alpar@1
|
1 |
/* glpnet09.c */
|
alpar@1
|
2 |
|
alpar@1
|
3 |
/***********************************************************************
|
alpar@1
|
4 |
* This code is part of GLPK (GNU Linear Programming Kit).
|
alpar@1
|
5 |
*
|
alpar@1
|
6 |
* Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
|
alpar@1
|
7 |
* 2009, 2010 Andrew Makhorin, Department for Applied Informatics,
|
alpar@1
|
8 |
* Moscow Aviation Institute, Moscow, Russia. All rights reserved.
|
alpar@1
|
9 |
* E-mail: <mao@gnu.org>.
|
alpar@1
|
10 |
*
|
alpar@1
|
11 |
* GLPK is free software: you can redistribute it and/or modify it
|
alpar@1
|
12 |
* under the terms of the GNU General Public License as published by
|
alpar@1
|
13 |
* the Free Software Foundation, either version 3 of the License, or
|
alpar@1
|
14 |
* (at your option) any later version.
|
alpar@1
|
15 |
*
|
alpar@1
|
16 |
* GLPK is distributed in the hope that it will be useful, but WITHOUT
|
alpar@1
|
17 |
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
alpar@1
|
18 |
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
|
alpar@1
|
19 |
* License for more details.
|
alpar@1
|
20 |
*
|
alpar@1
|
21 |
* You should have received a copy of the GNU General Public License
|
alpar@1
|
22 |
* along with GLPK. If not, see <http://www.gnu.org/licenses/>.
|
alpar@1
|
23 |
***********************************************************************/
|
alpar@1
|
24 |
|
alpar@1
|
25 |
#include "glpapi.h"
|
alpar@1
|
26 |
#include "glpnet.h"
|
alpar@1
|
27 |
|
alpar@1
|
28 |
/***********************************************************************
|
alpar@1
|
29 |
* NAME
|
alpar@1
|
30 |
*
|
alpar@1
|
31 |
* kellerman - cover edges by cliques with Kellerman's heuristic
|
alpar@1
|
32 |
*
|
alpar@1
|
33 |
* SYNOPSIS
|
alpar@1
|
34 |
*
|
alpar@1
|
35 |
* #include "glpnet.h"
|
alpar@1
|
36 |
* int kellerman(int n, int (*func)(void *info, int i, int ind[]),
|
alpar@1
|
37 |
* void *info, glp_graph *H);
|
alpar@1
|
38 |
*
|
alpar@1
|
39 |
* DESCRIPTION
|
alpar@1
|
40 |
*
|
alpar@1
|
41 |
* The routine kellerman implements Kellerman's heuristic algorithm
|
alpar@1
|
42 |
* to find a minimal set of cliques which cover all edges of specified
|
alpar@1
|
43 |
* graph G = (V, E).
|
alpar@1
|
44 |
*
|
alpar@1
|
45 |
* The parameter n specifies the number of vertices |V|, n >= 0.
|
alpar@1
|
46 |
*
|
alpar@1
|
47 |
* Formal routine func specifies the set of edges E in the following
|
alpar@1
|
48 |
* way. Running the routine kellerman calls the routine func and passes
|
alpar@1
|
49 |
* to it parameter i, which is the number of some vertex, 1 <= i <= n.
|
alpar@1
|
50 |
* In response the routine func should store numbers of all vertices
|
alpar@1
|
51 |
* adjacent to vertex i to locations ind[1], ind[2], ..., ind[len] and
|
alpar@1
|
52 |
* return the value of len, which is the number of adjacent vertices,
|
alpar@1
|
53 |
* 0 <= len <= n. Self-loops are allowed, but ignored. Multiple edges
|
alpar@1
|
54 |
* are not allowed.
|
alpar@1
|
55 |
*
|
alpar@1
|
56 |
* The parameter info is a transit pointer (magic cookie) passed to the
|
alpar@1
|
57 |
* formal routine func as its first parameter.
|
alpar@1
|
58 |
*
|
alpar@1
|
59 |
* The result provided by the routine kellerman is the bipartite graph
|
alpar@1
|
60 |
* H = (V union C, F), which defines the covering found. (The program
|
alpar@1
|
61 |
* object of type glp_graph specified by the parameter H should be
|
alpar@1
|
62 |
* previously created with the routine glp_create_graph. On entry the
|
alpar@1
|
63 |
* routine kellerman erases the content of this object with the routine
|
alpar@1
|
64 |
* glp_erase_graph.) Vertices of first part V correspond to vertices of
|
alpar@1
|
65 |
* the graph G and have the same ordinal numbers 1, 2, ..., n. Vertices
|
alpar@1
|
66 |
* of second part C correspond to cliques and have ordinal numbers
|
alpar@1
|
67 |
* n+1, n+2, ..., n+k, where k is the total number of cliques in the
|
alpar@1
|
68 |
* edge covering found. Every edge f in F in the program object H is
|
alpar@1
|
69 |
* represented as arc f = (i->j), where i in V and j in C, which means
|
alpar@1
|
70 |
* that vertex i of the graph G is in clique C[j], 1 <= j <= k. (Thus,
|
alpar@1
|
71 |
* if two vertices of the graph G are in the same clique, these vertices
|
alpar@1
|
72 |
* are adjacent in G, and corresponding edge is covered by that clique.)
|
alpar@1
|
73 |
*
|
alpar@1
|
74 |
* RETURNS
|
alpar@1
|
75 |
*
|
alpar@1
|
76 |
* The routine Kellerman returns k, the total number of cliques in the
|
alpar@1
|
77 |
* edge covering found.
|
alpar@1
|
78 |
*
|
alpar@1
|
79 |
* REFERENCE
|
alpar@1
|
80 |
*
|
alpar@1
|
81 |
* For more details see: glpk/doc/notes/keller.pdf (in Russian). */
|
alpar@1
|
82 |
|
alpar@1
|
83 |
struct set
|
alpar@1
|
84 |
{ /* set of vertices */
|
alpar@1
|
85 |
int size;
|
alpar@1
|
86 |
/* size (cardinality) of the set, 0 <= card <= n */
|
alpar@1
|
87 |
int *list; /* int list[1+n]; */
|
alpar@1
|
88 |
/* the set contains vertices list[1,...,size] */
|
alpar@1
|
89 |
int *pos; /* int pos[1+n]; */
|
alpar@1
|
90 |
/* pos[i] > 0 means that vertex i is in the set and
|
alpar@1
|
91 |
list[pos[i]] = i; pos[i] = 0 means that vertex i is not in
|
alpar@1
|
92 |
the set */
|
alpar@1
|
93 |
};
|
alpar@1
|
94 |
|
alpar@1
|
95 |
int kellerman(int n, int (*func)(void *info, int i, int ind[]),
|
alpar@1
|
96 |
void *info, void /* glp_graph */ *H_)
|
alpar@1
|
97 |
{ glp_graph *H = H_;
|
alpar@1
|
98 |
struct set W_, *W = &W_, V_, *V = &V_;
|
alpar@1
|
99 |
glp_arc *a;
|
alpar@1
|
100 |
int i, j, k, m, t, len, card, best;
|
alpar@1
|
101 |
xassert(n >= 0);
|
alpar@1
|
102 |
/* H := (V, 0; 0), where V is the set of vertices of graph G */
|
alpar@1
|
103 |
glp_erase_graph(H, H->v_size, H->a_size);
|
alpar@1
|
104 |
glp_add_vertices(H, n);
|
alpar@1
|
105 |
/* W := 0 */
|
alpar@1
|
106 |
W->size = 0;
|
alpar@1
|
107 |
W->list = xcalloc(1+n, sizeof(int));
|
alpar@1
|
108 |
W->pos = xcalloc(1+n, sizeof(int));
|
alpar@1
|
109 |
memset(&W->pos[1], 0, sizeof(int) * n);
|
alpar@1
|
110 |
/* V := 0 */
|
alpar@1
|
111 |
V->size = 0;
|
alpar@1
|
112 |
V->list = xcalloc(1+n, sizeof(int));
|
alpar@1
|
113 |
V->pos = xcalloc(1+n, sizeof(int));
|
alpar@1
|
114 |
memset(&V->pos[1], 0, sizeof(int) * n);
|
alpar@1
|
115 |
/* main loop */
|
alpar@1
|
116 |
for (i = 1; i <= n; i++)
|
alpar@1
|
117 |
{ /* W must be empty */
|
alpar@1
|
118 |
xassert(W->size == 0);
|
alpar@1
|
119 |
/* W := { j : i > j and (i,j) in E } */
|
alpar@1
|
120 |
len = func(info, i, W->list);
|
alpar@1
|
121 |
xassert(0 <= len && len <= n);
|
alpar@1
|
122 |
for (t = 1; t <= len; t++)
|
alpar@1
|
123 |
{ j = W->list[t];
|
alpar@1
|
124 |
xassert(1 <= j && j <= n);
|
alpar@1
|
125 |
if (j >= i) continue;
|
alpar@1
|
126 |
xassert(W->pos[j] == 0);
|
alpar@1
|
127 |
W->list[++W->size] = j, W->pos[j] = W->size;
|
alpar@1
|
128 |
}
|
alpar@1
|
129 |
/* on i-th iteration we need to cover edges (i,j) for all
|
alpar@1
|
130 |
j in W */
|
alpar@1
|
131 |
/* if W is empty, it is a special case */
|
alpar@1
|
132 |
if (W->size == 0)
|
alpar@1
|
133 |
{ /* set k := k + 1 and create new clique C[k] = { i } */
|
alpar@1
|
134 |
k = glp_add_vertices(H, 1) - n;
|
alpar@1
|
135 |
glp_add_arc(H, i, n + k);
|
alpar@1
|
136 |
continue;
|
alpar@1
|
137 |
}
|
alpar@1
|
138 |
/* try to include vertex i into existing cliques */
|
alpar@1
|
139 |
/* V must be empty */
|
alpar@1
|
140 |
xassert(V->size == 0);
|
alpar@1
|
141 |
/* k is the number of cliques found so far */
|
alpar@1
|
142 |
k = H->nv - n;
|
alpar@1
|
143 |
for (m = 1; m <= k; m++)
|
alpar@1
|
144 |
{ /* do while V != W; since here V is within W, we can use
|
alpar@1
|
145 |
equivalent condition: do while |V| < |W| */
|
alpar@1
|
146 |
if (V->size == W->size) break;
|
alpar@1
|
147 |
/* check if C[m] is within W */
|
alpar@1
|
148 |
for (a = H->v[n + m]->in; a != NULL; a = a->h_next)
|
alpar@1
|
149 |
{ j = a->tail->i;
|
alpar@1
|
150 |
if (W->pos[j] == 0) break;
|
alpar@1
|
151 |
}
|
alpar@1
|
152 |
if (a != NULL) continue;
|
alpar@1
|
153 |
/* C[m] is within W, expand clique C[m] with vertex i */
|
alpar@1
|
154 |
/* C[m] := C[m] union {i} */
|
alpar@1
|
155 |
glp_add_arc(H, i, n + m);
|
alpar@1
|
156 |
/* V is a set of vertices whose incident edges are already
|
alpar@1
|
157 |
covered by existing cliques */
|
alpar@1
|
158 |
/* V := V union C[m] */
|
alpar@1
|
159 |
for (a = H->v[n + m]->in; a != NULL; a = a->h_next)
|
alpar@1
|
160 |
{ j = a->tail->i;
|
alpar@1
|
161 |
if (V->pos[j] == 0)
|
alpar@1
|
162 |
V->list[++V->size] = j, V->pos[j] = V->size;
|
alpar@1
|
163 |
}
|
alpar@1
|
164 |
}
|
alpar@1
|
165 |
/* remove from set W the vertices whose incident edges are
|
alpar@1
|
166 |
already covered by existing cliques */
|
alpar@1
|
167 |
/* W := W \ V, V := 0 */
|
alpar@1
|
168 |
for (t = 1; t <= V->size; t++)
|
alpar@1
|
169 |
{ j = V->list[t], V->pos[j] = 0;
|
alpar@1
|
170 |
if (W->pos[j] != 0)
|
alpar@1
|
171 |
{ /* remove vertex j from W */
|
alpar@1
|
172 |
if (W->pos[j] != W->size)
|
alpar@1
|
173 |
{ int jj = W->list[W->size];
|
alpar@1
|
174 |
W->list[W->pos[j]] = jj;
|
alpar@1
|
175 |
W->pos[jj] = W->pos[j];
|
alpar@1
|
176 |
}
|
alpar@1
|
177 |
W->size--, W->pos[j] = 0;
|
alpar@1
|
178 |
}
|
alpar@1
|
179 |
}
|
alpar@1
|
180 |
V->size = 0;
|
alpar@1
|
181 |
/* now set W contains only vertices whose incident edges are
|
alpar@1
|
182 |
still not covered by existing cliques; create new cliques
|
alpar@1
|
183 |
to cover remaining edges until set W becomes empty */
|
alpar@1
|
184 |
while (W->size > 0)
|
alpar@1
|
185 |
{ /* find clique C[m], 1 <= m <= k, which shares maximal
|
alpar@1
|
186 |
number of vertices with W; to break ties choose clique
|
alpar@1
|
187 |
having smallest number m */
|
alpar@1
|
188 |
m = 0, best = -1;
|
alpar@1
|
189 |
k = H->nv - n;
|
alpar@1
|
190 |
for (t = 1; t <= k; t++)
|
alpar@1
|
191 |
{ /* compute cardinality of intersection of W and C[t] */
|
alpar@1
|
192 |
card = 0;
|
alpar@1
|
193 |
for (a = H->v[n + t]->in; a != NULL; a = a->h_next)
|
alpar@1
|
194 |
{ j = a->tail->i;
|
alpar@1
|
195 |
if (W->pos[j] != 0) card++;
|
alpar@1
|
196 |
}
|
alpar@1
|
197 |
if (best < card)
|
alpar@1
|
198 |
m = t, best = card;
|
alpar@1
|
199 |
}
|
alpar@1
|
200 |
xassert(m > 0);
|
alpar@1
|
201 |
/* set k := k + 1 and create new clique:
|
alpar@1
|
202 |
C[k] := (W intersect C[m]) union { i }, which covers all
|
alpar@1
|
203 |
edges incident to vertices from (W intersect C[m]) */
|
alpar@1
|
204 |
k = glp_add_vertices(H, 1) - n;
|
alpar@1
|
205 |
for (a = H->v[n + m]->in; a != NULL; a = a->h_next)
|
alpar@1
|
206 |
{ j = a->tail->i;
|
alpar@1
|
207 |
if (W->pos[j] != 0)
|
alpar@1
|
208 |
{ /* vertex j is in both W and C[m]; include it in new
|
alpar@1
|
209 |
clique C[k] */
|
alpar@1
|
210 |
glp_add_arc(H, j, n + k);
|
alpar@1
|
211 |
/* remove vertex j from W, since edge (i,j) will be
|
alpar@1
|
212 |
covered by new clique C[k] */
|
alpar@1
|
213 |
if (W->pos[j] != W->size)
|
alpar@1
|
214 |
{ int jj = W->list[W->size];
|
alpar@1
|
215 |
W->list[W->pos[j]] = jj;
|
alpar@1
|
216 |
W->pos[jj] = W->pos[j];
|
alpar@1
|
217 |
}
|
alpar@1
|
218 |
W->size--, W->pos[j] = 0;
|
alpar@1
|
219 |
}
|
alpar@1
|
220 |
}
|
alpar@1
|
221 |
/* include vertex i to new clique C[k] to cover edges (i,j)
|
alpar@1
|
222 |
incident to all vertices j just removed from W */
|
alpar@1
|
223 |
glp_add_arc(H, i, n + k);
|
alpar@1
|
224 |
}
|
alpar@1
|
225 |
}
|
alpar@1
|
226 |
/* free working arrays */
|
alpar@1
|
227 |
xfree(W->list);
|
alpar@1
|
228 |
xfree(W->pos);
|
alpar@1
|
229 |
xfree(V->list);
|
alpar@1
|
230 |
xfree(V->pos);
|
alpar@1
|
231 |
/* return the number of cliques in the edge covering found */
|
alpar@1
|
232 |
return H->nv - n;
|
alpar@1
|
233 |
}
|
alpar@1
|
234 |
|
alpar@1
|
235 |
/* eof */
|