examples/maxflow.mod
changeset 2 4c8956a7bdf4
equal deleted inserted replaced
-1:000000000000 0:ce72246e44f7
       
     1 /* MAXFLOW, Maximum Flow Problem */
       
     2 
       
     3 /* Written in GNU MathProg by Andrew Makhorin <mao@gnu.org> */
       
     4 
       
     5 /* The Maximum Flow Problem in a network G = (V, E), where V is a set
       
     6    of nodes, E within V x V is a set of arcs, is to maximize the flow
       
     7    from one given node s (source) to another given node t (sink) subject
       
     8    to conservation of flow constraints at each node and flow capacities
       
     9    on each arc. */
       
    10 
       
    11 param n, integer, >= 2;
       
    12 /* number of nodes */
       
    13 
       
    14 set V, default {1..n};
       
    15 /* set of nodes */
       
    16 
       
    17 set E, within V cross V;
       
    18 /* set of arcs */
       
    19 
       
    20 param a{(i,j) in E}, > 0;
       
    21 /* a[i,j] is capacity of arc (i,j) */
       
    22 
       
    23 param s, symbolic, in V, default 1;
       
    24 /* source node */
       
    25 
       
    26 param t, symbolic, in V, != s, default n;
       
    27 /* sink node */
       
    28 
       
    29 var x{(i,j) in E}, >= 0, <= a[i,j];
       
    30 /* x[i,j] is elementary flow through arc (i,j) to be found */
       
    31 
       
    32 var flow, >= 0;
       
    33 /* total flow from s to t */
       
    34 
       
    35 s.t. node{i in V}:
       
    36 /* node[i] is conservation constraint for node i */
       
    37 
       
    38    sum{(j,i) in E} x[j,i] + (if i = s then flow)
       
    39    /* summary flow into node i through all ingoing arcs */
       
    40 
       
    41    = /* must be equal to */
       
    42 
       
    43    sum{(i,j) in E} x[i,j] + (if i = t then flow);
       
    44    /* summary flow from node i through all outgoing arcs */
       
    45 
       
    46 maximize obj: flow;
       
    47 /* objective is to maximize the total flow through the network */
       
    48 
       
    49 solve;
       
    50 
       
    51 printf{1..56} "="; printf "\n";
       
    52 printf "Maximum flow from node %s to node %s is %g\n\n", s, t, flow;
       
    53 printf "Starting node   Ending node   Arc capacity   Flow in arc\n";
       
    54 printf "-------------   -----------   ------------   -----------\n";
       
    55 printf{(i,j) in E: x[i,j] != 0}: "%13s   %11s   %12g   %11g\n", i, j,
       
    56    a[i,j], x[i,j];
       
    57 printf{1..56} "="; printf "\n";
       
    58 
       
    59 data;
       
    60 
       
    61 /* These data correspond to an example from [Christofides]. */
       
    62 
       
    63 /* Optimal solution is 29 */
       
    64 
       
    65 param n := 9;
       
    66 
       
    67 param : E :   a :=
       
    68        1 2   14
       
    69        1 4   23
       
    70        2 3   10
       
    71        2 4    9
       
    72        3 5   12
       
    73        3 8   18
       
    74        4 5   26
       
    75        5 2   11
       
    76        5 6   25
       
    77        5 7    4
       
    78        6 7    7
       
    79        6 8    8
       
    80        7 9   15
       
    81        8 9   20;
       
    82 
       
    83 end;