg.y, tuple);
|
alpar@1
|
4540 |
break;
|
alpar@1
|
4541 |
case O_DIFF:
|
alpar@1
|
4542 |
value = is_member(mpl, code->arg.arg.x, tuple) &&
|
alpar@1
|
4543 |
!is_member(mpl, code->arg.arg.y, tuple);
|
alpar@1
|
4544 |
break;
|
alpar@1
|
4545 |
case O_SYMDIFF:
|
alpar@1
|
4546 |
{ int in1 = is_member(mpl, code->arg.arg.x, tuple);
|
alpar@1
|
4547 |
int in2 = is_member(mpl, code->arg.arg.y, tuple);
|
alpar@1
|
4548 |
value = (in1 && !in2) || (!in1 && in2);
|
alpar@1
|
4549 |
}
|
alpar@1
|
4550 |
break;
|
alpar@1
|
4551 |
case O_INTER:
|
alpar@1
|
4552 |
value = is_member(mpl, code->arg.arg.x, tuple) &&
|
alpar@1
|
4553 |
is_member(mpl, code->arg.arg.y, tuple);
|
alpar@1
|
4554 |
break;
|
alpar@1
|
4555 |
case O_CROSS:
|
alpar@1
|
4556 |
{ int j;
|
alpar@1
|
4557 |
value = is_member(mpl, code->arg.arg.x, tuple);
|
alpar@1
|
4558 |
if (value)
|
alpar@1
|
4559 |
{ for (j = 1; j <= code->arg.arg.x->dim; j++)
|
alpar@1
|
4560 |
{ xassert(tuple != NULL);
|
alpar@1
|
4561 |
tuple = tuple->next;
|
alpar@1
|
4562 |
}
|
alpar@1
|
4563 |
value = is_member(mpl, code->arg.arg.y, tuple);
|
alpar@1
|
4564 |
}
|
alpar@1
|
4565 |
}
|
alpar@1
|
4566 |
break;
|
alpar@1
|
4567 |
case O_DOTS:
|
alpar@1
|
4568 |
/* check if given 1-tuple is member of "arithmetic" set */
|
alpar@1
|
4569 |
{ int j;
|
alpar@1
|
4570 |
double x, t0, tf, dt;
|
alpar@1
|
4571 |
xassert(code->dim == 1);
|
alpar@1
|
4572 |
/* compute "parameters" of the "arithmetic" set */
|
alpar@1
|
4573 |
t0 = eval_numeric(mpl, code->arg.arg.x);
|
alpar@1
|
4574 |
tf = eval_numeric(mpl, code->arg.arg.y);
|
alpar@1
|
4575 |
if (code->arg.arg.z == NULL)
|
alpar@1
|
4576 |
dt = 1.0;
|
alpar@1
|
4577 |
else
|
alpar@1
|
4578 |
dt = eval_numeric(mpl, code->arg.arg.z);
|
alpar@1
|
4579 |
/* make sure the parameters are correct */
|
alpar@1
|
4580 |
arelset_size(mpl, t0, tf, dt);
|
alpar@1
|
4581 |
/* if component of 1-tuple is symbolic, not numeric, the
|
alpar@1
|
4582 |
1-tuple cannot be member of "arithmetic" set */
|
alpar@1
|
4583 |
xassert(tuple->sym != NULL);
|
alpar@1
|
4584 |
if (tuple->sym->str != NULL)
|
alpar@1
|
4585 |
{ value = 0;
|
alpar@1
|
4586 |
break;
|
alpar@1
|
4587 |
}
|
alpar@1
|
4588 |
/* determine numeric value of the component */
|
alpar@1
|
4589 |
x = tuple->sym->num;
|
alpar@1
|
4590 |
/* if the component value is out of the set range, the
|
alpar@1
|
4591 |
1-tuple is not in the set */
|
alpar@1
|
4592 |
if (dt > 0.0 && !(t0 <= x && x <= tf) ||
|
alpar@1
|
4593 |
dt < 0.0 && !(tf <= x && x <= t0))
|
alpar@1
|
4594 |
{ value = 0;
|
alpar@1
|
4595 |
break;
|
alpar@1
|
4596 |
}
|
alpar@1
|
4597 |
/* estimate ordinal number of the 1-tuple in the set */
|
alpar@1
|
4598 |
j = (int)(((x - t0) / dt) + 0.5) + 1;
|
alpar@1
|
4599 |
/* perform the main check */
|
alpar@1
|
4600 |
value = (arelset_member(mpl, t0, tf, dt, j) == x);
|
alpar@1
|
4601 |
}
|
alpar@1
|
4602 |
break;
|
alpar@1
|
4603 |
case O_FORK:
|
alpar@1
|
4604 |
/* check if given n-tuple is member of conditional set */
|
alpar@1
|
4605 |
if (eval_logical(mpl, code->arg.arg.x))
|
alpar@1
|
4606 |
value = is_member(mpl, code->arg.arg.y, tuple);
|
alpar@1
|
4607 |
else
|
alpar@1
|
4608 |
value = is_member(mpl, code->arg.arg.z, tuple);
|
alpar@1
|
4609 |
break;
|
alpar@1
|
4610 |
case O_SETOF:
|
alpar@1
|
4611 |
/* check if given n-tuple is member of computed set */
|
alpar@1
|
4612 |
/* it is not clear how to efficiently perform the check not
|
alpar@1
|
4613 |
computing the entire elemental set :+( */
|
alpar@1
|
4614 |
error(mpl, "implementation restriction; in/within setof{} n"
|
alpar@1
|
4615 |
"ot allowed");
|
alpar@1
|
4616 |
break;
|
alpar@1
|
4617 |
case O_BUILD:
|
alpar@1
|
4618 |
/* check if given n-tuple is member of domain set */
|
alpar@1
|
4619 |
{ TUPLE *temp;
|
alpar@1
|
4620 |
temp = build_subtuple(mpl, tuple, code->dim);
|
alpar@1
|
4621 |
/* try to enter the domain scope; if it is successful,
|
alpar@1
|
4622 |
the n-tuple is in the domain set */
|
alpar@1
|
4623 |
value = (eval_within_domain(mpl, code->arg.loop.domain,
|
alpar@1
|
4624 |
temp, NULL, null_func) == 0);
|
alpar@1
|
4625 |
delete_tuple(mpl, temp);
|
alpar@1
|
4626 |
}
|
alpar@1
|
4627 |
break;
|
alpar@1
|
4628 |
default:
|
alpar@1
|
4629 |
xassert(code != code);
|
alpar@1
|
4630 |
}
|
alpar@1
|
4631 |
return value;
|
alpar@1
|
4632 |
}
|
alpar@1
|
4633 |
|
alpar@1
|
4634 |
/*----------------------------------------------------------------------
|
alpar@1
|
4635 |
-- eval_formula - evaluate pseudo-code to construct linear form.
|
alpar@1
|
4636 |
--
|
alpar@1
|
4637 |
-- This routine evaluates specified pseudo-code to construct resultant
|
alpar@1
|
4638 |
-- linear form, which is returned on exit. */
|
alpar@1
|
4639 |
|
alpar@1
|
4640 |
struct iter_form_info
|
alpar@1
|
4641 |
{ /* working info used by the routine iter_form_func */
|
alpar@1
|
4642 |
CODE *code;
|
alpar@1
|
4643 |
/* pseudo-code for iterated operation to be performed */
|
alpar@1
|
4644 |
FORMULA *value;
|
alpar@1
|
4645 |
/* resultant value */
|
alpar@1
|
4646 |
FORMULA *tail;
|
alpar@1
|
4647 |
/* pointer to the last term */
|
alpar@1
|
4648 |
};
|
alpar@1
|
4649 |
|
alpar@1
|
4650 |
static int iter_form_func(MPL *mpl, void *_info)
|
alpar@1
|
4651 |
{ /* this is auxiliary routine used to perform iterated operation
|
alpar@1
|
4652 |
on linear form "integrand" within domain scope */
|
alpar@1
|
4653 |
struct iter_form_info *info = _info;
|
alpar@1
|
4654 |
switch (info->code->op)
|
alpar@1
|
4655 |
{ case O_SUM:
|
alpar@1
|
4656 |
/* summation over domain */
|
alpar@1
|
4657 |
#if 0
|
alpar@1
|
4658 |
info->value =
|
alpar@1
|
4659 |
linear_comb(mpl,
|
alpar@1
|
4660 |
+1.0, info->value,
|
alpar@1
|
4661 |
+1.0, eval_formula(mpl, info->code->arg.loop.x));
|
alpar@1
|
4662 |
#else
|
alpar@1
|
4663 |
/* the routine linear_comb needs to look through all terms
|
alpar@1
|
4664 |
of both linear forms to reduce identical terms, so using
|
alpar@1
|
4665 |
it here is not a good idea (for example, evaluation of
|
alpar@1
|
4666 |
sum{i in 1..n} x[i] required quadratic time); the better
|
alpar@1
|
4667 |
idea is to gather all terms of the integrand in one list
|
alpar@1
|
4668 |
and reduce identical terms only once after all terms of
|
alpar@1
|
4669 |
the resultant linear form have been evaluated */
|
alpar@1
|
4670 |
{ FORMULA *form, *term;
|
alpar@1
|
4671 |
form = eval_formula(mpl, info->code->arg.loop.x);
|
alpar@1
|
4672 |
if (info->value == NULL)
|
alpar@1
|
4673 |
{ xassert(info->tail == NULL);
|
alpar@1
|
4674 |
info->value = form;
|
alpar@1
|
4675 |
}
|
alpar@1
|
4676 |
else
|
alpar@1
|
4677 |
{ xassert(info->tail != NULL);
|
alpar@1
|
4678 |
info->tail->next = form;
|
alpar@1
|
4679 |
}
|
alpar@1
|
4680 |
for (term = form; term != NULL; term = term->next)
|
alpar@1
|
4681 |
info->tail = term;
|
alpar@1
|
4682 |
}
|
alpar@1
|
4683 |
#endif
|
alpar@1
|
4684 |
break;
|
alpar@1
|
4685 |
default:
|
alpar@1
|
4686 |
xassert(info != info);
|
alpar@1
|
4687 |
}
|
alpar@1
|
4688 |
return 0;
|
alpar@1
|
4689 |
}
|
alpar@1
|
4690 |
|
alpar@1
|
4691 |
FORMULA *eval_formula(MPL *mpl, CODE *code)
|
alpar@1
|
4692 |
{ FORMULA *value;
|
alpar@1
|
4693 |
xassert(code != NULL);
|
alpar@1
|
4694 |
xassert(code->type == A_FORMULA);
|
alpar@1
|
4695 |
xassert(code->dim == 0);
|
alpar@1
|
4696 |
/* if the operation has a side effect, invalidate and delete the
|
alpar@1
|
4697 |
resultant value */
|
alpar@1
|
4698 |
if (code->vflag && code->valid)
|
alpar@1
|
4699 |
{ code->valid = 0;
|
alpar@1
|
4700 |
delete_value(mpl, code->type, &code->value);
|
alpar@1
|
4701 |
}
|
alpar@1
|
4702 |
/* if resultant value is valid, no evaluation is needed */
|
alpar@1
|
4703 |
if (code->valid)
|
alpar@1
|
4704 |
{ value = copy_formula(mpl, code->value.form);
|
alpar@1
|
4705 |
goto done;
|
alpar@1
|
4706 |
}
|
alpar@1
|
4707 |
/* evaluate pseudo-code recursively */
|
alpar@1
|
4708 |
switch (code->op)
|
alpar@1
|
4709 |
{ case O_MEMVAR:
|
alpar@1
|
4710 |
/* take member of variable */
|
alpar@1
|
4711 |
{ TUPLE *tuple;
|
alpar@1
|
4712 |
ARG_LIST *e;
|
alpar@1
|
4713 |
tuple = create_tuple(mpl);
|
alpar@1
|
4714 |
for (e = code->arg.var.list; e != NULL; e = e->next)
|
alpar@1
|
4715 |
tuple = expand_tuple(mpl, tuple, eval_symbolic(mpl,
|
alpar@1
|
4716 |
e->x));
|
alpar@1
|
4717 |
#if 1 /* 15/V-2010 */
|
alpar@1
|
4718 |
xassert(code->arg.var.suff == DOT_NONE);
|
alpar@1
|
4719 |
#endif
|
alpar@1
|
4720 |
value = single_variable(mpl,
|
alpar@1
|
4721 |
eval_member_var(mpl, code->arg.var.var, tuple));
|
alpar@1
|
4722 |
delete_tuple(mpl, tuple);
|
alpar@1
|
4723 |
}
|
alpar@1
|
4724 |
break;
|
alpar@1
|
4725 |
case O_CVTLFM:
|
alpar@1
|
4726 |
/* convert to linear form */
|
alpar@1
|
4727 |
value = constant_term(mpl, eval_numeric(mpl,
|
alpar@1
|
4728 |
code->arg.arg.x));
|
alpar@1
|
4729 |
break;
|
alpar@1
|
4730 |
case O_PLUS:
|
alpar@1
|
4731 |
/* unary plus */
|
alpar@1
|
4732 |
value = linear_comb(mpl,
|
alpar@1
|
4733 |
0.0, constant_term(mpl, 0.0),
|
alpar@1
|
4734 |
+1.0, eval_formula(mpl, code->arg.arg.x));
|
alpar@1
|
4735 |
break;
|
alpar@1
|
4736 |
case O_MINUS:
|
alpar@1
|
4737 |
/* unary minus */
|
alpar@1
|
4738 |
value = linear_comb(mpl,
|
alpar@1
|
4739 |
0.0, constant_term(mpl, 0.0),
|
alpar@1
|
4740 |
-1.0, eval_formula(mpl, code->arg.arg.x));
|
alpar@1
|
4741 |
break;
|
alpar@1
|
4742 |
case O_ADD:
|
alpar@1
|
4743 |
/* addition */
|
alpar@1
|
4744 |
value = linear_comb(mpl,
|
alpar@1
|
4745 |
+1.0, eval_formula(mpl, code->arg.arg.x),
|
alpar@1
|
4746 |
+1.0, eval_formula(mpl, code->arg.arg.y));
|
alpar@1
|
4747 |
break;
|
alpar@1
|
4748 |
case O_SUB:
|
alpar@1
|
4749 |
/* subtraction */
|
alpar@1
|
4750 |
value = linear_comb(mpl,
|
alpar@1
|
4751 |
+1.0, eval_formula(mpl, code->arg.arg.x),
|
alpar@1
|
4752 |
-1.0, eval_formula(mpl, code->arg.arg.y));
|
alpar@1
|
4753 |
break;
|
alpar@1
|
4754 |
case O_MUL:
|
alpar@1
|
4755 |
/* multiplication */
|
alpar@1
|
4756 |
xassert(code->arg.arg.x != NULL);
|
alpar@1
|
4757 |
xassert(code->arg.arg.y != NULL);
|
alpar@1
|
4758 |
if (code->arg.arg.x->type == A_NUMERIC)
|
alpar@1
|
4759 |
{ xassert(code->arg.arg.y->type == A_FORMULA);
|
alpar@1
|
4760 |
value = linear_comb(mpl,
|
alpar@1
|
4761 |
eval_numeric(mpl, code->arg.arg.x),
|
alpar@1
|
4762 |
eval_formula(mpl, code->arg.arg.y),
|
alpar@1
|
4763 |
0.0, constant_term(mpl, 0.0));
|
alpar@1
|
4764 |
}
|
alpar@1
|
4765 |
else
|
alpar@1
|
4766 |
{ xassert(code->arg.arg.x->type == A_FORMULA);
|
alpar@1
|
4767 |
xassert(code->arg.arg.y->type == A_NUMERIC);
|
alpar@1
|
4768 |
value = linear_comb(mpl,
|
alpar@1
|
4769 |
eval_numeric(mpl, code->arg.arg.y),
|
alpar@1
|
4770 |
eval_formula(mpl, code->arg.arg.x),
|
alpar@1
|
4771 |
0.0, constant_term(mpl, 0.0));
|
alpar@1
|
4772 |
}
|
alpar@1
|
4773 |
break;
|
alpar@1
|
4774 |
case O_DIV:
|
alpar@1
|
4775 |
/* division */
|
alpar@1
|
4776 |
value = linear_comb(mpl,
|
alpar@1
|
4777 |
fp_div(mpl, 1.0, eval_numeric(mpl, code->arg.arg.y)),
|
alpar@1
|
4778 |
eval_formula(mpl, code->arg.arg.x),
|
alpar@1
|
4779 |
0.0, constant_term(mpl, 0.0));
|
alpar@1
|
4780 |
break;
|
alpar@1
|
4781 |
case O_FORK:
|
alpar@1
|
4782 |
/* if-then-else */
|
alpar@1
|
4783 |
if (eval_logical(mpl, code->arg.arg.x))
|
alpar@1
|
4784 |
value = eval_formula(mpl, code->arg.arg.y);
|
alpar@1
|
4785 |
else if (code->arg.arg.z == NULL)
|
alpar@1
|
4786 |
value = constant_term(mpl, 0.0);
|
alpar@1
|
4787 |
else
|
alpar@1
|
4788 |
value = eval_formula(mpl, code->arg.arg.z);
|
alpar@1
|
4789 |
break;
|
alpar@1
|
4790 |
case O_SUM:
|
alpar@1
|
4791 |
/* summation over domain */
|
alpar@1
|
4792 |
{ struct iter_form_info _info, *info = &_info;
|
alpar@1
|
4793 |
info->code = code;
|
alpar@1
|
4794 |
info->value = constant_term(mpl, 0.0);
|
alpar@1
|
4795 |
info->tail = NULL;
|
alpar@1
|
4796 |
loop_within_domain(mpl, code->arg.loop.domain, info,
|
alpar@1
|
4797 |
iter_form_func);
|
alpar@1
|
4798 |
value = reduce_terms(mpl, info->value);
|
alpar@1
|
4799 |
}
|
alpar@1
|
4800 |
break;
|
alpar@1
|
4801 |
default:
|
alpar@1
|
4802 |
xassert(code != code);
|
alpar@1
|
4803 |
}
|
alpar@1
|
4804 |
/* save resultant value */
|
alpar@1
|
4805 |
xassert(!code->valid);
|
alpar@1
|
4806 |
code->valid = 1;
|
alpar@1
|
4807 |
code->value.form = copy_formula(mpl, value);
|
alpar@1
|
4808 |
done: return value;
|
alpar@1
|
4809 |
}
|
alpar@1
|
4810 |
|
alpar@1
|
4811 |
/*----------------------------------------------------------------------
|
alpar@1
|
4812 |
-- clean_code - clean pseudo-code.
|
alpar@1
|
4813 |
--
|
alpar@1
|
4814 |
-- This routine recursively cleans specified pseudo-code that assumes
|
alpar@1
|
4815 |
-- deleting all temporary resultant values. */
|
alpar@1
|
4816 |
|
alpar@1
|
4817 |
void clean_code(MPL *mpl, CODE *code)
|
alpar@1
|
4818 |
{ ARG_LIST *e;
|
alpar@1
|
4819 |
/* if no pseudo-code is specified, do nothing */
|
alpar@1
|
4820 |
if (code == NULL) goto done;
|
alpar@1
|
4821 |
/* if resultant value is valid (exists), delete it */
|
alpar@1
|
4822 |
if (code->valid)
|
alpar@1
|
4823 |
{ code->valid = 0;
|
alpar@1
|
4824 |
delete_value(mpl, code->type, &code->value);
|
alpar@1
|
4825 |
}
|
alpar@1
|
4826 |
/* recursively clean pseudo-code for operands */
|
alpar@1
|
4827 |
switch (code->op)
|
alpar@1
|
4828 |
{ case O_NUMBER:
|
alpar@1
|
4829 |
case O_STRING:
|
alpar@1
|
4830 |
case O_INDEX:
|
alpar@1
|
4831 |
break;
|
alpar@1
|
4832 |
case O_MEMNUM:
|
alpar@1
|
4833 |
case O_MEMSYM:
|
alpar@1
|
4834 |
for (e = code->arg.par.list; e != NULL; e = e->next)
|
alpar@1
|
4835 |
clean_code(mpl, e->x);
|
alpar@1
|
4836 |
break;
|
alpar@1
|
4837 |
case O_MEMSET:
|
alpar@1
|
4838 |
for (e = code->arg.set.list; e != NULL; e = e->next)
|
alpar@1
|
4839 |
clean_code(mpl, e->x);
|
alpar@1
|
4840 |
break;
|
alpar@1
|
4841 |
case O_MEMVAR:
|
alpar@1
|
4842 |
for (e = code->arg.var.list; e != NULL; e = e->next)
|
alpar@1
|
4843 |
clean_code(mpl, e->x);
|
alpar@1
|
4844 |
break;
|
alpar@1
|
4845 |
#if 1 /* 15/V-2010 */
|
alpar@1
|
4846 |
case O_MEMCON:
|
alpar@1
|
4847 |
for (e = code->arg.con.list; e != NULL; e = e->next)
|
alpar@1
|
4848 |
clean_code(mpl, e->x);
|
alpar@1
|
4849 |
break;
|
alpar@1
|
4850 |
#endif
|
alpar@1
|
4851 |
case O_TUPLE:
|
alpar@1
|
4852 |
case O_MAKE:
|
alpar@1
|
4853 |
for (e = code->arg.list; e != NULL; e = e->next)
|
alpar@1
|
4854 |
clean_code(mpl, e->x);
|
alpar@1
|
4855 |
break;
|
alpar@1
|
4856 |
case O_SLICE:
|
alpar@1
|
4857 |
xassert(code != code);
|
alpar@1
|
4858 |
case O_IRAND224:
|
alpar@1
|
4859 |
case O_UNIFORM01:
|
alpar@1
|
4860 |
case O_NORMAL01:
|
alpar@1
|
4861 |
case O_GMTIME:
|
alpar@1
|
4862 |
break;
|
alpar@1
|
4863 |
case O_CVTNUM:
|
alpar@1
|
4864 |
case O_CVTSYM:
|
alpar@1
|
4865 |
case O_CVTLOG:
|
alpar@1
|
4866 |
case O_CVTTUP:
|
alpar@1
|
4867 |
case O_CVTLFM:
|
alpar@1
|
4868 |
case O_PLUS:
|
alpar@1
|
4869 |
case O_MINUS:
|
alpar@1
|
4870 |
case O_NOT:
|
alpar@1
|
4871 |
case O_ABS:
|
alpar@1
|
4872 |
case O_CEIL:
|
alpar@1
|
4873 |
case O_FLOOR:
|
alpar@1
|
4874 |
case O_EXP:
|
alpar@1
|
4875 |
case O_LOG:
|
alpar@1
|
4876 |
case O_LOG10:
|
alpar@1
|
4877 |
case O_SQRT:
|
alpar@1
|
4878 |
case O_SIN:
|
alpar@1
|
4879 |
case O_COS:
|
alpar@1
|
4880 |
case O_ATAN:
|
alpar@1
|
4881 |
case O_ROUND:
|
alpar@1
|
4882 |
case O_TRUNC:
|
alpar@1
|
4883 |
case O_CARD:
|
alpar@1
|
4884 |
case O_LENGTH:
|
alpar@1
|
4885 |
/* unary operation */
|
alpar@1
|
4886 |
clean_code(mpl, code->arg.arg.x);
|
alpar@1
|
4887 |
break;
|
alpar@1
|
4888 |
case O_ADD:
|
alpar@1
|
4889 |
case O_SUB:
|
alpar@1
|
4890 |
case O_LESS:
|
alpar@1
|
4891 |
case O_MUL:
|
alpar@1
|
4892 |
case O_DIV:
|
alpar@1
|
4893 |
case O_IDIV:
|
alpar@1
|
4894 |
case O_MOD:
|
alpar@1
|
4895 |
case O_POWER:
|
alpar@1
|
4896 |
case O_ATAN2:
|
alpar@1
|
4897 |
case O_ROUND2:
|
alpar@1
|
4898 |
case O_TRUNC2:
|
alpar@1
|
4899 |
case O_UNIFORM:
|
alpar@1
|
4900 |
case O_NORMAL:
|
alpar@1
|
4901 |
case O_CONCAT:
|
alpar@1
|
4902 |
case O_LT:
|
alpar@1
|
4903 |
case O_LE:
|
alpar@1
|
4904 |
case O_EQ:
|
alpar@1
|
4905 |
case O_GE:
|
alpar@1
|
4906 |
case O_GT:
|
alpar@1
|
4907 |
case O_NE:
|
alpar@1
|
4908 |
case O_AND:
|
alpar@1
|
4909 |
case O_OR:
|
alpar@1
|
4910 |
case O_UNION:
|
alpar@1
|
4911 |
case O_DIFF:
|
alpar@1
|
4912 |
case O_SYMDIFF:
|
alpar@1
|
4913 |
case O_INTER:
|
alpar@1
|
4914 |
case O_CROSS:
|
alpar@1
|
4915 |
case O_IN:
|
alpar@1
|
4916 |
case O_NOTIN:
|
alpar@1
|
4917 |
case O_WITHIN:
|
alpar@1
|
4918 |
case O_NOTWITHIN:
|
alpar@1
|
4919 |
case O_SUBSTR:
|
alpar@1
|
4920 |
case O_STR2TIME:
|
alpar@1
|
4921 |
case O_TIME2STR:
|
alpar@1
|
4922 |
/* binary operation */
|
alpar@1
|
4923 |
clean_code(mpl, code->arg.arg.x);
|
alpar@1
|
4924 |
clean_code(mpl, code->arg.arg.y);
|
alpar@1
|
4925 |
break;
|
alpar@1
|
4926 |
case O_DOTS:
|
alpar@1
|
4927 |
case O_FORK:
|
alpar@1
|
4928 |
case O_SUBSTR3:
|
alpar@1
|
4929 |
/* ternary operation */
|
alpar@1
|
4930 |
clean_code(mpl, code->arg.arg.x);
|
alpar@1
|
4931 |
clean_code(mpl, code->arg.arg.y);
|
alpar@1
|
4932 |
clean_code(mpl, code->arg.arg.z);
|
alpar@1
|
4933 |
break;
|
alpar@1
|
4934 |
case O_MIN:
|
alpar@1
|
4935 |
case O_MAX:
|
alpar@1
|
4936 |
/* n-ary operation */
|
alpar@1
|
4937 |
for (e = code->arg.list; e != NULL; e = e->next)
|
alpar@1
|
4938 |
clean_code(mpl, e->x);
|
alpar@1
|
4939 |
break;
|
alpar@1
|
4940 |
case O_SUM:
|
alpar@1
|
4941 |
case O_PROD:
|
alpar@1
|
4942 |
case O_MINIMUM:
|
alpar@1
|
4943 |
case O_MAXIMUM:
|
alpar@1
|
4944 |
case O_FORALL:
|
alpar@1
|
4945 |
case O_EXISTS:
|
alpar@1
|
4946 |
case O_SETOF:
|
alpar@1
|
4947 |
case O_BUILD:
|
alpar@1
|
4948 |
/* iterated operation */
|
alpar@1
|
4949 |
clean_domain(mpl, code->arg.loop.domain);
|
alpar@1
|
4950 |
clean_code(mpl, code->arg.loop.x);
|
alpar@1
|
4951 |
break;
|
alpar@1
|
4952 |
default:
|
alpar@1
|
4953 |
xassert(code->op != code->op);
|
alpar@1
|
4954 |
}
|
alpar@1
|
4955 |
done: return;
|
alpar@1
|
4956 |
}
|
alpar@1
|
4957 |
|
alpar@1
|
4958 |
#if 1 /* 11/II-2008 */
|
alpar@1
|
4959 |
/**********************************************************************/
|
alpar@1
|
4960 |
/* * * DATA TABLES * * */
|
alpar@1
|
4961 |
/**********************************************************************/
|
alpar@1
|
4962 |
|
alpar@1
|
4963 |
int mpl_tab_num_args(TABDCA *dca)
|
alpar@1
|
4964 |
{ /* returns the number of arguments */
|
alpar@1
|
4965 |
return dca->na;
|
alpar@1
|
4966 |
}
|
alpar@1
|
4967 |
|
alpar@1
|
4968 |
const char *mpl_tab_get_arg(TABDCA *dca, int k)
|
alpar@1
|
4969 |
{ /* returns pointer to k-th argument */
|
alpar@1
|
4970 |
xassert(1 <= k && k <= dca->na);
|
alpar@1
|
4971 |
return dca->arg[k];
|
alpar@1
|
4972 |
}
|
alpar@1
|
4973 |
|
alpar@1
|
4974 |
int mpl_tab_num_flds(TABDCA *dca)
|
alpar@1
|
4975 |
{ /* returns the number of fields */
|
alpar@1
|
4976 |
return dca->nf;
|
alpar@1
|
4977 |
}
|
alpar@1
|
4978 |
|
alpar@1
|
4979 |
const char *mpl_tab_get_name(TABDCA *dca, int k)
|
alpar@1
|
4980 |
{ /* returns pointer to name of k-th field */
|
alpar@1
|
4981 |
xassert(1 <= k && k <= dca->nf);
|
alpar@1
|
4982 |
return dca->name[k];
|
alpar@1
|
4983 |
}
|
alpar@1
|
4984 |
|
alpar@1
|
4985 |
int mpl_tab_get_type(TABDCA *dca, int k)
|
alpar@1
|
4986 |
{ /* returns type of k-th field */
|
alpar@1
|
4987 |
xassert(1 <= k && k <= dca->nf);
|
alpar@1
|
4988 |
return dca->type[k];
|
alpar@1
|
4989 |
}
|
alpar@1
|
4990 |
|
alpar@1
|
4991 |
double mpl_tab_get_num(TABDCA *dca, int k)
|
alpar@1
|
4992 |
{ /* returns numeric value of k-th field */
|
alpar@1
|
4993 |
xassert(1 <= k && k <= dca->nf);
|
alpar@1
|
4994 |
xassert(dca->type[k] == 'N');
|
alpar@1
|
4995 |
return dca->num[k];
|
alpar@1
|
4996 |
}
|
alpar@1
|
4997 |
|
alpar@1
|
4998 |
const char *mpl_tab_get_str(TABDCA *dca, int k)
|
alpar@1
|
4999 |
{ /* returns pointer to string value of k-th field */
|
alpar@1
|
5000 |
xassert(1 <= k && k <= dca->nf);
|
alpar@1
|
5001 |
xassert(dca->type[k] == 'S');
|
alpar@1
|
5002 |
xassert(dca->str[k] != NULL);
|
alpar@1
|
5003 |
return dca->str[k];
|
alpar@1
|
5004 |
}
|
alpar@1
|
5005 |
|
alpar@1
|
5006 |
void mpl_tab_set_num(TABDCA *dca, int k, double num)
|
alpar@1
|
5007 |
{ /* assign numeric value to k-th field */
|
alpar@1
|
5008 |
xassert(1 <= k && k <= dca->nf);
|
alpar@1
|
5009 |
xassert(dca->type[k] == '?');
|
alpar@1
|
5010 |
dca->type[k] = 'N';
|
alpar@1
|
5011 |
dca->num[k] = num;
|
alpar@1
|
5012 |
return;
|
alpar@1
|
5013 |
}
|
alpar@1
|
5014 |
|
alpar@1
|
5015 |
void mpl_tab_set_str(TABDCA *dca, int k, const char *str)
|
alpar@1
|
5016 |
{ /* assign string value to k-th field */
|
alpar@1
|
5017 |
xassert(1 <= k && k <= dca->nf);
|
alpar@1
|
5018 |
xassert(dca->type[k] == '?');
|
alpar@1
|
5019 |
xassert(strlen(str) <= MAX_LENGTH);
|
alpar@1
|
5020 |
xassert(dca->str[k] != NULL);
|
alpar@1
|
5021 |
dca->type[k] = 'S';
|
alpar@1
|
5022 |
strcpy(dca->str[k], str);
|
alpar@1
|
5023 |
return;
|
alpar@1
|
5024 |
}
|
alpar@1
|
5025 |
|
alpar@1
|
5026 |
static int write_func(MPL *mpl, void *info)
|
alpar@1
|
5027 |
{ /* this is auxiliary routine to work within domain scope */
|
alpar@1
|
5028 |
TABLE *tab = info;
|
alpar@1
|
5029 |
TABDCA *dca = mpl->dca;
|
alpar@1
|
5030 |
TABOUT *out;
|
alpar@1
|
5031 |
SYMBOL *sym;
|
alpar@1
|
5032 |
int k;
|
alpar@1
|
5033 |
char buf[MAX_LENGTH+1];
|
alpar@1
|
5034 |
/* evaluate field values */
|
alpar@1
|
5035 |
k = 0;
|
alpar@1
|
5036 |
for (out = tab->u.out.list; out != NULL; out = out->next)
|
alpar@1
|
5037 |
{ k++;
|
alpar@1
|
5038 |
switch (out->code->type)
|
alpar@1
|
5039 |
{ case A_NUMERIC:
|
alpar@1
|
5040 |
dca->type[k] = 'N';
|
alpar@1
|
5041 |
dca->num[k] = eval_numeric(mpl, out->code);
|
alpar@1
|
5042 |
dca->str[k][0] = '\0';
|
alpar@1
|
5043 |
break;
|
alpar@1
|
5044 |
case A_SYMBOLIC:
|
alpar@1
|
5045 |
sym = eval_symbolic(mpl, out->code);
|
alpar@1
|
5046 |
if (sym->str == NULL)
|
alpar@1
|
5047 |
{ dca->type[k] = 'N';
|
alpar@1
|
5048 |
dca->num[k] = sym->num;
|
alpar@1
|
5049 |
dca->str[k][0] = '\0';
|
alpar@1
|
5050 |
}
|
alpar@1
|
5051 |
else
|
alpar@1
|
5052 |
{ dca->type[k] = 'S';
|
alpar@1
|
5053 |
dca->num[k] = 0.0;
|
alpar@1
|
5054 |
fetch_string(mpl, sym->str, buf);
|
alpar@1
|
5055 |
strcpy(dca->str[k], buf);
|
alpar@1
|
5056 |
}
|
alpar@1
|
5057 |
delete_symbol(mpl, sym);
|
alpar@1
|
5058 |
break;
|
alpar@1
|
5059 |
default:
|
alpar@1
|
5060 |
xassert(out != out);
|
alpar@1
|
5061 |
}
|
alpar@1
|
5062 |
}
|
alpar@1
|
5063 |
/* write record to output table */
|
alpar@1
|
5064 |
mpl_tab_drv_write(mpl);
|
alpar@1
|
5065 |
return 0;
|
alpar@1
|
5066 |
}
|
alpar@1
|
5067 |
|
alpar@1
|
5068 |
void execute_table(MPL *mpl, TABLE *tab)
|
alpar@1
|
5069 |
{ /* execute table statement */
|
alpar@1
|
5070 |
TABARG *arg;
|
alpar@1
|
5071 |
TABFLD *fld;
|
alpar@1
|
5072 |
TABIN *in;
|
alpar@1
|
5073 |
TABOUT *out;
|
alpar@1
|
5074 |
TABDCA *dca;
|
alpar@1
|
5075 |
SET *set;
|
alpar@1
|
5076 |
int k;
|
alpar@1
|
5077 |
char buf[MAX_LENGTH+1];
|
alpar@1
|
5078 |
/* allocate table driver communication area */
|
alpar@1
|
5079 |
xassert(mpl->dca == NULL);
|
alpar@1
|
5080 |
mpl->dca = dca = xmalloc(sizeof(TABDCA));
|
alpar@1
|
5081 |
dca->id = 0;
|
alpar@1
|
5082 |
dca->link = NULL;
|
alpar@1
|
5083 |
dca->na = 0;
|
alpar@1
|
5084 |
dca->arg = NULL;
|
alpar@1
|
5085 |
dca->nf = 0;
|
alpar@1
|
5086 |
dca->name = NULL;
|
alpar@1
|
5087 |
dca->type = NULL;
|
alpar@1
|
5088 |
dca->num = NULL;
|
alpar@1
|
5089 |
dca->str = NULL;
|
alpar@1
|
5090 |
/* allocate arguments */
|
alpar@1
|
5091 |
xassert(dca->na == 0);
|
alpar@1
|
5092 |
for (arg = tab->arg; arg != NULL; arg = arg->next)
|
alpar@1
|
5093 |
dca->na++;
|
alpar@1
|
5094 |
dca->arg = xcalloc(1+dca->na, sizeof(char *));
|
alpar@1
|
5095 |
#if 1 /* 28/IX-2008 */
|
alpar@1
|
5096 |
for (k = 1; k <= dca->na; k++) dca->arg[k] = NULL;
|
alpar@1
|
5097 |
#endif
|
alpar@1
|
5098 |
/* evaluate argument values */
|
alpar@1
|
5099 |
k = 0;
|
alpar@1
|
5100 |
for (arg = tab->arg; arg != NULL; arg = arg->next)
|
alpar@1
|
5101 |
{ SYMBOL *sym;
|
alpar@1
|
5102 |
k++;
|
alpar@1
|
5103 |
xassert(arg->code->type == A_SYMBOLIC);
|
alpar@1
|
5104 |
sym = eval_symbolic(mpl, arg->code);
|
alpar@1
|
5105 |
if (sym->str == NULL)
|
alpar@1
|
5106 |
sprintf(buf, "%.*g", DBL_DIG, sym->num);
|
alpar@1
|
5107 |
else
|
alpar@1
|
5108 |
fetch_string(mpl, sym->str, buf);
|
alpar@1
|
5109 |
delete_symbol(mpl, sym);
|
alpar@1
|
5110 |
dca->arg[k] = xmalloc(strlen(buf)+1);
|
alpar@1
|
5111 |
strcpy(dca->arg[k], buf);
|
alpar@1
|
5112 |
}
|
alpar@1
|
5113 |
/* perform table input/output */
|
alpar@1
|
5114 |
switch (tab->type)
|
alpar@1
|
5115 |
{ case A_INPUT: goto read_table;
|
alpar@1
|
5116 |
case A_OUTPUT: goto write_table;
|
alpar@1
|
5117 |
default: xassert(tab != tab);
|
alpar@1
|
5118 |
}
|
alpar@1
|
5119 |
read_table:
|
alpar@1
|
5120 |
/* read data from input table */
|
alpar@1
|
5121 |
/* add the only member to the control set and assign it empty
|
alpar@1
|
5122 |
elemental set */
|
alpar@1
|
5123 |
set = tab->u.in.set;
|
alpar@1
|
5124 |
if (set != NULL)
|
alpar@1
|
5125 |
{ if (set->data)
|
alpar@1
|
5126 |
error(mpl, "%s already provided with data", set->name);
|
alpar@1
|
5127 |
xassert(set->array->head == NULL);
|
alpar@1
|
5128 |
add_member(mpl, set->array, NULL)->value.set =
|
alpar@1
|
5129 |
create_elemset(mpl, set->dimen);
|
alpar@1
|
5130 |
set->data = 1;
|
alpar@1
|
5131 |
}
|
alpar@1
|
5132 |
/* check parameters specified in the input list */
|
alpar@1
|
5133 |
for (in = tab->u.in.list; in != NULL; in = in->next)
|
alpar@1
|
5134 |
{ if (in->par->data)
|
alpar@1
|
5135 |
error(mpl, "%s already provided with data", in->par->name);
|
alpar@1
|
5136 |
in->par->data = 1;
|
alpar@1
|
5137 |
}
|
alpar@1
|
5138 |
/* allocate and initialize fields */
|
alpar@1
|
5139 |
xassert(dca->nf == 0);
|
alpar@1
|
5140 |
for (fld = tab->u.in.fld; fld != NULL; fld = fld->next)
|
alpar@1
|
5141 |
dca->nf++;
|
alpar@1
|
5142 |
for (in = tab->u.in.list; in != NULL; in = in->next)
|
alpar@1
|
5143 |
dca->nf++;
|
alpar@1
|
5144 |
dca->name = xcalloc(1+dca->nf, sizeof(char *));
|
alpar@1
|
5145 |
dca->type = xcalloc(1+dca->nf, sizeof(int));
|
alpar@1
|
5146 |
dca->num = xcalloc(1+dca->nf, sizeof(double));
|
alpar@1
|
5147 |
dca->str = xcalloc(1+dca->nf, sizeof(char *));
|
alpar@1
|
5148 |
k = 0;
|
alpar@1
|
5149 |
for (fld = tab->u.in.fld; fld != NULL; fld = fld->next)
|
alpar@1
|
5150 |
{ k++;
|
alpar@1
|
5151 |
dca->name[k] = fld->name;
|
alpar@1
|
5152 |
dca->type[k] = '?';
|
alpar@1
|
5153 |
dca->num[k] = 0.0;
|
alpar@1
|
5154 |
dca->str[k] = xmalloc(MAX_LENGTH+1);
|
alpar@1
|
5155 |
dca->str[k][0] = '\0';
|
alpar@1
|
5156 |
}
|
alpar@1
|
5157 |
for (in = tab->u.in.list; in != NULL; in = in->next)
|
alpar@1
|
5158 |
{ k++;
|
alpar@1
|
5159 |
dca->name[k] = in->name;
|
alpar@1
|
5160 |
dca->type[k] = '?';
|
alpar@1
|
5161 |
dca->num[k] = 0.0;
|
alpar@1
|
5162 |
dca->str[k] = xmalloc(MAX_LENGTH+1);
|
alpar@1
|
5163 |
dca->str[k][0] = '\0';
|
alpar@1
|
5164 |
}
|
alpar@1
|
5165 |
/* open input table */
|
alpar@1
|
5166 |
mpl_tab_drv_open(mpl, 'R');
|
alpar@1
|
5167 |
/* read and process records */
|
alpar@1
|
5168 |
for (;;)
|
alpar@1
|
5169 |
{ TUPLE *tup;
|
alpar@1
|
5170 |
/* reset field types */
|
alpar@1
|
5171 |
for (k = 1; k <= dca->nf; k++)
|
alpar@1
|
5172 |
dca->type[k] = '?';
|
alpar@1
|
5173 |
/* read next record */
|
alpar@1
|
5174 |
if (mpl_tab_drv_read(mpl)) break;
|
alpar@1
|
5175 |
/* all fields must be set by the driver */
|
alpar@1
|
5176 |
for (k = 1; k <= dca->nf; k++)
|
alpar@1
|
5177 |
{ if (dca->type[k] == '?')
|
alpar@1
|
5178 |
error(mpl, "field %s missing in input table",
|
alpar@1
|
5179 |
dca->name[k]);
|
alpar@1
|
5180 |
}
|
alpar@1
|
5181 |
/* construct n-tuple */
|
alpar@1
|
5182 |
tup = create_tuple(mpl);
|
alpar@1
|
5183 |
k = 0;
|
alpar@1
|
5184 |
for (fld = tab->u.in.fld; fld != NULL; fld = fld->next)
|
alpar@1
|
5185 |
{ k++;
|
alpar@1
|
5186 |
xassert(k <= dca->nf);
|
alpar@1
|
5187 |
switch (dca->type[k])
|
alpar@1
|
5188 |
{ case 'N':
|
alpar@1
|
5189 |
tup = expand_tuple(mpl, tup, create_symbol_num(mpl,
|
alpar@1
|
5190 |
dca->num[k]));
|
alpar@1
|
5191 |
break;
|
alpar@1
|
5192 |
case 'S':
|
alpar@1
|
5193 |
xassert(strlen(dca->str[k]) <= MAX_LENGTH);
|
alpar@1
|
5194 |
tup = expand_tuple(mpl, tup, create_symbol_str(mpl,
|
alpar@1
|
5195 |
create_string(mpl, dca->str[k])));
|
alpar@1
|
5196 |
break;
|
alpar@1
|
5197 |
default:
|
alpar@1
|
5198 |
xassert(dca != dca);
|
alpar@1
|
5199 |
}
|
alpar@1
|
5200 |
}
|
alpar@1
|
5201 |
/* add n-tuple just read to the control set */
|
alpar@1
|
5202 |
if (tab->u.in.set != NULL)
|
alpar@1
|
5203 |
check_then_add(mpl, tab->u.in.set->array->head->value.set,
|
alpar@1
|
5204 |
copy_tuple(mpl, tup));
|
alpar@1
|
5205 |
/* assign values to the parameters in the input list */
|
alpar@1
|
5206 |
for (in = tab->u.in.list; in != NULL; in = in->next)
|
alpar@1
|
5207 |
{ MEMBER *memb;
|
alpar@1
|
5208 |
k++;
|
alpar@1
|
5209 |
xassert(k <= dca->nf);
|
alpar@1
|
5210 |
/* there must be no member with the same n-tuple */
|
alpar@1
|
5211 |
if (find_member(mpl, in->par->array, tup) != NULL)
|
alpar@1
|
5212 |
error(mpl, "%s%s already defined", in->par->name,
|
alpar@1
|
5213 |
format_tuple(mpl, '[', tup));
|
alpar@1
|
5214 |
/* create new parameter member with given n-tuple */
|
alpar@1
|
5215 |
memb = add_member(mpl, in->par->array, copy_tuple(mpl, tup))
|
alpar@1
|
5216 |
;
|
alpar@1
|
5217 |
/* assign value to the parameter member */
|
alpar@1
|
5218 |
switch (in->par->type)
|
alpar@1
|
5219 |
{ case A_NUMERIC:
|
alpar@1
|
5220 |
case A_INTEGER:
|
alpar@1
|
5221 |
case A_BINARY:
|
alpar@1
|
5222 |
if (dca->type[k] != 'N')
|
alpar@1
|
5223 |
error(mpl, "%s requires numeric data",
|
alpar@1
|
5224 |
in->par->name);
|
alpar@1
|
5225 |
memb->value.num = dca->num[k];
|
alpar@1
|
5226 |
break;
|
alpar@1
|
5227 |
case A_SYMBOLIC:
|
alpar@1
|
5228 |
switch (dca->type[k])
|
alpar@1
|
5229 |
{ case 'N':
|
alpar@1
|
5230 |
memb->value.sym = create_symbol_num(mpl,
|
alpar@1
|
5231 |
dca->num[k]);
|
alpar@1
|
5232 |
break;
|
alpar@1
|
5233 |
case 'S':
|
alpar@1
|
5234 |
xassert(strlen(dca->str[k]) <= MAX_LENGTH);
|
alpar@1
|
5235 |
memb->value.sym = create_symbol_str(mpl,
|
alpar@1
|
5236 |
create_string(mpl,dca->str[k]));
|
alpar@1
|
5237 |
break;
|
alpar@1
|
5238 |
default:
|
alpar@1
|
5239 |
xassert(dca != dca);
|
alpar@1
|
5240 |
}
|
alpar@1
|
5241 |
break;
|
alpar@1
|
5242 |
default:
|
alpar@1
|
5243 |
xassert(in != in);
|
alpar@1
|
5244 |
}
|
alpar@1
|
5245 |
}
|
alpar@1
|
5246 |
/* n-tuple is no more needed */
|
alpar@1
|
5247 |
delete_tuple(mpl, tup);
|
alpar@1
|
5248 |
}
|
alpar@1
|
5249 |
/* close input table */
|
alpar@1
|
5250 |
mpl_tab_drv_close(mpl);
|
alpar@1
|
5251 |
goto done;
|
alpar@1
|
5252 |
write_table:
|
alpar@1
|
5253 |
/* write data to output table */
|
alpar@1
|
5254 |
/* allocate and initialize fields */
|
alpar@1
|
5255 |
xassert(dca->nf == 0);
|
alpar@1
|
5256 |
for (out = tab->u.out.list; out != NULL; out = out->next)
|
alpar@1
|
5257 |
dca->nf++;
|
alpar@1
|
5258 |
dca->name = xcalloc(1+dca->nf, sizeof(char *));
|
alpar@1
|
5259 |
dca->type = xcalloc(1+dca->nf, sizeof(int));
|
alpar@1
|
5260 |
dca->num = xcalloc(1+dca->nf, sizeof(double));
|
alpar@1
|
5261 |
dca->str = xcalloc(1+dca->nf, sizeof(char *));
|
alpar@1
|
5262 |
k = 0;
|
alpar@1
|
5263 |
for (out = tab->u.out.list; out != NULL; out = out->next)
|
alpar@1
|
5264 |
{ k++;
|
alpar@1
|
5265 |
dca->name[k] = out->name;
|
alpar@1
|
5266 |
dca->type[k] = '?';
|
alpar@1
|
5267 |
dca->num[k] = 0.0;
|
alpar@1
|
5268 |
dca->str[k] = xmalloc(MAX_LENGTH+1);
|
alpar@1
|
5269 |
dca->str[k][0] = '\0';
|
alpar@1
|
5270 |
}
|
alpar@1
|
5271 |
/* open output table */
|
alpar@1
|
5272 |
mpl_tab_drv_open(mpl, 'W');
|
alpar@1
|
5273 |
/* evaluate fields and write records */
|
alpar@1
|
5274 |
loop_within_domain(mpl, tab->u.out.domain, tab, write_func);
|
alpar@1
|
5275 |
/* close output table */
|
alpar@1
|
5276 |
mpl_tab_drv_close(mpl);
|
alpar@1
|
5277 |
done: /* free table driver communication area */
|
alpar@1
|
5278 |
free_dca(mpl);
|
alpar@1
|
5279 |
return;
|
alpar@1
|
5280 |
}
|
alpar@1
|
5281 |
|
alpar@1
|
5282 |
void free_dca(MPL *mpl)
|
alpar@1
|
5283 |
{ /* free table driver communucation area */
|
alpar@1
|
5284 |
TABDCA *dca = mpl->dca;
|
alpar@1
|
5285 |
int k;
|
alpar@1
|
5286 |
if (dca != NULL)
|
alpar@1
|
5287 |
{ if (dca->link != NULL)
|
alpar@1
|
5288 |
mpl_tab_drv_close(mpl);
|
alpar@1
|
5289 |
if (dca->arg != NULL)
|
alpar@1
|
5290 |
{ for (k = 1; k <= dca->na; k++)
|
alpar@1
|
5291 |
#if 1 /* 28/IX-2008 */
|
alpar@1
|
5292 |
if (dca->arg[k] != NULL)
|
alpar@1
|
5293 |
#endif
|
alpar@1
|
5294 |
xfree(dca->arg[k]);
|
alpar@1
|
5295 |
xfree(dca->arg);
|
alpar@1
|
5296 |
}
|
alpar@1
|
5297 |
if (dca->name != NULL) xfree(dca->name);
|
alpar@1
|
5298 |
if (dca->type != NULL) xfree(dca->type);
|
alpar@1
|
5299 |
if (dca->num != NULL) xfree(dca->num);
|
alpar@1
|
5300 |
if (dca->str != NULL)
|
alpar@1
|
5301 |
{ for (k = 1; k <= dca->nf; k++)
|
alpar@1
|
5302 |
xfree(dca->str[k]);
|
alpar@1
|
5303 |
xfree(dca->str);
|
alpar@1
|
5304 |
}
|
alpar@1
|
5305 |
xfree(dca), mpl->dca = NULL;
|
alpar@1
|
5306 |
}
|
alpar@1
|
5307 |
return;
|
alpar@1
|
5308 |
}
|
alpar@1
|
5309 |
|
alpar@1
|
5310 |
void clean_table(MPL *mpl, TABLE *tab)
|
alpar@1
|
5311 |
{ /* clean table statement */
|
alpar@1
|
5312 |
TABARG *arg;
|
alpar@1
|
5313 |
TABOUT *out;
|
alpar@1
|
5314 |
/* clean string list */
|
alpar@1
|
5315 |
for (arg = tab->arg; arg != NULL; arg = arg->next)
|
alpar@1
|
5316 |
clean_code(mpl, arg->code);
|
alpar@1
|
5317 |
switch (tab->type)
|
alpar@1
|
5318 |
{ case A_INPUT:
|
alpar@1
|
5319 |
break;
|
alpar@1
|
5320 |
case A_OUTPUT:
|
alpar@1
|
5321 |
/* clean subscript domain */
|
alpar@1
|
5322 |
clean_domain(mpl, tab->u.out.domain);
|
alpar@1
|
5323 |
/* clean output list */
|
alpar@1
|
5324 |
for (out = tab->u.out.list; out != NULL; out = out->next)
|
alpar@1
|
5325 |
clean_code(mpl, out->code);
|
alpar@1
|
5326 |
break;
|
alpar@1
|
5327 |
default:
|
alpar@1
|
5328 |
xassert(tab != tab);
|
alpar@1
|
5329 |
}
|
alpar@1
|
5330 |
return;
|
alpar@1
|
5331 |
}
|
alpar@1
|
5332 |
#endif
|
alpar@1
|
5333 |
|
alpar@1
|
5334 |
/**********************************************************************/
|
alpar@1
|
5335 |
/* * * MODEL STATEMENTS * * */
|
alpar@1
|
5336 |
/**********************************************************************/
|
alpar@1
|
5337 |
|
alpar@1
|
5338 |
/*----------------------------------------------------------------------
|
alpar@1
|
5339 |
-- execute_check - execute check statement.
|
alpar@1
|
5340 |
--
|
alpar@1
|
5341 |
-- This routine executes specified check statement. */
|
alpar@1
|
5342 |
|
alpar@1
|
5343 |
static int check_func(MPL *mpl, void *info)
|
alpar@1
|
5344 |
{ /* this is auxiliary routine to work within domain scope */
|
alpar@1
|
5345 |
CHECK *chk = (CHECK *)info;
|
alpar@1
|
5346 |
if (!eval_logical(mpl, chk->code))
|
alpar@1
|
5347 |
error(mpl, "check%s failed", format_tuple(mpl, '[',
|
alpar@1
|
5348 |
get_domain_tuple(mpl, chk->domain)));
|
alpar@1
|
5349 |
return 0;
|
alpar@1
|
5350 |
}
|
alpar@1
|
5351 |
|
alpar@1
|
5352 |
void execute_check(MPL *mpl, CHECK *chk)
|
alpar@1
|
5353 |
{ loop_within_domain(mpl, chk->domain, chk, check_func);
|
alpar@1
|
5354 |
return;
|
alpar@1
|
5355 |
}
|
alpar@1
|
5356 |
|
alpar@1
|
5357 |
/*----------------------------------------------------------------------
|
alpar@1
|
5358 |
-- clean_check - clean check statement.
|
alpar@1
|
5359 |
--
|
alpar@1
|
5360 |
-- This routine cleans specified check statement that assumes deleting
|
alpar@1
|
5361 |
-- all stuff dynamically allocated on generating/postsolving phase. */
|
alpar@1
|
5362 |
|
alpar@1
|
5363 |
void clean_check(MPL *mpl, CHECK *chk)
|
alpar@1
|
5364 |
{ /* clean subscript domain */
|
alpar@1
|
5365 |
clean_domain(mpl, chk->domain);
|
alpar@1
|
5366 |
/* clean pseudo-code for computing predicate */
|
alpar@1
|
5367 |
clean_code(mpl, chk->code);
|
alpar@1
|
5368 |
return;
|
alpar@1
|
5369 |
}
|
alpar@1
|
5370 |
|
alpar@1
|
5371 |
/*----------------------------------------------------------------------
|
alpar@1
|
5372 |
-- execute_display - execute display statement.
|
alpar@1
|
5373 |
--
|
alpar@1
|
5374 |
-- This routine executes specified display statement. */
|
alpar@1
|
5375 |
|
alpar@1
|
5376 |
static void display_set(MPL *mpl, SET *set, MEMBER *memb)
|
alpar@1
|
5377 |
{ /* display member of model set */
|
alpar@1
|
5378 |
ELEMSET *s = memb->value.set;
|
alpar@1
|
5379 |
MEMBER *m;
|
alpar@1
|
5380 |
write_text(mpl, "%s%s%s\n", set->name,
|
alpar@1
|
5381 |
format_tuple(mpl, '[', memb->tuple),
|
alpar@1
|
5382 |
s->head == NULL ? " is empty" : ":");
|
alpar@1
|
5383 |
for (m = s->head; m != NULL; m = m->next)
|
alpar@1
|
5384 |
write_text(mpl, " %s\n", format_tuple(mpl, '(', m->tuple));
|
alpar@1
|
5385 |
return;
|
alpar@1
|
5386 |
}
|
alpar@1
|
5387 |
|
alpar@1
|
5388 |
static void display_par(MPL *mpl, PARAMETER *par, MEMBER *memb)
|
alpar@1
|
5389 |
{ /* display member of model parameter */
|
alpar@1
|
5390 |
switch (par->type)
|
alpar@1
|
5391 |
{ case A_NUMERIC:
|
alpar@1
|
5392 |
case A_INTEGER:
|
alpar@1
|
5393 |
case A_BINARY:
|
alpar@1
|
5394 |
write_text(mpl, "%s%s = %.*g\n", par->name,
|
alpar@1
|
5395 |
format_tuple(mpl, '[', memb->tuple),
|
alpar@1
|
5396 |
DBL_DIG, memb->value.num);
|
alpar@1
|
5397 |
break;
|
alpar@1
|
5398 |
case A_SYMBOLIC:
|
alpar@1
|
5399 |
write_text(mpl, "%s%s = %s\n", par->name,
|
alpar@1
|
5400 |
format_tuple(mpl, '[', memb->tuple),
|
alpar@1
|
5401 |
format_symbol(mpl, memb->value.sym));
|
alpar@1
|
5402 |
break;
|
alpar@1
|
5403 |
default:
|
alpar@1
|
5404 |
xassert(par != par);
|
alpar@1
|
5405 |
}
|
alpar@1
|
5406 |
return;
|
alpar@1
|
5407 |
}
|
alpar@1
|
5408 |
|
alpar@1
|
5409 |
#if 1 /* 15/V-2010 */
|
alpar@1
|
5410 |
static void display_var(MPL *mpl, VARIABLE *var, MEMBER *memb,
|
alpar@1
|
5411 |
int suff)
|
alpar@1
|
5412 |
{ /* display member of model variable */
|
alpar@1
|
5413 |
if (suff == DOT_NONE || suff == DOT_VAL)
|
alpar@1
|
5414 |
write_text(mpl, "%s%s.val = %.*g\n", var->name,
|
alpar@1
|
5415 |
format_tuple(mpl, '[', memb->tuple), DBL_DIG,
|
alpar@1
|
5416 |
memb->value.var->prim);
|
alpar@1
|
5417 |
else if (suff == DOT_LB)
|
alpar@1
|
5418 |
write_text(mpl, "%s%s.lb = %.*g\n", var->name,
|
alpar@1
|
5419 |
format_tuple(mpl, '[', memb->tuple), DBL_DIG,
|
alpar@1
|
5420 |
memb->value.var->var->lbnd == NULL ? -DBL_MAX :
|
alpar@1
|
5421 |
memb->value.var->lbnd);
|
alpar@1
|
5422 |
else if (suff == DOT_UB)
|
alpar@1
|
5423 |
write_text(mpl, "%s%s.ub = %.*g\n", var->name,
|
alpar@1
|
5424 |
format_tuple(mpl, '[', memb->tuple), DBL_DIG,
|
alpar@1
|
5425 |
memb->value.var->var->ubnd == NULL ? +DBL_MAX :
|
alpar@1
|
5426 |
memb->value.var->ubnd);
|
alpar@1
|
5427 |
else if (suff == DOT_STATUS)
|
alpar@1
|
5428 |
write_text(mpl, "%s%s.status = %d\n", var->name, format_tuple
|
alpar@1
|
5429 |
(mpl, '[', memb->tuple), memb->value.var->stat);
|
alpar@1
|
5430 |
else if (suff == DOT_DUAL)
|
alpar@1
|
5431 |
write_text(mpl, "%s%s.dual = %.*g\n", var->name,
|
alpar@1
|
5432 |
format_tuple(mpl, '[', memb->tuple), DBL_DIG,
|
alpar@1
|
5433 |
memb->value.var->dual);
|
alpar@1
|
5434 |
else
|
alpar@1
|
5435 |
xassert(suff != suff);
|
alpar@1
|
5436 |
return;
|
alpar@1
|
5437 |
}
|
alpar@1
|
5438 |
#endif
|
alpar@1
|
5439 |
|
alpar@1
|
5440 |
#if 1 /* 15/V-2010 */
|
alpar@1
|
5441 |
static void display_con(MPL *mpl, CONSTRAINT *con, MEMBER *memb,
|
alpar@1
|
5442 |
int suff)
|
alpar@1
|
5443 |
{ /* display member of model constraint */
|
alpar@1
|
5444 |
if (suff == DOT_NONE || suff == DOT_VAL)
|
alpar@1
|
5445 |
write_text(mpl, "%s%s.val = %.*g\n", con->name,
|
alpar@1
|
5446 |
format_tuple(mpl, '[', memb->tuple), DBL_DIG,
|
alpar@1
|
5447 |
memb->value.con->prim);
|
alpar@1
|
5448 |
else if (suff == DOT_LB)
|
alpar@1
|
5449 |
write_text(mpl, "%s%s.lb = %.*g\n", con->name,
|
alpar@1
|
5450 |
format_tuple(mpl, '[', memb->tuple), DBL_DIG,
|
alpar@1
|
5451 |
memb->value.con->con->lbnd == NULL ? -DBL_MAX :
|
alpar@1
|
5452 |
memb->value.con->lbnd);
|
alpar@1
|
5453 |
else if (suff == DOT_UB)
|
alpar@1
|
5454 |
write_text(mpl, "%s%s.ub = %.*g\n", con->name,
|
alpar@1
|
5455 |
format_tuple(mpl, '[', memb->tuple), DBL_DIG,
|
alpar@1
|
5456 |
memb->value.con->con->ubnd == NULL ? +DBL_MAX :
|
alpar@1
|
5457 |
memb->value.con->ubnd);
|
alpar@1
|
5458 |
else if (suff == DOT_STATUS)
|
alpar@1
|
5459 |
write_text(mpl, "%s%s.status = %d\n", con->name, format_tuple
|
alpar@1
|
5460 |
(mpl, '[', memb->tuple), memb->value.con->stat);
|
alpar@1
|
5461 |
else if (suff == DOT_DUAL)
|
alpar@1
|
5462 |
write_text(mpl, "%s%s.dual = %.*g\n", con->name,
|
alpar@1
|
5463 |
format_tuple(mpl, '[', memb->tuple), DBL_DIG,
|
alpar@1
|
5464 |
memb->value.con->dual);
|
alpar@1
|
5465 |
else
|
alpar@1
|
5466 |
xassert(suff != suff);
|
alpar@1
|
5467 |
return;
|
alpar@1
|
5468 |
}
|
alpar@1
|
5469 |
#endif
|
alpar@1
|
5470 |
|
alpar@1
|
5471 |
static void display_memb(MPL *mpl, CODE *code)
|
alpar@1
|
5472 |
{ /* display member specified by pseudo-code */
|
alpar@1
|
5473 |
MEMBER memb;
|
alpar@1
|
5474 |
ARG_LIST *e;
|
alpar@1
|
5475 |
xassert(code->op == O_MEMNUM || code->op == O_MEMSYM
|
alpar@1
|
5476 |
|| code->op == O_MEMSET || code->op == O_MEMVAR
|
alpar@1
|
5477 |
|| code->op == O_MEMCON);
|
alpar@1
|
5478 |
memb.tuple = create_tuple(mpl);
|
alpar@1
|
5479 |
for (e = code->arg.par.list; e != NULL; e = e->next)
|
alpar@1
|
5480 |
memb.tuple = expand_tuple(mpl, memb.tuple, eval_symbolic(mpl,
|
alpar@1
|
5481 |
e->x));
|
alpar@1
|
5482 |
switch (code->op)
|
alpar@1
|
5483 |
{ case O_MEMNUM:
|
alpar@1
|
5484 |
memb.value.num = eval_member_num(mpl, code->arg.par.par,
|
alpar@1
|
5485 |
memb.tuple);
|
alpar@1
|
5486 |
display_par(mpl, code->arg.par.par, &memb);
|
alpar@1
|
5487 |
break;
|
alpar@1
|
5488 |
case O_MEMSYM:
|
alpar@1
|
5489 |
memb.value.sym = eval_member_sym(mpl, code->arg.par.par,
|
alpar@1
|
5490 |
memb.tuple);
|
alpar@1
|
5491 |
display_par(mpl, code->arg.par.par, &memb);
|
alpar@1
|
5492 |
delete_symbol(mpl, memb.value.sym);
|
alpar@1
|
5493 |
break;
|
alpar@1
|
5494 |
case O_MEMSET:
|
alpar@1
|
5495 |
memb.value.set = eval_member_set(mpl, code->arg.set.set,
|
alpar@1
|
5496 |
memb.tuple);
|
alpar@1
|
5497 |
display_set(mpl, code->arg.set.set, &memb);
|
alpar@1
|
5498 |
break;
|
alpar@1
|
5499 |
case O_MEMVAR:
|
alpar@1
|
5500 |
memb.value.var = eval_member_var(mpl, code->arg.var.var,
|
alpar@1
|
5501 |
memb.tuple);
|
alpar@1
|
5502 |
display_var
|
alpar@1
|
5503 |
(mpl, code->arg.var.var, &memb, code->arg.var.suff);
|
alpar@1
|
5504 |
break;
|
alpar@1
|
5505 |
case O_MEMCON:
|
alpar@1
|
5506 |
memb.value.con = eval_member_con(mpl, code->arg.con.con,
|
alpar@1
|
5507 |
memb.tuple);
|
alpar@1
|
5508 |
display_con
|
alpar@1
|
5509 |
(mpl, code->arg.con.con, &memb, code->arg.con.suff);
|
alpar@1
|
5510 |
break;
|
alpar@1
|
5511 |
default:
|
alpar@1
|
5512 |
xassert(code != code);
|
alpar@1
|
5513 |
}
|
alpar@1
|
5514 |
delete_tuple(mpl, memb.tuple);
|
alpar@1
|
5515 |
return;
|
alpar@1
|
5516 |
}
|
alpar@1
|
5517 |
|
alpar@1
|
5518 |
static void display_code(MPL *mpl, CODE *code)
|
alpar@1
|
5519 |
{ /* display value of expression */
|
alpar@1
|
5520 |
switch (code->type)
|
alpar@1
|
5521 |
{ case A_NUMERIC:
|
alpar@1
|
5522 |
/* numeric value */
|
alpar@1
|
5523 |
{ double num;
|
alpar@1
|
5524 |
num = eval_numeric(mpl, code);
|
alpar@1
|
5525 |
write_text(mpl, "%.*g\n", DBL_DIG, num);
|
alpar@1
|
5526 |
}
|
alpar@1
|
5527 |
break;
|
alpar@1
|
5528 |
case A_SYMBOLIC:
|
alpar@1
|
5529 |
/* symbolic value */
|
alpar@1
|
5530 |
{ SYMBOL *sym;
|
alpar@1
|
5531 |
sym = eval_symbolic(mpl, code);
|
alpar@1
|
5532 |
write_text(mpl, "%s\n", format_symbol(mpl, sym));
|
alpar@1
|
5533 |
delete_symbol(mpl, sym);
|
alpar@1
|
5534 |
}
|
alpar@1
|
5535 |
break;
|
alpar@1
|
5536 |
case A_LOGICAL:
|
alpar@1
|
5537 |
/* logical value */
|
alpar@1
|
5538 |
{ int bit;
|
alpar@1
|
5539 |
bit = eval_logical(mpl, code);
|
alpar@1
|
5540 |
write_text(mpl, "%s\n", bit ? "true" : "false");
|
alpar@1
|
5541 |
}
|
alpar@1
|
5542 |
break;
|
alpar@1
|
5543 |
case A_TUPLE:
|
alpar@1
|
5544 |
/* n-tuple */
|
alpar@1
|
5545 |
{ TUPLE *tuple;
|
alpar@1
|
5546 |
tuple = eval_tuple(mpl, code);
|
alpar@1
|
5547 |
write_text(mpl, "%s\n", format_tuple(mpl, '(', tuple));
|
alpar@1
|
5548 |
delete_tuple(mpl, tuple);
|
alpar@1
|
5549 |
}
|
alpar@1
|
5550 |
break;
|
alpar@1
|
5551 |
case A_ELEMSET:
|
alpar@1
|
5552 |
/* elemental set */
|
alpar@1
|
5553 |
{ ELEMSET *set;
|
alpar@1
|
5554 |
MEMBER *memb;
|
alpar@1
|
5555 |
set = eval_elemset(mpl, code);
|
alpar@1
|
5556 |
if (set->head == 0)
|
alpar@1
|
5557 |
write_text(mpl, "set is empty\n");
|
alpar@1
|
5558 |
for (memb = set->head; memb != NULL; memb = memb->next)
|
alpar@1
|
5559 |
write_text(mpl, " %s\n", format_tuple(mpl, '(',
|
alpar@1
|
5560 |
memb->tuple));
|
alpar@1
|
5561 |
delete_elemset(mpl, set);
|
alpar@1
|
5562 |
}
|
alpar@1
|
5563 |
break;
|
alpar@1
|
5564 |
case A_FORMULA:
|
alpar@1
|
5565 |
/* linear form */
|
alpar@1
|
5566 |
{ FORMULA *form, *term;
|
alpar@1
|
5567 |
form = eval_formula(mpl, code);
|
alpar@1
|
5568 |
if (form == NULL)
|
alpar@1
|
5569 |
write_text(mpl, "linear form is empty\n");
|
alpar@1
|
5570 |
for (term = form; term != NULL; term = term->next)
|
alpar@1
|
5571 |
{ if (term->var == NULL)
|
alpar@1
|
5572 |
write_text(mpl, " %.*g\n", term->coef);
|
alpar@1
|
5573 |
else
|
alpar@1
|
5574 |
write_text(mpl, " %.*g %s%s\n", DBL_DIG,
|
alpar@1
|
5575 |
term->coef, term->var->var->name,
|
alpar@1
|
5576 |
format_tuple(mpl, '[', term->var->memb->tuple));
|
alpar@1
|
5577 |
}
|
alpar@1
|
5578 |
delete_formula(mpl, form);
|
alpar@1
|
5579 |
}
|
alpar@1
|
5580 |
break;
|
alpar@1
|
5581 |
default:
|
alpar@1
|
5582 |
xassert(code != code);
|
alpar@1
|
5583 |
}
|
alpar@1
|
5584 |
return;
|
alpar@1
|
5585 |
}
|
alpar@1
|
5586 |
|
alpar@1
|
5587 |
static int display_func(MPL *mpl, void *info)
|
alpar@1
|
5588 |
{ /* this is auxiliary routine to work within domain scope */
|
alpar@1
|
5589 |
DISPLAY *dpy = (DISPLAY *)info;
|
alpar@1
|
5590 |
DISPLAY1 *entry;
|
alpar@1
|
5591 |
for (entry = dpy->list; entry != NULL; entry = entry->next)
|
alpar@1
|
5592 |
{ if (entry->type == A_INDEX)
|
alpar@1
|
5593 |
{ /* dummy index */
|
alpar@1
|
5594 |
DOMAIN_SLOT *slot = entry->u.slot;
|
alpar@1
|
5595 |
write_text(mpl, "%s = %s\n", slot->name,
|
alpar@1
|
5596 |
format_symbol(mpl, slot->value));
|
alpar@1
|
5597 |
}
|
alpar@1
|
5598 |
else if (entry->type == A_SET)
|
alpar@1
|
5599 |
{ /* model set */
|
alpar@1
|
5600 |
SET *set = entry->u.set;
|
alpar@1
|
5601 |
MEMBER *memb;
|
alpar@1
|
5602 |
if (set->assign != NULL)
|
alpar@1
|
5603 |
{ /* the set has assignment expression; evaluate all its
|
alpar@1
|
5604 |
members over entire domain */
|
alpar@1
|
5605 |
eval_whole_set(mpl, set);
|
alpar@1
|
5606 |
}
|
alpar@1
|
5607 |
else
|
alpar@1
|
5608 |
{ /* the set has no assignment expression; refer to its
|
alpar@1
|
5609 |
any existing member ignoring resultant value to check
|
alpar@1
|
5610 |
the data provided the data section */
|
alpar@1
|
5611 |
#if 1 /* 12/XII-2008 */
|
alpar@1
|
5612 |
if (set->gadget != NULL && set->data == 0)
|
alpar@1
|
5613 |
{ /* initialize the set with data from a plain set */
|
alpar@1
|
5614 |
saturate_set(mpl, set);
|
alpar@1
|
5615 |
}
|
alpar@1
|
5616 |
#endif
|
alpar@1
|
5617 |
if (set->array->head != NULL)
|
alpar@1
|
5618 |
eval_member_set(mpl, set, set->array->head->tuple);
|
alpar@1
|
5619 |
}
|
alpar@1
|
5620 |
/* display all members of the set array */
|
alpar@1
|
5621 |
if (set->array->head == NULL)
|
alpar@1
|
5622 |
write_text(mpl, "%s has empty content\n", set->name);
|
alpar@1
|
5623 |
for (memb = set->array->head; memb != NULL; memb =
|
alpar@1
|
5624 |
memb->next) display_set(mpl, set, memb);
|
alpar@1
|
5625 |
}
|
alpar@1
|
5626 |
else if (entry->type == A_PARAMETER)
|
alpar@1
|
5627 |
{ /* model parameter */
|
alpar@1
|
5628 |
PARAMETER *par = entry->u.par;
|
alpar@1
|
5629 |
MEMBER *memb;
|
alpar@1
|
5630 |
if (par->assign != NULL)
|
alpar@1
|
5631 |
{ /* the parameter has an assignment expression; evaluate
|
alpar@1
|
5632 |
all its member over entire domain */
|
alpar@1
|
5633 |
eval_whole_par(mpl, par);
|
alpar@1
|
5634 |
}
|
alpar@1
|
5635 |
else
|
alpar@1
|
5636 |
{ /* the parameter has no assignment expression; refer to
|
alpar@1
|
5637 |
its any existing member ignoring resultant value to
|
alpar@1
|
5638 |
check the data provided in the data section */
|
alpar@1
|
5639 |
if (par->array->head != NULL)
|
alpar@1
|
5640 |
{ if (par->type != A_SYMBOLIC)
|
alpar@1
|
5641 |
eval_member_num(mpl, par, par->array->head->tuple);
|
alpar@1
|
5642 |
else
|
alpar@1
|
5643 |
delete_symbol(mpl, eval_member_sym(mpl, par,
|
alpar@1
|
5644 |
par->array->head->tuple));
|
alpar@1
|
5645 |
}
|
alpar@1
|
5646 |
}
|
alpar@1
|
5647 |
/* display all members of the parameter array */
|
alpar@1
|
5648 |
if (par->array->head == NULL)
|
alpar@1
|
5649 |
write_text(mpl, "%s has empty content\n", par->name);
|
alpar@1
|
5650 |
for (memb = par->array->head; memb != NULL; memb =
|
alpar@1
|
5651 |
memb->next) display_par(mpl, par, memb);
|
alpar@1
|
5652 |
}
|
alpar@1
|
5653 |
else if (entry->type == A_VARIABLE)
|
alpar@1
|
5654 |
{ /* model variable */
|
alpar@1
|
5655 |
VARIABLE *var = entry->u.var;
|
alpar@1
|
5656 |
MEMBER *memb;
|
alpar@1
|
5657 |
xassert(mpl->flag_p);
|
alpar@1
|
5658 |
/* display all members of the variable array */
|
alpar@1
|
5659 |
if (var->array->head == NULL)
|
alpar@1
|
5660 |
write_text(mpl, "%s has empty content\n", var->name);
|
alpar@1
|
5661 |
for (memb = var->array->head; memb != NULL; memb =
|
alpar@1
|
5662 |
memb->next) display_var(mpl, var, memb, DOT_NONE);
|
alpar@1
|
5663 |
}
|
alpar@1
|
5664 |
else if (entry->type == A_CONSTRAINT)
|
alpar@1
|
5665 |
{ /* model constraint */
|
alpar@1
|
5666 |
CONSTRAINT *con = entry->u.con;
|
alpar@1
|
5667 |
MEMBER *memb;
|
alpar@1
|
5668 |
xassert(mpl->flag_p);
|
alpar@1
|
5669 |
/* display all members of the constraint array */
|
alpar@1
|
5670 |
if (con->array->head == NULL)
|
alpar@1
|
5671 |
write_text(mpl, "%s has empty content\n", con->name);
|
alpar@1
|
5672 |
for (memb = con->array->head; memb != NULL; memb =
|
alpar@1
|
5673 |
memb->next) display_con(mpl, con, memb, DOT_NONE);
|
alpar@1
|
5674 |
}
|
alpar@1
|
5675 |
else if (entry->type == A_EXPRESSION)
|
alpar@1
|
5676 |
{ /* expression */
|
alpar@1
|
5677 |
CODE *code = entry->u.code;
|
alpar@1
|
5678 |
if (code->op == O_MEMNUM || code->op == O_MEMSYM ||
|
alpar@1
|
5679 |
code->op == O_MEMSET || code->op == O_MEMVAR ||
|
alpar@1
|
5680 |
code->op == O_MEMCON)
|
alpar@1
|
5681 |
display_memb(mpl, code);
|
alpar@1
|
5682 |
else
|
alpar@1
|
5683 |
display_code(mpl, code);
|
alpar@1
|
5684 |
}
|
alpar@1
|
5685 |
else
|
alpar@1
|
5686 |
xassert(entry != entry);
|
alpar@1
|
5687 |
}
|
alpar@1
|
5688 |
return 0;
|
alpar@1
|
5689 |
}
|
alpar@1
|
5690 |
|
alpar@1
|
5691 |
void execute_display(MPL *mpl, DISPLAY *dpy)
|
alpar@1
|
5692 |
{ loop_within_domain(mpl, dpy->domain, dpy, display_func);
|
alpar@1
|
5693 |
return;
|
alpar@1
|
5694 |
}
|
alpar@1
|
5695 |
|
alpar@1
|
5696 |
/*----------------------------------------------------------------------
|
alpar@1
|
5697 |
-- clean_display - clean display statement.
|
alpar@1
|
5698 |
--
|
alpar@1
|
5699 |
-- This routine cleans specified display statement that assumes deleting
|
alpar@1
|
5700 |
-- all stuff dynamically allocated on generating/postsolving phase. */
|
alpar@1
|
5701 |
|
alpar@1
|
5702 |
void clean_display(MPL *mpl, DISPLAY *dpy)
|
alpar@1
|
5703 |
{ DISPLAY1 *d;
|
alpar@1
|
5704 |
#if 0 /* 15/V-2010 */
|
alpar@1
|
5705 |
ARG_LIST *e;
|
alpar@1
|
5706 |
#endif
|
alpar@1
|
5707 |
/* clean subscript domain */
|
alpar@1
|
5708 |
clean_domain(mpl, dpy->domain);
|
alpar@1
|
5709 |
/* clean display list */
|
alpar@1
|
5710 |
for (d = dpy->list; d != NULL; d = d->next)
|
alpar@1
|
5711 |
{ /* clean pseudo-code for computing expression */
|
alpar@1
|
5712 |
if (d->type == A_EXPRESSION)
|
alpar@1
|
5713 |
clean_code(mpl, d->u.code);
|
alpar@1
|
5714 |
#if 0 /* 15/V-2010 */
|
alpar@1
|
5715 |
/* clean pseudo-code for computing subscripts */
|
alpar@1
|
5716 |
for (e = d->list; e != NULL; e = e->next)
|
alpar@1
|
5717 |
clean_code(mpl, e->x);
|
alpar@1
|
5718 |
#endif
|
alpar@1
|
5719 |
}
|
alpar@1
|
5720 |
return;
|
alpar@1
|
5721 |
}
|
alpar@1
|
5722 |
|
alpar@1
|
5723 |
/*----------------------------------------------------------------------
|
alpar@1
|
5724 |
-- execute_printf - execute printf statement.
|
alpar@1
|
5725 |
--
|
alpar@1
|
5726 |
-- This routine executes specified printf statement. */
|
alpar@1
|
5727 |
|
alpar@1
|
5728 |
#if 1 /* 14/VII-2006 */
|
alpar@1
|
5729 |
static void print_char(MPL *mpl, int c)
|
alpar@1
|
5730 |
{ if (mpl->prt_fp == NULL)
|
alpar@1
|
5731 |
write_char(mpl, c);
|
alpar@1
|
5732 |
else
|
alpar@1
|
5733 |
xfputc(c, mpl->prt_fp);
|
alpar@1
|
5734 |
return;
|
alpar@1
|
5735 |
}
|
alpar@1
|
5736 |
|
alpar@1
|
5737 |
static void print_text(MPL *mpl, char *fmt, ...)
|
alpar@1
|
5738 |
{ va_list arg;
|
alpar@1
|
5739 |
char buf[OUTBUF_SIZE], *c;
|
alpar@1
|
5740 |
va_start(arg, fmt);
|
alpar@1
|
5741 |
vsprintf(buf, fmt, arg);
|
alpar@1
|
5742 |
xassert(strlen(buf) < sizeof(buf));
|
alpar@1
|
5743 |
va_end(arg);
|
alpar@1
|
5744 |
for (c = buf; *c != '\0'; c++) print_char(mpl, *c);
|
alpar@1
|
5745 |
return;
|
alpar@1
|
5746 |
}
|
alpar@1
|
5747 |
#endif
|
alpar@1
|
5748 |
|
alpar@1
|
5749 |
static int printf_func(MPL *mpl, void *info)
|
alpar@1
|
5750 |
{ /* this is auxiliary routine to work within domain scope */
|
alpar@1
|
5751 |
PRINTF *prt = (PRINTF *)info;
|
alpar@1
|
5752 |
PRINTF1 *entry;
|
alpar@1
|
5753 |
SYMBOL *sym;
|
alpar@1
|
5754 |
char fmt[MAX_LENGTH+1], *c, *from, save;
|
alpar@1
|
5755 |
/* evaluate format control string */
|
alpar@1
|
5756 |
sym = eval_symbolic(mpl, prt->fmt);
|
alpar@1
|
5757 |
if (sym->str == NULL)
|
alpar@1
|
5758 |
sprintf(fmt, "%.*g", DBL_DIG, sym->num);
|
alpar@1
|
5759 |
else
|
alpar@1
|
5760 |
fetch_string(mpl, sym->str, fmt);
|
alpar@1
|
5761 |
delete_symbol(mpl, sym);
|
alpar@1
|
5762 |
/* scan format control string and perform formatting output */
|
alpar@1
|
5763 |
entry = prt->list;
|
alpar@1
|
5764 |
for (c = fmt; *c != '\0'; c++)
|
alpar@1
|
5765 |
{ if (*c == '%')
|
alpar@1
|
5766 |
{ /* scan format specifier */
|
alpar@1
|
5767 |
from = c++;
|
alpar@1
|
5768 |
if (*c == '%')
|
alpar@1
|
5769 |
{ print_char(mpl, '%');
|
alpar@1
|
5770 |
continue;
|
alpar@1
|
5771 |
}
|
alpar@1
|
5772 |
if (entry == NULL) break;
|
alpar@1
|
5773 |
/* scan optional flags */
|
alpar@1
|
5774 |
while (*c == '-' || *c == '+' || *c == ' ' || *c == '#' ||
|
alpar@1
|
5775 |
*c == '0') c++;
|
alpar@1
|
5776 |
/* scan optional minimum field width */
|
alpar@1
|
5777 |
while (isdigit((unsigned char)*c)) c++;
|
alpar@1
|
5778 |
/* scan optional precision */
|
alpar@1
|
5779 |
if (*c == '.')
|
alpar@1
|
5780 |
{ c++;
|
alpar@1
|
5781 |
while (isdigit((unsigned char)*c)) c++;
|
alpar@1
|
5782 |
}
|
alpar@1
|
5783 |
/* scan conversion specifier and perform formatting */
|
alpar@1
|
5784 |
save = *(c+1), *(c+1) = '\0';
|
alpar@1
|
5785 |
if (*c == 'd' || *c == 'i' || *c == 'e' || *c == 'E' ||
|
alpar@1
|
5786 |
*c == 'f' || *c == 'F' || *c == 'g' || *c == 'G')
|
alpar@1
|
5787 |
{ /* the specifier requires numeric value */
|
alpar@1
|
5788 |
double value;
|
alpar@1
|
5789 |
xassert(entry != NULL);
|
alpar@1
|
5790 |
switch (entry->code->type)
|
alpar@1
|
5791 |
{ case A_NUMERIC:
|
alpar@1
|
5792 |
value = eval_numeric(mpl, entry->code);
|
alpar@1
|
5793 |
break;
|
alpar@1
|
5794 |
case A_SYMBOLIC:
|
alpar@1
|
5795 |
sym = eval_symbolic(mpl, entry->code);
|
alpar@1
|
5796 |
if (sym->str != NULL)
|
alpar@1
|
5797 |
error(mpl, "cannot convert %s to floating-point"
|
alpar@1
|
5798 |
" number", format_symbol(mpl, sym));
|
alpar@1
|
5799 |
value = sym->num;
|
alpar@1
|
5800 |
delete_symbol(mpl, sym);
|
alpar@1
|
5801 |
break;
|
alpar@1
|
5802 |
case A_LOGICAL:
|
alpar@1
|
5803 |
if (eval_logical(mpl, entry->code))
|
alpar@1
|
5804 |
value = 1.0;
|
alpar@1
|
5805 |
else
|
alpar@1
|
5806 |
value = 0.0;
|
alpar@1
|
5807 |
break;
|
alpar@1
|
5808 |
default:
|
alpar@1
|
5809 |
xassert(entry != entry);
|
alpar@1
|
5810 |
}
|
alpar@1
|
5811 |
if (*c == 'd' || *c == 'i')
|
alpar@1
|
5812 |
{ double int_max = (double)INT_MAX;
|
alpar@1
|
5813 |
if (!(-int_max <= value && value <= +int_max))
|
alpar@1
|
5814 |
error(mpl, "cannot convert %.*g to integer",
|
alpar@1
|
5815 |
DBL_DIG, value);
|
alpar@1
|
5816 |
print_text(mpl, from, (int)floor(value + 0.5));
|
alpar@1
|
5817 |
}
|
alpar@1
|
5818 |
else
|
alpar@1
|
5819 |
print_text(mpl, from, value);
|
alpar@1
|
5820 |
}
|
alpar@1
|
5821 |
else if (*c == 's')
|
alpar@1
|
5822 |
{ /* the specifier requires symbolic value */
|
alpar@1
|
5823 |
char value[MAX_LENGTH+1];
|
alpar@1
|
5824 |
switch (entry->code->type)
|
alpar@1
|
5825 |
{ case A_NUMERIC:
|
alpar@1
|
5826 |
sprintf(value, "%.*g", DBL_DIG, eval_numeric(mpl,
|
alpar@1
|
5827 |
entry->code));
|
alpar@1
|
5828 |
break;
|
alpar@1
|
5829 |
case A_LOGICAL:
|
alpar@1
|
5830 |
if (eval_logical(mpl, entry->code))
|
alpar@1
|
5831 |
strcpy(value, "T");
|
alpar@1
|
5832 |
else
|
alpar@1
|
5833 |
strcpy(value, "F");
|
alpar@1
|
5834 |
break;
|
alpar@1
|
5835 |
case A_SYMBOLIC:
|
alpar@1
|
5836 |
sym = eval_symbolic(mpl, entry->code);
|
alpar@1
|
5837 |
if (sym->str == NULL)
|
alpar@1
|
5838 |
sprintf(value, "%.*g", DBL_DIG, sym->num);
|
alpar@1
|
5839 |
else
|
alpar@1
|
5840 |
fetch_string(mpl, sym->str, value);
|
alpar@1
|
5841 |
delete_symbol(mpl, sym);
|
alpar@1
|
5842 |
break;
|
alpar@1
|
5843 |
default:
|
alpar@1
|
5844 |
xassert(entry != entry);
|
alpar@1
|
5845 |
}
|
alpar@1
|
5846 |
print_text(mpl, from, value);
|
alpar@1
|
5847 |
}
|
alpar@1
|
5848 |
else
|
alpar@1
|
5849 |
error(mpl, "format specifier missing or invalid");
|
alpar@1
|
5850 |
*(c+1) = save;
|
alpar@1
|
5851 |
entry = entry->next;
|
alpar@1
|
5852 |
}
|
alpar@1
|
5853 |
else if (*c == '\\')
|
alpar@1
|
5854 |
{ /* write some control character */
|
alpar@1
|
5855 |
c++;
|
alpar@1
|
5856 |
if (*c == 't')
|
alpar@1
|
5857 |
print_char(mpl, '\t');
|
alpar@1
|
5858 |
else if (*c == 'n')
|
alpar@1
|
5859 |
print_char(mpl, '\n');
|
alpar@1
|
5860 |
#if 1 /* 28/X-2010 */
|
alpar@1
|
5861 |
else if (*c == '\0')
|
alpar@1
|
5862 |
{ /* format string ends with backslash */
|
alpar@1
|
5863 |
error(mpl, "invalid use of escape character \\ in format"
|
alpar@1
|
5864 |
" control string");
|
alpar@1
|
5865 |
}
|
alpar@1
|
5866 |
#endif
|
alpar@1
|
5867 |
else
|
alpar@1
|
5868 |
print_char(mpl, *c);
|
alpar@1
|
5869 |
}
|
alpar@1
|
5870 |
else
|
alpar@1
|
5871 |
{ /* write character without formatting */
|
alpar@1
|
5872 |
print_char(mpl, *c);
|
alpar@1
|
5873 |
}
|
alpar@1
|
5874 |
}
|
alpar@1
|
5875 |
return 0;
|
alpar@1
|
5876 |
}
|
alpar@1
|
5877 |
|
alpar@1
|
5878 |
#if 0 /* 14/VII-2006 */
|
alpar@1
|
5879 |
void execute_printf(MPL *mpl, PRINTF *prt)
|
alpar@1
|
5880 |
{ loop_within_domain(mpl, prt->domain, prt, printf_func);
|
alpar@1
|
5881 |
return;
|
alpar@1
|
5882 |
}
|
alpar@1
|
5883 |
#else
|
alpar@1
|
5884 |
void execute_printf(MPL *mpl, PRINTF *prt)
|
alpar@1
|
5885 |
{ if (prt->fname == NULL)
|
alpar@1
|
5886 |
{ /* switch to the standard output */
|
alpar@1
|
5887 |
if (mpl->prt_fp != NULL)
|
alpar@1
|
5888 |
{ xfclose(mpl->prt_fp), mpl->prt_fp = NULL;
|
alpar@1
|
5889 |
xfree(mpl->prt_file), mpl->prt_file = NULL;
|
alpar@1
|
5890 |
}
|
alpar@1
|
5891 |
}
|
alpar@1
|
5892 |
else
|
alpar@1
|
5893 |
{ /* evaluate file name string */
|
alpar@1
|
5894 |
SYMBOL *sym;
|
alpar@1
|
5895 |
char fname[MAX_LENGTH+1];
|
alpar@1
|
5896 |
sym = eval_symbolic(mpl, prt->fname);
|
alpar@1
|
5897 |
if (sym->str == NULL)
|
alpar@1
|
5898 |
sprintf(fname, "%.*g", DBL_DIG, sym->num);
|
alpar@1
|
5899 |
else
|
alpar@1
|
5900 |
fetch_string(mpl, sym->str, fname);
|
alpar@1
|
5901 |
delete_symbol(mpl, sym);
|
alpar@1
|
5902 |
/* close the current print file, if necessary */
|
alpar@1
|
5903 |
if (mpl->prt_fp != NULL &&
|
alpar@1
|
5904 |
(!prt->app || strcmp(mpl->prt_file, fname) != 0))
|
alpar@1
|
5905 |
{ xfclose(mpl->prt_fp), mpl->prt_fp = NULL;
|
alpar@1
|
5906 |
xfree(mpl->prt_file), mpl->prt_file = NULL;
|
alpar@1
|
5907 |
}
|
alpar@1
|
5908 |
/* open the specified print file, if necessary */
|
alpar@1
|
5909 |
if (mpl->prt_fp == NULL)
|
alpar@1
|
5910 |
{ mpl->prt_fp = xfopen(fname, prt->app ? "a" : "w");
|
alpar@1
|
5911 |
if (mpl->prt_fp == NULL)
|
alpar@1
|
5912 |
error(mpl, "unable to open `%s' for writing - %s",
|
alpar@1
|
5913 |
fname, xerrmsg());
|
alpar@1
|
5914 |
mpl->prt_file = xmalloc(strlen(fname)+1);
|
alpar@1
|
5915 |
strcpy(mpl->prt_file, fname);
|
alpar@1
|
5916 |
}
|
alpar@1
|
5917 |
}
|
alpar@1
|
5918 |
loop_within_domain(mpl, prt->domain, prt, printf_func);
|
alpar@1
|
5919 |
if (mpl->prt_fp != NULL)
|
alpar@1
|
5920 |
{ xfflush(mpl->prt_fp);
|
alpar@1
|
5921 |
if (xferror(mpl->prt_fp))
|
alpar@1
|
5922 |
error(mpl, "writing error to `%s' - %s", mpl->prt_file,
|
alpar@1
|
5923 |
xerrmsg());
|
alpar@1
|
5924 |
}
|
alpar@1
|
5925 |
return;
|
alpar@1
|
5926 |
}
|
alpar@1
|
5927 |
#endif
|
alpar@1
|
5928 |
|
alpar@1
|
5929 |
/*----------------------------------------------------------------------
|
alpar@1
|
5930 |
-- clean_printf - clean printf statement.
|
alpar@1
|
5931 |
--
|
alpar@1
|
5932 |
-- This routine cleans specified printf statement that assumes deleting
|
alpar@1
|
5933 |
-- all stuff dynamically allocated on generating/postsolving phase. */
|
alpar@1
|
5934 |
|
alpar@1
|
5935 |
void clean_printf(MPL *mpl, PRINTF *prt)
|
alpar@1
|
5936 |
{ PRINTF1 *p;
|
alpar@1
|
5937 |
/* clean subscript domain */
|
alpar@1
|
5938 |
clean_domain(mpl, prt->domain);
|
alpar@1
|
5939 |
/* clean pseudo-code for computing format string */
|
alpar@1
|
5940 |
clean_code(mpl, prt->fmt);
|
alpar@1
|
5941 |
/* clean printf list */
|
alpar@1
|
5942 |
for (p = prt->list; p != NULL; p = p->next)
|
alpar@1
|
5943 |
{ /* clean pseudo-code for computing value to be printed */
|
alpar@1
|
5944 |
clean_code(mpl, p->code);
|
alpar@1
|
5945 |
}
|
alpar@1
|
5946 |
#if 1 /* 14/VII-2006 */
|
alpar@1
|
5947 |
/* clean pseudo-code for computing file name string */
|
alpar@1
|
5948 |
clean_code(mpl, prt->fname);
|
alpar@1
|
5949 |
#endif
|
alpar@1
|
5950 |
return;
|
alpar@1
|
5951 |
}
|
alpar@1
|
5952 |
|
alpar@1
|
5953 |
/*----------------------------------------------------------------------
|
alpar@1
|
5954 |
-- execute_for - execute for statement.
|
alpar@1
|
5955 |
--
|
alpar@1
|
5956 |
-- This routine executes specified for statement. */
|
alpar@1
|
5957 |
|
alpar@1
|
5958 |
static int for_func(MPL *mpl, void *info)
|
alpar@1
|
5959 |
{ /* this is auxiliary routine to work within domain scope */
|
alpar@1
|
5960 |
FOR *fur = (FOR *)info;
|
alpar@1
|
5961 |
STATEMENT *stmt, *save;
|
alpar@1
|
5962 |
save = mpl->stmt;
|
alpar@1
|
5963 |
for (stmt = fur->list; stmt != NULL; stmt = stmt->next)
|
alpar@1
|
5964 |
execute_statement(mpl, stmt);
|
alpar@1
|
5965 |
mpl->stmt = save;
|
alpar@1
|
5966 |
return 0;
|
alpar@1
|
5967 |
}
|
alpar@1
|
5968 |
|
alpar@1
|
5969 |
void execute_for(MPL *mpl, FOR *fur)
|
alpar@1
|
5970 |
{ loop_within_domain(mpl, fur->domain, fur, for_func);
|
alpar@1
|
5971 |
return;
|
alpar@1
|
5972 |
}
|
alpar@1
|
5973 |
|
alpar@1
|
5974 |
/*----------------------------------------------------------------------
|
alpar@1
|
5975 |
-- clean_for - clean for statement.
|
alpar@1
|
5976 |
--
|
alpar@1
|
5977 |
-- This routine cleans specified for statement that assumes deleting all
|
alpar@1
|
5978 |
-- stuff dynamically allocated on generating/postsolving phase. */
|
alpar@1
|
5979 |
|
alpar@1
|
5980 |
void clean_for(MPL *mpl, FOR *fur)
|
alpar@1
|
5981 |
{ STATEMENT *stmt;
|
alpar@1
|
5982 |
/* clean subscript domain */
|
alpar@1
|
5983 |
clean_domain(mpl, fur->domain);
|
alpar@1
|
5984 |
/* clean all sub-statements */
|
alpar@1
|
5985 |
for (stmt = fur->list; stmt != NULL; stmt = stmt->next)
|
alpar@1
|
5986 |
clean_statement(mpl, stmt);
|
alpar@1
|
5987 |
return;
|
alpar@1
|
5988 |
}
|
alpar@1
|
5989 |
|
alpar@1
|
5990 |
/*----------------------------------------------------------------------
|
alpar@1
|
5991 |
-- execute_statement - execute specified model statement.
|
alpar@1
|
5992 |
--
|
alpar@1
|
5993 |
-- This routine executes specified model statement. */
|
alpar@1
|
5994 |
|
alpar@1
|
5995 |
void execute_statement(MPL *mpl, STATEMENT *stmt)
|
alpar@1
|
5996 |
{ mpl->stmt = stmt;
|
alpar@1
|
5997 |
switch (stmt->type)
|
alpar@1
|
5998 |
{ case A_SET:
|
alpar@1
|
5999 |
case A_PARAMETER:
|
alpar@1
|
6000 |
case A_VARIABLE:
|
alpar@1
|
6001 |
break;
|
alpar@1
|
6002 |
case A_CONSTRAINT:
|
alpar@1
|
6003 |
xprintf("Generating %s...\n", stmt->u.con->name);
|
alpar@1
|
6004 |
eval_whole_con(mpl, stmt->u.con);
|
alpar@1
|
6005 |
break;
|
alpar@1
|
6006 |
case A_TABLE:
|
alpar@1
|
6007 |
switch (stmt->u.tab->type)
|
alpar@1
|
6008 |
{ case A_INPUT:
|
alpar@1
|
6009 |
xprintf("Reading %s...\n", stmt->u.tab->name);
|
alpar@1
|
6010 |
break;
|
alpar@1
|
6011 |
case A_OUTPUT:
|
alpar@1
|
6012 |
xprintf("Writing %s...\n", stmt->u.tab->name);
|
alpar@1
|
6013 |
break;
|
alpar@1
|
6014 |
default:
|
alpar@1
|
6015 |
xassert(stmt != stmt);
|
alpar@1
|
6016 |
}
|
alpar@1
|
6017 |
execute_table(mpl, stmt->u.tab);
|
alpar@1
|
6018 |
break;
|
alpar@1
|
6019 |
case A_SOLVE:
|
alpar@1
|
6020 |
break;
|
alpar@1
|
6021 |
case A_CHECK:
|
alpar@1
|
6022 |
xprintf("Checking (line %d)...\n", stmt->line);
|
alpar@1
|
6023 |
execute_check(mpl, stmt->u.chk);
|
alpar@1
|
6024 |
break;
|
alpar@1
|
6025 |
case A_DISPLAY:
|
alpar@1
|
6026 |
write_text(mpl, "Display statement at line %d\n",
|
alpar@1
|
6027 |
stmt->line);
|
alpar@1
|
6028 |
execute_display(mpl, stmt->u.dpy);
|
alpar@1
|
6029 |
break;
|
alpar@1
|
6030 |
case A_PRINTF:
|
alpar@1
|
6031 |
execute_printf(mpl, stmt->u.prt);
|
alpar@1
|
6032 |
break;
|
alpar@1
|
6033 |
case A_FOR:
|
alpar@1
|
6034 |
execute_for(mpl, stmt->u.fur);
|
alpar@1
|
6035 |
break;
|
alpar@1
|
6036 |
default:
|
alpar@1
|
6037 |
xassert(stmt != stmt);
|
alpar@1
|
6038 |
}
|
alpar@1
|
6039 |
return;
|
alpar@1
|
6040 |
}
|
alpar@1
|
6041 |
|
alpar@1
|
6042 |
/*----------------------------------------------------------------------
|
alpar@1
|
6043 |
-- clean_statement - clean specified model statement.
|
alpar@1
|
6044 |
--
|
alpar@1
|
6045 |
-- This routine cleans specified model statement that assumes deleting
|
alpar@1
|
6046 |
-- all stuff dynamically allocated on generating/postsolving phase. */
|
alpar@1
|
6047 |
|
alpar@1
|
6048 |
void clean_statement(MPL *mpl, STATEMENT *stmt)
|
alpar@1
|
6049 |
{ switch(stmt->type)
|
alpar@1
|
6050 |
{ case A_SET:
|
alpar@1
|
6051 |
clean_set(mpl, stmt->u.set); break;
|
alpar@1
|
6052 |
case A_PARAMETER:
|
alpar@1
|
6053 |
clean_parameter(mpl, stmt->u.par); break;
|
alpar@1
|
6054 |
case A_VARIABLE:
|
alpar@1
|
6055 |
clean_variable(mpl, stmt->u.var); break;
|
alpar@1
|
6056 |
case A_CONSTRAINT:
|
alpar@1
|
6057 |
clean_constraint(mpl, stmt->u.con); break;
|
alpar@1
|
6058 |
#if 1 /* 11/II-2008 */
|
alpar@1
|
6059 |
case A_TABLE:
|
alpar@1
|
6060 |
clean_table(mpl, stmt->u.tab); break;
|
alpar@1
|
6061 |
#endif
|
alpar@1
|
6062 |
case A_SOLVE:
|
alpar@1
|
6063 |
break;
|
alpar@1
|
6064 |
case A_CHECK:
|
alpar@1
|
6065 |
clean_check(mpl, stmt->u.chk); break;
|
alpar@1
|
6066 |
case A_DISPLAY:
|
alpar@1
|
6067 |
clean_display(mpl, stmt->u.dpy); break;
|
alpar@1
|
6068 |
case A_PRINTF:
|
alpar@1
|
6069 |
clean_printf(mpl, stmt->u.prt); break;
|
alpar@1
|
6070 |
case A_FOR:
|
alpar@1
|
6071 |
clean_for(mpl, stmt->u.fur); break;
|
alpar@1
|
6072 |
default:
|
alpar@1
|
6073 |
xassert(stmt != stmt);
|
alpar@1
|
6074 |
}
|
alpar@1
|
6075 |
return;
|
alpar@1
|
6076 |
}
|
alpar@1
|
6077 |
|
alpar@1
|
6078 |
/* eof */
|