examples/csv/transp_csv.mod
changeset 2 4c8956a7bdf4
equal deleted inserted replaced
-1:000000000000 0:b06f71675ef2
       
     1 # A TRANSPORTATION PROBLEM
       
     2 #
       
     3 # This problem finds a least cost shipping schedule that meets
       
     4 # requirements at markets and supplies at factories.
       
     5 #
       
     6 #  References:
       
     7 #              Dantzig G B, "Linear Programming and Extensions."
       
     8 #              Princeton University Press, Princeton, New Jersey, 1963,
       
     9 #              Chapter 3-3.
       
    10 
       
    11 set I;
       
    12 /* canning plants */
       
    13 
       
    14 set J;
       
    15 /* markets */
       
    16 
       
    17 set K dimen 2;
       
    18 /* transportation lane */
       
    19 
       
    20 set L;
       
    21 /* parameters */
       
    22 
       
    23 param a{i in I};
       
    24 /* capacity of plant i in cases */
       
    25 
       
    26 param b{j in J};
       
    27 /* demand at market j in cases */
       
    28 
       
    29 param d{i in I, j in J};
       
    30 /* distance in thousands of miles */
       
    31 
       
    32 param e{l in L};
       
    33 /* parameters */
       
    34 
       
    35 param f;
       
    36 /* freight in dollars per case per thousand miles */
       
    37 
       
    38 table tab_plant IN "CSV" "plants.csv" :
       
    39   I <- [plant], a ~ capacity;
       
    40 
       
    41 table tab_market IN "CSV" "markets.csv" :
       
    42   J <- [market], b ~ demand;
       
    43 
       
    44 table tab_distance IN "CSV" "distances.csv" :
       
    45   K <- [plant, market], d ~ distance;
       
    46 
       
    47 table tab_parameter IN "CSV" "parameters.csv" :
       
    48   L <- [parameter], e ~ value ;
       
    49 
       
    50 param c{i in I, j in J} := e['transport cost'] * d[i,j] / 1000;
       
    51 /* transport cost in thousands of dollars per case */
       
    52 
       
    53 var x{(i,j) in K} >= 0;
       
    54 /* shipment quantities in cases */
       
    55 
       
    56 minimize cost: sum{(i,j) in K} c[i,j] * x[i,j];
       
    57 /* total transportation costs in thousands of dollars */
       
    58 
       
    59 s.t. supply{i in I}: sum{(i,j) in K} x[i,j] <= a[i];
       
    60 /* observe supply limit at plant i */
       
    61 
       
    62 s.t. demand{j in J}: sum{(i,j) in K} x[i,j] >= b[j];
       
    63 /* satisfy demand at market j */
       
    64 
       
    65 solve;
       
    66 
       
    67 table tab_result{(i,j) in K} OUT "CSV" "result.csv" :
       
    68   i ~ plant, j ~ market, x[i,j] ~ shipment;
       
    69 
       
    70 end;