|
1 # A TRANSPORTATION PROBLEM |
|
2 # |
|
3 # This problem finds a least cost shipping schedule that meets |
|
4 # requirements at markets and supplies at factories. |
|
5 # |
|
6 # References: |
|
7 # Dantzig G B, "Linear Programming and Extensions." |
|
8 # Princeton University Press, Princeton, New Jersey, 1963, |
|
9 # Chapter 3-3. |
|
10 |
|
11 set I; |
|
12 /* canning plants */ |
|
13 |
|
14 set J; |
|
15 /* markets */ |
|
16 |
|
17 set K dimen 2; |
|
18 /* transportation lane */ |
|
19 |
|
20 set L; |
|
21 /* parameters */ |
|
22 |
|
23 param a{i in I}; |
|
24 /* capacity of plant i in cases */ |
|
25 |
|
26 param b{j in J}; |
|
27 /* demand at market j in cases */ |
|
28 |
|
29 param d{i in I, j in J}; |
|
30 /* distance in thousands of miles */ |
|
31 |
|
32 param e{l in L}; |
|
33 /* parameters */ |
|
34 |
|
35 param f; |
|
36 /* freight in dollars per case per thousand miles */ |
|
37 |
|
38 table tab_plant IN "CSV" "plants.csv" : |
|
39 I <- [plant], a ~ capacity; |
|
40 |
|
41 table tab_market IN "CSV" "markets.csv" : |
|
42 J <- [market], b ~ demand; |
|
43 |
|
44 table tab_distance IN "CSV" "distances.csv" : |
|
45 K <- [plant, market], d ~ distance; |
|
46 |
|
47 table tab_parameter IN "CSV" "parameters.csv" : |
|
48 L <- [parameter], e ~ value ; |
|
49 |
|
50 param c{i in I, j in J} := e['transport cost'] * d[i,j] / 1000; |
|
51 /* transport cost in thousands of dollars per case */ |
|
52 |
|
53 var x{(i,j) in K} >= 0; |
|
54 /* shipment quantities in cases */ |
|
55 |
|
56 minimize cost: sum{(i,j) in K} c[i,j] * x[i,j]; |
|
57 /* total transportation costs in thousands of dollars */ |
|
58 |
|
59 s.t. supply{i in I}: sum{(i,j) in K} x[i,j] <= a[i]; |
|
60 /* observe supply limit at plant i */ |
|
61 |
|
62 s.t. demand{j in J}: sum{(i,j) in K} x[i,j] >= b[j]; |
|
63 /* satisfy demand at market j */ |
|
64 |
|
65 solve; |
|
66 |
|
67 table tab_result{(i,j) in K} OUT "CSV" "result.csv" : |
|
68 i ~ plant, j ~ market, x[i,j] ~ shipment; |
|
69 |
|
70 end; |