|
1 /* ========================================================================== */ |
|
2 /* === colamd/symamd - a sparse matrix column ordering algorithm ============ */ |
|
3 /* ========================================================================== */ |
|
4 |
|
5 /* COLAMD / SYMAMD |
|
6 |
|
7 colamd: an approximate minimum degree column ordering algorithm, |
|
8 for LU factorization of symmetric or unsymmetric matrices, |
|
9 QR factorization, least squares, interior point methods for |
|
10 linear programming problems, and other related problems. |
|
11 |
|
12 symamd: an approximate minimum degree ordering algorithm for Cholesky |
|
13 factorization of symmetric matrices. |
|
14 |
|
15 Purpose: |
|
16 |
|
17 Colamd computes a permutation Q such that the Cholesky factorization of |
|
18 (AQ)'(AQ) has less fill-in and requires fewer floating point operations |
|
19 than A'A. This also provides a good ordering for sparse partial |
|
20 pivoting methods, P(AQ) = LU, where Q is computed prior to numerical |
|
21 factorization, and P is computed during numerical factorization via |
|
22 conventional partial pivoting with row interchanges. Colamd is the |
|
23 column ordering method used in SuperLU, part of the ScaLAPACK library. |
|
24 It is also available as built-in function in MATLAB Version 6, |
|
25 available from MathWorks, Inc. (http://www.mathworks.com). This |
|
26 routine can be used in place of colmmd in MATLAB. |
|
27 |
|
28 Symamd computes a permutation P of a symmetric matrix A such that the |
|
29 Cholesky factorization of PAP' has less fill-in and requires fewer |
|
30 floating point operations than A. Symamd constructs a matrix M such |
|
31 that M'M has the same nonzero pattern of A, and then orders the columns |
|
32 of M using colmmd. The column ordering of M is then returned as the |
|
33 row and column ordering P of A. |
|
34 |
|
35 Authors: |
|
36 |
|
37 The authors of the code itself are Stefan I. Larimore and Timothy A. |
|
38 Davis (davis at cise.ufl.edu), University of Florida. The algorithm was |
|
39 developed in collaboration with John Gilbert, Xerox PARC, and Esmond |
|
40 Ng, Oak Ridge National Laboratory. |
|
41 |
|
42 Acknowledgements: |
|
43 |
|
44 This work was supported by the National Science Foundation, under |
|
45 grants DMS-9504974 and DMS-9803599. |
|
46 |
|
47 Copyright and License: |
|
48 |
|
49 Copyright (c) 1998-2007, Timothy A. Davis, All Rights Reserved. |
|
50 COLAMD is also available under alternate licenses, contact T. Davis |
|
51 for details. |
|
52 |
|
53 This library is free software; you can redistribute it and/or |
|
54 modify it under the terms of the GNU Lesser General Public |
|
55 License as published by the Free Software Foundation; either |
|
56 version 2.1 of the License, or (at your option) any later version. |
|
57 |
|
58 This library is distributed in the hope that it will be useful, |
|
59 but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
60 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
|
61 Lesser General Public License for more details. |
|
62 |
|
63 You should have received a copy of the GNU Lesser General Public |
|
64 License along with this library; if not, write to the Free Software |
|
65 Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 |
|
66 USA |
|
67 |
|
68 Permission is hereby granted to use or copy this program under the |
|
69 terms of the GNU LGPL, provided that the Copyright, this License, |
|
70 and the Availability of the original version is retained on all copies. |
|
71 User documentation of any code that uses this code or any modified |
|
72 version of this code must cite the Copyright, this License, the |
|
73 Availability note, and "Used by permission." Permission to modify |
|
74 the code and to distribute modified code is granted, provided the |
|
75 Copyright, this License, and the Availability note are retained, |
|
76 and a notice that the code was modified is included. |
|
77 |
|
78 Availability: |
|
79 |
|
80 The colamd/symamd library is available at |
|
81 |
|
82 http://www.cise.ufl.edu/research/sparse/colamd/ |
|
83 |
|
84 This is the http://www.cise.ufl.edu/research/sparse/colamd/colamd.c |
|
85 file. It requires the colamd.h file. It is required by the colamdmex.c |
|
86 and symamdmex.c files, for the MATLAB interface to colamd and symamd. |
|
87 Appears as ACM Algorithm 836. |
|
88 |
|
89 See the ChangeLog file for changes since Version 1.0. |
|
90 |
|
91 References: |
|
92 |
|
93 T. A. Davis, J. R. Gilbert, S. Larimore, E. Ng, An approximate column |
|
94 minimum degree ordering algorithm, ACM Transactions on Mathematical |
|
95 Software, vol. 30, no. 3., pp. 353-376, 2004. |
|
96 |
|
97 T. A. Davis, J. R. Gilbert, S. Larimore, E. Ng, Algorithm 836: COLAMD, |
|
98 an approximate column minimum degree ordering algorithm, ACM |
|
99 Transactions on Mathematical Software, vol. 30, no. 3., pp. 377-380, |
|
100 2004. |
|
101 |
|
102 */ |
|
103 |
|
104 /* ========================================================================== */ |
|
105 /* === Description of user-callable routines ================================ */ |
|
106 /* ========================================================================== */ |
|
107 |
|
108 /* COLAMD includes both int and UF_long versions of all its routines. The |
|
109 * description below is for the int version. For UF_long, all int arguments |
|
110 * become UF_long. UF_long is normally defined as long, except for WIN64. |
|
111 |
|
112 ---------------------------------------------------------------------------- |
|
113 colamd_recommended: |
|
114 ---------------------------------------------------------------------------- |
|
115 |
|
116 C syntax: |
|
117 |
|
118 #include "colamd.h" |
|
119 size_t colamd_recommended (int nnz, int n_row, int n_col) ; |
|
120 size_t colamd_l_recommended (UF_long nnz, UF_long n_row, |
|
121 UF_long n_col) ; |
|
122 |
|
123 Purpose: |
|
124 |
|
125 Returns recommended value of Alen for use by colamd. Returns 0 |
|
126 if any input argument is negative. The use of this routine |
|
127 is optional. Not needed for symamd, which dynamically allocates |
|
128 its own memory. |
|
129 |
|
130 Note that in v2.4 and earlier, these routines returned int or long. |
|
131 They now return a value of type size_t. |
|
132 |
|
133 Arguments (all input arguments): |
|
134 |
|
135 int nnz ; Number of nonzeros in the matrix A. This must |
|
136 be the same value as p [n_col] in the call to |
|
137 colamd - otherwise you will get a wrong value |
|
138 of the recommended memory to use. |
|
139 |
|
140 int n_row ; Number of rows in the matrix A. |
|
141 |
|
142 int n_col ; Number of columns in the matrix A. |
|
143 |
|
144 ---------------------------------------------------------------------------- |
|
145 colamd_set_defaults: |
|
146 ---------------------------------------------------------------------------- |
|
147 |
|
148 C syntax: |
|
149 |
|
150 #include "colamd.h" |
|
151 colamd_set_defaults (double knobs [COLAMD_KNOBS]) ; |
|
152 colamd_l_set_defaults (double knobs [COLAMD_KNOBS]) ; |
|
153 |
|
154 Purpose: |
|
155 |
|
156 Sets the default parameters. The use of this routine is optional. |
|
157 |
|
158 Arguments: |
|
159 |
|
160 double knobs [COLAMD_KNOBS] ; Output only. |
|
161 |
|
162 NOTE: the meaning of the dense row/col knobs has changed in v2.4 |
|
163 |
|
164 knobs [0] and knobs [1] control dense row and col detection: |
|
165 |
|
166 Colamd: rows with more than |
|
167 max (16, knobs [COLAMD_DENSE_ROW] * sqrt (n_col)) |
|
168 entries are removed prior to ordering. Columns with more than |
|
169 max (16, knobs [COLAMD_DENSE_COL] * sqrt (MIN (n_row,n_col))) |
|
170 entries are removed prior to |
|
171 ordering, and placed last in the output column ordering. |
|
172 |
|
173 Symamd: uses only knobs [COLAMD_DENSE_ROW], which is knobs [0]. |
|
174 Rows and columns with more than |
|
175 max (16, knobs [COLAMD_DENSE_ROW] * sqrt (n)) |
|
176 entries are removed prior to ordering, and placed last in the |
|
177 output ordering. |
|
178 |
|
179 COLAMD_DENSE_ROW and COLAMD_DENSE_COL are defined as 0 and 1, |
|
180 respectively, in colamd.h. Default values of these two knobs |
|
181 are both 10. Currently, only knobs [0] and knobs [1] are |
|
182 used, but future versions may use more knobs. If so, they will |
|
183 be properly set to their defaults by the future version of |
|
184 colamd_set_defaults, so that the code that calls colamd will |
|
185 not need to change, assuming that you either use |
|
186 colamd_set_defaults, or pass a (double *) NULL pointer as the |
|
187 knobs array to colamd or symamd. |
|
188 |
|
189 knobs [2]: aggressive absorption |
|
190 |
|
191 knobs [COLAMD_AGGRESSIVE] controls whether or not to do |
|
192 aggressive absorption during the ordering. Default is TRUE. |
|
193 |
|
194 |
|
195 ---------------------------------------------------------------------------- |
|
196 colamd: |
|
197 ---------------------------------------------------------------------------- |
|
198 |
|
199 C syntax: |
|
200 |
|
201 #include "colamd.h" |
|
202 int colamd (int n_row, int n_col, int Alen, int *A, int *p, |
|
203 double knobs [COLAMD_KNOBS], int stats [COLAMD_STATS]) ; |
|
204 UF_long colamd_l (UF_long n_row, UF_long n_col, UF_long Alen, |
|
205 UF_long *A, UF_long *p, double knobs [COLAMD_KNOBS], |
|
206 UF_long stats [COLAMD_STATS]) ; |
|
207 |
|
208 Purpose: |
|
209 |
|
210 Computes a column ordering (Q) of A such that P(AQ)=LU or |
|
211 (AQ)'AQ=LL' have less fill-in and require fewer floating point |
|
212 operations than factorizing the unpermuted matrix A or A'A, |
|
213 respectively. |
|
214 |
|
215 Returns: |
|
216 |
|
217 TRUE (1) if successful, FALSE (0) otherwise. |
|
218 |
|
219 Arguments: |
|
220 |
|
221 int n_row ; Input argument. |
|
222 |
|
223 Number of rows in the matrix A. |
|
224 Restriction: n_row >= 0. |
|
225 Colamd returns FALSE if n_row is negative. |
|
226 |
|
227 int n_col ; Input argument. |
|
228 |
|
229 Number of columns in the matrix A. |
|
230 Restriction: n_col >= 0. |
|
231 Colamd returns FALSE if n_col is negative. |
|
232 |
|
233 int Alen ; Input argument. |
|
234 |
|
235 Restriction (see note): |
|
236 Alen >= 2*nnz + 6*(n_col+1) + 4*(n_row+1) + n_col |
|
237 Colamd returns FALSE if these conditions are not met. |
|
238 |
|
239 Note: this restriction makes an modest assumption regarding |
|
240 the size of the two typedef's structures in colamd.h. |
|
241 We do, however, guarantee that |
|
242 |
|
243 Alen >= colamd_recommended (nnz, n_row, n_col) |
|
244 |
|
245 will be sufficient. Note: the macro version does not check |
|
246 for integer overflow, and thus is not recommended. Use |
|
247 the colamd_recommended routine instead. |
|
248 |
|
249 int A [Alen] ; Input argument, undefined on output. |
|
250 |
|
251 A is an integer array of size Alen. Alen must be at least as |
|
252 large as the bare minimum value given above, but this is very |
|
253 low, and can result in excessive run time. For best |
|
254 performance, we recommend that Alen be greater than or equal to |
|
255 colamd_recommended (nnz, n_row, n_col), which adds |
|
256 nnz/5 to the bare minimum value given above. |
|
257 |
|
258 On input, the row indices of the entries in column c of the |
|
259 matrix are held in A [(p [c]) ... (p [c+1]-1)]. The row indices |
|
260 in a given column c need not be in ascending order, and |
|
261 duplicate row indices may be be present. However, colamd will |
|
262 work a little faster if both of these conditions are met |
|
263 (Colamd puts the matrix into this format, if it finds that the |
|
264 the conditions are not met). |
|
265 |
|
266 The matrix is 0-based. That is, rows are in the range 0 to |
|
267 n_row-1, and columns are in the range 0 to n_col-1. Colamd |
|
268 returns FALSE if any row index is out of range. |
|
269 |
|
270 The contents of A are modified during ordering, and are |
|
271 undefined on output. |
|
272 |
|
273 int p [n_col+1] ; Both input and output argument. |
|
274 |
|
275 p is an integer array of size n_col+1. On input, it holds the |
|
276 "pointers" for the column form of the matrix A. Column c of |
|
277 the matrix A is held in A [(p [c]) ... (p [c+1]-1)]. The first |
|
278 entry, p [0], must be zero, and p [c] <= p [c+1] must hold |
|
279 for all c in the range 0 to n_col-1. The value p [n_col] is |
|
280 thus the total number of entries in the pattern of the matrix A. |
|
281 Colamd returns FALSE if these conditions are not met. |
|
282 |
|
283 On output, if colamd returns TRUE, the array p holds the column |
|
284 permutation (Q, for P(AQ)=LU or (AQ)'(AQ)=LL'), where p [0] is |
|
285 the first column index in the new ordering, and p [n_col-1] is |
|
286 the last. That is, p [k] = j means that column j of A is the |
|
287 kth pivot column, in AQ, where k is in the range 0 to n_col-1 |
|
288 (p [0] = j means that column j of A is the first column in AQ). |
|
289 |
|
290 If colamd returns FALSE, then no permutation is returned, and |
|
291 p is undefined on output. |
|
292 |
|
293 double knobs [COLAMD_KNOBS] ; Input argument. |
|
294 |
|
295 See colamd_set_defaults for a description. |
|
296 |
|
297 int stats [COLAMD_STATS] ; Output argument. |
|
298 |
|
299 Statistics on the ordering, and error status. |
|
300 See colamd.h for related definitions. |
|
301 Colamd returns FALSE if stats is not present. |
|
302 |
|
303 stats [0]: number of dense or empty rows ignored. |
|
304 |
|
305 stats [1]: number of dense or empty columns ignored (and |
|
306 ordered last in the output permutation p) |
|
307 Note that a row can become "empty" if it |
|
308 contains only "dense" and/or "empty" columns, |
|
309 and similarly a column can become "empty" if it |
|
310 only contains "dense" and/or "empty" rows. |
|
311 |
|
312 stats [2]: number of garbage collections performed. |
|
313 This can be excessively high if Alen is close |
|
314 to the minimum required value. |
|
315 |
|
316 stats [3]: status code. < 0 is an error code. |
|
317 > 1 is a warning or notice. |
|
318 |
|
319 0 OK. Each column of the input matrix contained |
|
320 row indices in increasing order, with no |
|
321 duplicates. |
|
322 |
|
323 1 OK, but columns of input matrix were jumbled |
|
324 (unsorted columns or duplicate entries). Colamd |
|
325 had to do some extra work to sort the matrix |
|
326 first and remove duplicate entries, but it |
|
327 still was able to return a valid permutation |
|
328 (return value of colamd was TRUE). |
|
329 |
|
330 stats [4]: highest numbered column that |
|
331 is unsorted or has duplicate |
|
332 entries. |
|
333 stats [5]: last seen duplicate or |
|
334 unsorted row index. |
|
335 stats [6]: number of duplicate or |
|
336 unsorted row indices. |
|
337 |
|
338 -1 A is a null pointer |
|
339 |
|
340 -2 p is a null pointer |
|
341 |
|
342 -3 n_row is negative |
|
343 |
|
344 stats [4]: n_row |
|
345 |
|
346 -4 n_col is negative |
|
347 |
|
348 stats [4]: n_col |
|
349 |
|
350 -5 number of nonzeros in matrix is negative |
|
351 |
|
352 stats [4]: number of nonzeros, p [n_col] |
|
353 |
|
354 -6 p [0] is nonzero |
|
355 |
|
356 stats [4]: p [0] |
|
357 |
|
358 -7 A is too small |
|
359 |
|
360 stats [4]: required size |
|
361 stats [5]: actual size (Alen) |
|
362 |
|
363 -8 a column has a negative number of entries |
|
364 |
|
365 stats [4]: column with < 0 entries |
|
366 stats [5]: number of entries in col |
|
367 |
|
368 -9 a row index is out of bounds |
|
369 |
|
370 stats [4]: column with bad row index |
|
371 stats [5]: bad row index |
|
372 stats [6]: n_row, # of rows of matrx |
|
373 |
|
374 -10 (unused; see symamd.c) |
|
375 |
|
376 -999 (unused; see symamd.c) |
|
377 |
|
378 Future versions may return more statistics in the stats array. |
|
379 |
|
380 Example: |
|
381 |
|
382 See http://www.cise.ufl.edu/research/sparse/colamd/example.c |
|
383 for a complete example. |
|
384 |
|
385 To order the columns of a 5-by-4 matrix with 11 nonzero entries in |
|
386 the following nonzero pattern |
|
387 |
|
388 x 0 x 0 |
|
389 x 0 x x |
|
390 0 x x 0 |
|
391 0 0 x x |
|
392 x x 0 0 |
|
393 |
|
394 with default knobs and no output statistics, do the following: |
|
395 |
|
396 #include "colamd.h" |
|
397 #define ALEN 100 |
|
398 int A [ALEN] = {0, 1, 4, 2, 4, 0, 1, 2, 3, 1, 3} ; |
|
399 int p [ ] = {0, 3, 5, 9, 11} ; |
|
400 int stats [COLAMD_STATS] ; |
|
401 colamd (5, 4, ALEN, A, p, (double *) NULL, stats) ; |
|
402 |
|
403 The permutation is returned in the array p, and A is destroyed. |
|
404 |
|
405 ---------------------------------------------------------------------------- |
|
406 symamd: |
|
407 ---------------------------------------------------------------------------- |
|
408 |
|
409 C syntax: |
|
410 |
|
411 #include "colamd.h" |
|
412 int symamd (int n, int *A, int *p, int *perm, |
|
413 double knobs [COLAMD_KNOBS], int stats [COLAMD_STATS], |
|
414 void (*allocate) (size_t, size_t), void (*release) (void *)) ; |
|
415 UF_long symamd_l (UF_long n, UF_long *A, UF_long *p, UF_long *perm, |
|
416 double knobs [COLAMD_KNOBS], UF_long stats [COLAMD_STATS], |
|
417 void (*allocate) (size_t, size_t), void (*release) (void *)) ; |
|
418 |
|
419 Purpose: |
|
420 |
|
421 The symamd routine computes an ordering P of a symmetric sparse |
|
422 matrix A such that the Cholesky factorization PAP' = LL' remains |
|
423 sparse. It is based on a column ordering of a matrix M constructed |
|
424 so that the nonzero pattern of M'M is the same as A. The matrix A |
|
425 is assumed to be symmetric; only the strictly lower triangular part |
|
426 is accessed. You must pass your selected memory allocator (usually |
|
427 calloc/free or mxCalloc/mxFree) to symamd, for it to allocate |
|
428 memory for the temporary matrix M. |
|
429 |
|
430 Returns: |
|
431 |
|
432 TRUE (1) if successful, FALSE (0) otherwise. |
|
433 |
|
434 Arguments: |
|
435 |
|
436 int n ; Input argument. |
|
437 |
|
438 Number of rows and columns in the symmetrix matrix A. |
|
439 Restriction: n >= 0. |
|
440 Symamd returns FALSE if n is negative. |
|
441 |
|
442 int A [nnz] ; Input argument. |
|
443 |
|
444 A is an integer array of size nnz, where nnz = p [n]. |
|
445 |
|
446 The row indices of the entries in column c of the matrix are |
|
447 held in A [(p [c]) ... (p [c+1]-1)]. The row indices in a |
|
448 given column c need not be in ascending order, and duplicate |
|
449 row indices may be present. However, symamd will run faster |
|
450 if the columns are in sorted order with no duplicate entries. |
|
451 |
|
452 The matrix is 0-based. That is, rows are in the range 0 to |
|
453 n-1, and columns are in the range 0 to n-1. Symamd |
|
454 returns FALSE if any row index is out of range. |
|
455 |
|
456 The contents of A are not modified. |
|
457 |
|
458 int p [n+1] ; Input argument. |
|
459 |
|
460 p is an integer array of size n+1. On input, it holds the |
|
461 "pointers" for the column form of the matrix A. Column c of |
|
462 the matrix A is held in A [(p [c]) ... (p [c+1]-1)]. The first |
|
463 entry, p [0], must be zero, and p [c] <= p [c+1] must hold |
|
464 for all c in the range 0 to n-1. The value p [n] is |
|
465 thus the total number of entries in the pattern of the matrix A. |
|
466 Symamd returns FALSE if these conditions are not met. |
|
467 |
|
468 The contents of p are not modified. |
|
469 |
|
470 int perm [n+1] ; Output argument. |
|
471 |
|
472 On output, if symamd returns TRUE, the array perm holds the |
|
473 permutation P, where perm [0] is the first index in the new |
|
474 ordering, and perm [n-1] is the last. That is, perm [k] = j |
|
475 means that row and column j of A is the kth column in PAP', |
|
476 where k is in the range 0 to n-1 (perm [0] = j means |
|
477 that row and column j of A are the first row and column in |
|
478 PAP'). The array is used as a workspace during the ordering, |
|
479 which is why it must be of length n+1, not just n. |
|
480 |
|
481 double knobs [COLAMD_KNOBS] ; Input argument. |
|
482 |
|
483 See colamd_set_defaults for a description. |
|
484 |
|
485 int stats [COLAMD_STATS] ; Output argument. |
|
486 |
|
487 Statistics on the ordering, and error status. |
|
488 See colamd.h for related definitions. |
|
489 Symamd returns FALSE if stats is not present. |
|
490 |
|
491 stats [0]: number of dense or empty row and columns ignored |
|
492 (and ordered last in the output permutation |
|
493 perm). Note that a row/column can become |
|
494 "empty" if it contains only "dense" and/or |
|
495 "empty" columns/rows. |
|
496 |
|
497 stats [1]: (same as stats [0]) |
|
498 |
|
499 stats [2]: number of garbage collections performed. |
|
500 |
|
501 stats [3]: status code. < 0 is an error code. |
|
502 > 1 is a warning or notice. |
|
503 |
|
504 0 OK. Each column of the input matrix contained |
|
505 row indices in increasing order, with no |
|
506 duplicates. |
|
507 |
|
508 1 OK, but columns of input matrix were jumbled |
|
509 (unsorted columns or duplicate entries). Symamd |
|
510 had to do some extra work to sort the matrix |
|
511 first and remove duplicate entries, but it |
|
512 still was able to return a valid permutation |
|
513 (return value of symamd was TRUE). |
|
514 |
|
515 stats [4]: highest numbered column that |
|
516 is unsorted or has duplicate |
|
517 entries. |
|
518 stats [5]: last seen duplicate or |
|
519 unsorted row index. |
|
520 stats [6]: number of duplicate or |
|
521 unsorted row indices. |
|
522 |
|
523 -1 A is a null pointer |
|
524 |
|
525 -2 p is a null pointer |
|
526 |
|
527 -3 (unused, see colamd.c) |
|
528 |
|
529 -4 n is negative |
|
530 |
|
531 stats [4]: n |
|
532 |
|
533 -5 number of nonzeros in matrix is negative |
|
534 |
|
535 stats [4]: # of nonzeros (p [n]). |
|
536 |
|
537 -6 p [0] is nonzero |
|
538 |
|
539 stats [4]: p [0] |
|
540 |
|
541 -7 (unused) |
|
542 |
|
543 -8 a column has a negative number of entries |
|
544 |
|
545 stats [4]: column with < 0 entries |
|
546 stats [5]: number of entries in col |
|
547 |
|
548 -9 a row index is out of bounds |
|
549 |
|
550 stats [4]: column with bad row index |
|
551 stats [5]: bad row index |
|
552 stats [6]: n_row, # of rows of matrx |
|
553 |
|
554 -10 out of memory (unable to allocate temporary |
|
555 workspace for M or count arrays using the |
|
556 "allocate" routine passed into symamd). |
|
557 |
|
558 Future versions may return more statistics in the stats array. |
|
559 |
|
560 void * (*allocate) (size_t, size_t) |
|
561 |
|
562 A pointer to a function providing memory allocation. The |
|
563 allocated memory must be returned initialized to zero. For a |
|
564 C application, this argument should normally be a pointer to |
|
565 calloc. For a MATLAB mexFunction, the routine mxCalloc is |
|
566 passed instead. |
|
567 |
|
568 void (*release) (size_t, size_t) |
|
569 |
|
570 A pointer to a function that frees memory allocated by the |
|
571 memory allocation routine above. For a C application, this |
|
572 argument should normally be a pointer to free. For a MATLAB |
|
573 mexFunction, the routine mxFree is passed instead. |
|
574 |
|
575 |
|
576 ---------------------------------------------------------------------------- |
|
577 colamd_report: |
|
578 ---------------------------------------------------------------------------- |
|
579 |
|
580 C syntax: |
|
581 |
|
582 #include "colamd.h" |
|
583 colamd_report (int stats [COLAMD_STATS]) ; |
|
584 colamd_l_report (UF_long stats [COLAMD_STATS]) ; |
|
585 |
|
586 Purpose: |
|
587 |
|
588 Prints the error status and statistics recorded in the stats |
|
589 array on the standard error output (for a standard C routine) |
|
590 or on the MATLAB output (for a mexFunction). |
|
591 |
|
592 Arguments: |
|
593 |
|
594 int stats [COLAMD_STATS] ; Input only. Statistics from colamd. |
|
595 |
|
596 |
|
597 ---------------------------------------------------------------------------- |
|
598 symamd_report: |
|
599 ---------------------------------------------------------------------------- |
|
600 |
|
601 C syntax: |
|
602 |
|
603 #include "colamd.h" |
|
604 symamd_report (int stats [COLAMD_STATS]) ; |
|
605 symamd_l_report (UF_long stats [COLAMD_STATS]) ; |
|
606 |
|
607 Purpose: |
|
608 |
|
609 Prints the error status and statistics recorded in the stats |
|
610 array on the standard error output (for a standard C routine) |
|
611 or on the MATLAB output (for a mexFunction). |
|
612 |
|
613 Arguments: |
|
614 |
|
615 int stats [COLAMD_STATS] ; Input only. Statistics from symamd. |
|
616 |
|
617 |
|
618 */ |
|
619 |
|
620 /* ========================================================================== */ |
|
621 /* === Scaffolding code definitions ======================================== */ |
|
622 /* ========================================================================== */ |
|
623 |
|
624 /* Ensure that debugging is turned off: */ |
|
625 #ifndef NDEBUG |
|
626 #define NDEBUG |
|
627 #endif |
|
628 |
|
629 /* turn on debugging by uncommenting the following line |
|
630 #undef NDEBUG |
|
631 */ |
|
632 |
|
633 /* |
|
634 Our "scaffolding code" philosophy: In our opinion, well-written library |
|
635 code should keep its "debugging" code, and just normally have it turned off |
|
636 by the compiler so as not to interfere with performance. This serves |
|
637 several purposes: |
|
638 |
|
639 (1) assertions act as comments to the reader, telling you what the code |
|
640 expects at that point. All assertions will always be true (unless |
|
641 there really is a bug, of course). |
|
642 |
|
643 (2) leaving in the scaffolding code assists anyone who would like to modify |
|
644 the code, or understand the algorithm (by reading the debugging output, |
|
645 one can get a glimpse into what the code is doing). |
|
646 |
|
647 (3) (gasp!) for actually finding bugs. This code has been heavily tested |
|
648 and "should" be fully functional and bug-free ... but you never know... |
|
649 |
|
650 The code will become outrageously slow when debugging is |
|
651 enabled. To control the level of debugging output, set an environment |
|
652 variable D to 0 (little), 1 (some), 2, 3, or 4 (lots). When debugging, |
|
653 you should see the following message on the standard output: |
|
654 |
|
655 colamd: debug version, D = 1 (THIS WILL BE SLOW!) |
|
656 |
|
657 or a similar message for symamd. If you don't, then debugging has not |
|
658 been enabled. |
|
659 |
|
660 */ |
|
661 |
|
662 /* ========================================================================== */ |
|
663 /* === Include files ======================================================== */ |
|
664 /* ========================================================================== */ |
|
665 |
|
666 #include "colamd.h" |
|
667 |
|
668 #if 0 /* by mao */ |
|
669 #include <limits.h> |
|
670 #include <math.h> |
|
671 |
|
672 #ifdef MATLAB_MEX_FILE |
|
673 #include "mex.h" |
|
674 #include "matrix.h" |
|
675 #endif /* MATLAB_MEX_FILE */ |
|
676 |
|
677 #if !defined (NPRINT) || !defined (NDEBUG) |
|
678 #include <stdio.h> |
|
679 #endif |
|
680 |
|
681 #ifndef NULL |
|
682 #define NULL ((void *) 0) |
|
683 #endif |
|
684 #endif |
|
685 |
|
686 /* ========================================================================== */ |
|
687 /* === int or UF_long ======================================================= */ |
|
688 /* ========================================================================== */ |
|
689 |
|
690 #if 0 /* by mao */ |
|
691 /* define UF_long */ |
|
692 #include "UFconfig.h" |
|
693 #endif |
|
694 |
|
695 #ifdef DLONG |
|
696 |
|
697 #define Int UF_long |
|
698 #define ID UF_long_id |
|
699 #define Int_MAX UF_long_max |
|
700 |
|
701 #define COLAMD_recommended colamd_l_recommended |
|
702 #define COLAMD_set_defaults colamd_l_set_defaults |
|
703 #define COLAMD_MAIN colamd_l |
|
704 #define SYMAMD_MAIN symamd_l |
|
705 #define COLAMD_report colamd_l_report |
|
706 #define SYMAMD_report symamd_l_report |
|
707 |
|
708 #else |
|
709 |
|
710 #define Int int |
|
711 #define ID "%d" |
|
712 #define Int_MAX INT_MAX |
|
713 |
|
714 #define COLAMD_recommended colamd_recommended |
|
715 #define COLAMD_set_defaults colamd_set_defaults |
|
716 #define COLAMD_MAIN colamd |
|
717 #define SYMAMD_MAIN symamd |
|
718 #define COLAMD_report colamd_report |
|
719 #define SYMAMD_report symamd_report |
|
720 |
|
721 #endif |
|
722 |
|
723 /* ========================================================================== */ |
|
724 /* === Row and Column structures ============================================ */ |
|
725 /* ========================================================================== */ |
|
726 |
|
727 /* User code that makes use of the colamd/symamd routines need not directly */ |
|
728 /* reference these structures. They are used only for colamd_recommended. */ |
|
729 |
|
730 typedef struct Colamd_Col_struct |
|
731 { |
|
732 Int start ; /* index for A of first row in this column, or DEAD */ |
|
733 /* if column is dead */ |
|
734 Int length ; /* number of rows in this column */ |
|
735 union |
|
736 { |
|
737 Int thickness ; /* number of original columns represented by this */ |
|
738 /* col, if the column is alive */ |
|
739 Int parent ; /* parent in parent tree super-column structure, if */ |
|
740 /* the column is dead */ |
|
741 } shared1 ; |
|
742 union |
|
743 { |
|
744 Int score ; /* the score used to maintain heap, if col is alive */ |
|
745 Int order ; /* pivot ordering of this column, if col is dead */ |
|
746 } shared2 ; |
|
747 union |
|
748 { |
|
749 Int headhash ; /* head of a hash bucket, if col is at the head of */ |
|
750 /* a degree list */ |
|
751 Int hash ; /* hash value, if col is not in a degree list */ |
|
752 Int prev ; /* previous column in degree list, if col is in a */ |
|
753 /* degree list (but not at the head of a degree list) */ |
|
754 } shared3 ; |
|
755 union |
|
756 { |
|
757 Int degree_next ; /* next column, if col is in a degree list */ |
|
758 Int hash_next ; /* next column, if col is in a hash list */ |
|
759 } shared4 ; |
|
760 |
|
761 } Colamd_Col ; |
|
762 |
|
763 typedef struct Colamd_Row_struct |
|
764 { |
|
765 Int start ; /* index for A of first col in this row */ |
|
766 Int length ; /* number of principal columns in this row */ |
|
767 union |
|
768 { |
|
769 Int degree ; /* number of principal & non-principal columns in row */ |
|
770 Int p ; /* used as a row pointer in init_rows_cols () */ |
|
771 } shared1 ; |
|
772 union |
|
773 { |
|
774 Int mark ; /* for computing set differences and marking dead rows*/ |
|
775 Int first_column ;/* first column in row (used in garbage collection) */ |
|
776 } shared2 ; |
|
777 |
|
778 } Colamd_Row ; |
|
779 |
|
780 /* ========================================================================== */ |
|
781 /* === Definitions ========================================================== */ |
|
782 /* ========================================================================== */ |
|
783 |
|
784 /* Routines are either PUBLIC (user-callable) or PRIVATE (not user-callable) */ |
|
785 #define PUBLIC |
|
786 #define PRIVATE static |
|
787 |
|
788 #define DENSE_DEGREE(alpha,n) \ |
|
789 ((Int) MAX (16.0, (alpha) * sqrt ((double) (n)))) |
|
790 |
|
791 #define MAX(a,b) (((a) > (b)) ? (a) : (b)) |
|
792 #define MIN(a,b) (((a) < (b)) ? (a) : (b)) |
|
793 |
|
794 #define ONES_COMPLEMENT(r) (-(r)-1) |
|
795 |
|
796 /* -------------------------------------------------------------------------- */ |
|
797 /* Change for version 2.1: define TRUE and FALSE only if not yet defined */ |
|
798 /* -------------------------------------------------------------------------- */ |
|
799 |
|
800 #ifndef TRUE |
|
801 #define TRUE (1) |
|
802 #endif |
|
803 |
|
804 #ifndef FALSE |
|
805 #define FALSE (0) |
|
806 #endif |
|
807 |
|
808 /* -------------------------------------------------------------------------- */ |
|
809 |
|
810 #define EMPTY (-1) |
|
811 |
|
812 /* Row and column status */ |
|
813 #define ALIVE (0) |
|
814 #define DEAD (-1) |
|
815 |
|
816 /* Column status */ |
|
817 #define DEAD_PRINCIPAL (-1) |
|
818 #define DEAD_NON_PRINCIPAL (-2) |
|
819 |
|
820 /* Macros for row and column status update and checking. */ |
|
821 #define ROW_IS_DEAD(r) ROW_IS_MARKED_DEAD (Row[r].shared2.mark) |
|
822 #define ROW_IS_MARKED_DEAD(row_mark) (row_mark < ALIVE) |
|
823 #define ROW_IS_ALIVE(r) (Row [r].shared2.mark >= ALIVE) |
|
824 #define COL_IS_DEAD(c) (Col [c].start < ALIVE) |
|
825 #define COL_IS_ALIVE(c) (Col [c].start >= ALIVE) |
|
826 #define COL_IS_DEAD_PRINCIPAL(c) (Col [c].start == DEAD_PRINCIPAL) |
|
827 #define KILL_ROW(r) { Row [r].shared2.mark = DEAD ; } |
|
828 #define KILL_PRINCIPAL_COL(c) { Col [c].start = DEAD_PRINCIPAL ; } |
|
829 #define KILL_NON_PRINCIPAL_COL(c) { Col [c].start = DEAD_NON_PRINCIPAL ; } |
|
830 |
|
831 /* ========================================================================== */ |
|
832 /* === Colamd reporting mechanism =========================================== */ |
|
833 /* ========================================================================== */ |
|
834 |
|
835 #if defined (MATLAB_MEX_FILE) || defined (MATHWORKS) |
|
836 /* In MATLAB, matrices are 1-based to the user, but 0-based internally */ |
|
837 #define INDEX(i) ((i)+1) |
|
838 #else |
|
839 /* In C, matrices are 0-based and indices are reported as such in *_report */ |
|
840 #define INDEX(i) (i) |
|
841 #endif |
|
842 |
|
843 /* All output goes through the PRINTF macro. */ |
|
844 #define PRINTF(params) { if (colamd_printf != NULL) (void) colamd_printf params ; } |
|
845 |
|
846 /* ========================================================================== */ |
|
847 /* === Prototypes of PRIVATE routines ======================================= */ |
|
848 /* ========================================================================== */ |
|
849 |
|
850 PRIVATE Int init_rows_cols |
|
851 ( |
|
852 Int n_row, |
|
853 Int n_col, |
|
854 Colamd_Row Row [], |
|
855 Colamd_Col Col [], |
|
856 Int A [], |
|
857 Int p [], |
|
858 Int stats [COLAMD_STATS] |
|
859 ) ; |
|
860 |
|
861 PRIVATE void init_scoring |
|
862 ( |
|
863 Int n_row, |
|
864 Int n_col, |
|
865 Colamd_Row Row [], |
|
866 Colamd_Col Col [], |
|
867 Int A [], |
|
868 Int head [], |
|
869 double knobs [COLAMD_KNOBS], |
|
870 Int *p_n_row2, |
|
871 Int *p_n_col2, |
|
872 Int *p_max_deg |
|
873 ) ; |
|
874 |
|
875 PRIVATE Int find_ordering |
|
876 ( |
|
877 Int n_row, |
|
878 Int n_col, |
|
879 Int Alen, |
|
880 Colamd_Row Row [], |
|
881 Colamd_Col Col [], |
|
882 Int A [], |
|
883 Int head [], |
|
884 Int n_col2, |
|
885 Int max_deg, |
|
886 Int pfree, |
|
887 Int aggressive |
|
888 ) ; |
|
889 |
|
890 PRIVATE void order_children |
|
891 ( |
|
892 Int n_col, |
|
893 Colamd_Col Col [], |
|
894 Int p [] |
|
895 ) ; |
|
896 |
|
897 PRIVATE void detect_super_cols |
|
898 ( |
|
899 |
|
900 #ifndef NDEBUG |
|
901 Int n_col, |
|
902 Colamd_Row Row [], |
|
903 #endif /* NDEBUG */ |
|
904 |
|
905 Colamd_Col Col [], |
|
906 Int A [], |
|
907 Int head [], |
|
908 Int row_start, |
|
909 Int row_length |
|
910 ) ; |
|
911 |
|
912 PRIVATE Int garbage_collection |
|
913 ( |
|
914 Int n_row, |
|
915 Int n_col, |
|
916 Colamd_Row Row [], |
|
917 Colamd_Col Col [], |
|
918 Int A [], |
|
919 Int *pfree |
|
920 ) ; |
|
921 |
|
922 PRIVATE Int clear_mark |
|
923 ( |
|
924 Int tag_mark, |
|
925 Int max_mark, |
|
926 Int n_row, |
|
927 Colamd_Row Row [] |
|
928 ) ; |
|
929 |
|
930 PRIVATE void print_report |
|
931 ( |
|
932 char *method, |
|
933 Int stats [COLAMD_STATS] |
|
934 ) ; |
|
935 |
|
936 /* ========================================================================== */ |
|
937 /* === Debugging prototypes and definitions ================================= */ |
|
938 /* ========================================================================== */ |
|
939 |
|
940 #ifndef NDEBUG |
|
941 |
|
942 #if 0 /* by mao */ |
|
943 #include <assert.h> |
|
944 #endif |
|
945 |
|
946 /* colamd_debug is the *ONLY* global variable, and is only */ |
|
947 /* present when debugging */ |
|
948 |
|
949 PRIVATE Int colamd_debug = 0 ; /* debug print level */ |
|
950 |
|
951 #define DEBUG0(params) { PRINTF (params) ; } |
|
952 #define DEBUG1(params) { if (colamd_debug >= 1) PRINTF (params) ; } |
|
953 #define DEBUG2(params) { if (colamd_debug >= 2) PRINTF (params) ; } |
|
954 #define DEBUG3(params) { if (colamd_debug >= 3) PRINTF (params) ; } |
|
955 #define DEBUG4(params) { if (colamd_debug >= 4) PRINTF (params) ; } |
|
956 |
|
957 #if 0 /* by mao */ |
|
958 #ifdef MATLAB_MEX_FILE |
|
959 #define ASSERT(expression) (mxAssert ((expression), "")) |
|
960 #else |
|
961 #define ASSERT(expression) (assert (expression)) |
|
962 #endif /* MATLAB_MEX_FILE */ |
|
963 #else |
|
964 #define ASSERT xassert |
|
965 #endif |
|
966 |
|
967 PRIVATE void colamd_get_debug /* gets the debug print level from getenv */ |
|
968 ( |
|
969 char *method |
|
970 ) ; |
|
971 |
|
972 PRIVATE void debug_deg_lists |
|
973 ( |
|
974 Int n_row, |
|
975 Int n_col, |
|
976 Colamd_Row Row [], |
|
977 Colamd_Col Col [], |
|
978 Int head [], |
|
979 Int min_score, |
|
980 Int should, |
|
981 Int max_deg |
|
982 ) ; |
|
983 |
|
984 PRIVATE void debug_mark |
|
985 ( |
|
986 Int n_row, |
|
987 Colamd_Row Row [], |
|
988 Int tag_mark, |
|
989 Int max_mark |
|
990 ) ; |
|
991 |
|
992 PRIVATE void debug_matrix |
|
993 ( |
|
994 Int n_row, |
|
995 Int n_col, |
|
996 Colamd_Row Row [], |
|
997 Colamd_Col Col [], |
|
998 Int A [] |
|
999 ) ; |
|
1000 |
|
1001 PRIVATE void debug_structures |
|
1002 ( |
|
1003 Int n_row, |
|
1004 Int n_col, |
|
1005 Colamd_Row Row [], |
|
1006 Colamd_Col Col [], |
|
1007 Int A [], |
|
1008 Int n_col2 |
|
1009 ) ; |
|
1010 |
|
1011 #else /* NDEBUG */ |
|
1012 |
|
1013 /* === No debugging ========================================================= */ |
|
1014 |
|
1015 #define DEBUG0(params) ; |
|
1016 #define DEBUG1(params) ; |
|
1017 #define DEBUG2(params) ; |
|
1018 #define DEBUG3(params) ; |
|
1019 #define DEBUG4(params) ; |
|
1020 |
|
1021 #define ASSERT(expression) |
|
1022 |
|
1023 #endif /* NDEBUG */ |
|
1024 |
|
1025 /* ========================================================================== */ |
|
1026 /* === USER-CALLABLE ROUTINES: ============================================== */ |
|
1027 /* ========================================================================== */ |
|
1028 |
|
1029 /* ========================================================================== */ |
|
1030 /* === colamd_recommended =================================================== */ |
|
1031 /* ========================================================================== */ |
|
1032 |
|
1033 /* |
|
1034 The colamd_recommended routine returns the suggested size for Alen. This |
|
1035 value has been determined to provide good balance between the number of |
|
1036 garbage collections and the memory requirements for colamd. If any |
|
1037 argument is negative, or if integer overflow occurs, a 0 is returned as an |
|
1038 error condition. 2*nnz space is required for the row and column |
|
1039 indices of the matrix. COLAMD_C (n_col) + COLAMD_R (n_row) space is |
|
1040 required for the Col and Row arrays, respectively, which are internal to |
|
1041 colamd (roughly 6*n_col + 4*n_row). An additional n_col space is the |
|
1042 minimal amount of "elbow room", and nnz/5 more space is recommended for |
|
1043 run time efficiency. |
|
1044 |
|
1045 Alen is approximately 2.2*nnz + 7*n_col + 4*n_row + 10. |
|
1046 |
|
1047 This function is not needed when using symamd. |
|
1048 */ |
|
1049 |
|
1050 /* add two values of type size_t, and check for integer overflow */ |
|
1051 static size_t t_add (size_t a, size_t b, int *ok) |
|
1052 { |
|
1053 (*ok) = (*ok) && ((a + b) >= MAX (a,b)) ; |
|
1054 return ((*ok) ? (a + b) : 0) ; |
|
1055 } |
|
1056 |
|
1057 /* compute a*k where k is a small integer, and check for integer overflow */ |
|
1058 static size_t t_mult (size_t a, size_t k, int *ok) |
|
1059 { |
|
1060 size_t i, s = 0 ; |
|
1061 for (i = 0 ; i < k ; i++) |
|
1062 { |
|
1063 s = t_add (s, a, ok) ; |
|
1064 } |
|
1065 return (s) ; |
|
1066 } |
|
1067 |
|
1068 /* size of the Col and Row structures */ |
|
1069 #define COLAMD_C(n_col,ok) \ |
|
1070 ((t_mult (t_add (n_col, 1, ok), sizeof (Colamd_Col), ok) / sizeof (Int))) |
|
1071 |
|
1072 #define COLAMD_R(n_row,ok) \ |
|
1073 ((t_mult (t_add (n_row, 1, ok), sizeof (Colamd_Row), ok) / sizeof (Int))) |
|
1074 |
|
1075 |
|
1076 PUBLIC size_t COLAMD_recommended /* returns recommended value of Alen. */ |
|
1077 ( |
|
1078 /* === Parameters ======================================================= */ |
|
1079 |
|
1080 Int nnz, /* number of nonzeros in A */ |
|
1081 Int n_row, /* number of rows in A */ |
|
1082 Int n_col /* number of columns in A */ |
|
1083 ) |
|
1084 { |
|
1085 size_t s, c, r ; |
|
1086 int ok = TRUE ; |
|
1087 if (nnz < 0 || n_row < 0 || n_col < 0) |
|
1088 { |
|
1089 return (0) ; |
|
1090 } |
|
1091 s = t_mult (nnz, 2, &ok) ; /* 2*nnz */ |
|
1092 c = COLAMD_C (n_col, &ok) ; /* size of column structures */ |
|
1093 r = COLAMD_R (n_row, &ok) ; /* size of row structures */ |
|
1094 s = t_add (s, c, &ok) ; |
|
1095 s = t_add (s, r, &ok) ; |
|
1096 s = t_add (s, n_col, &ok) ; /* elbow room */ |
|
1097 s = t_add (s, nnz/5, &ok) ; /* elbow room */ |
|
1098 ok = ok && (s < Int_MAX) ; |
|
1099 return (ok ? s : 0) ; |
|
1100 } |
|
1101 |
|
1102 |
|
1103 /* ========================================================================== */ |
|
1104 /* === colamd_set_defaults ================================================== */ |
|
1105 /* ========================================================================== */ |
|
1106 |
|
1107 /* |
|
1108 The colamd_set_defaults routine sets the default values of the user- |
|
1109 controllable parameters for colamd and symamd: |
|
1110 |
|
1111 Colamd: rows with more than max (16, knobs [0] * sqrt (n_col)) |
|
1112 entries are removed prior to ordering. Columns with more than |
|
1113 max (16, knobs [1] * sqrt (MIN (n_row,n_col))) entries are removed |
|
1114 prior to ordering, and placed last in the output column ordering. |
|
1115 |
|
1116 Symamd: Rows and columns with more than max (16, knobs [0] * sqrt (n)) |
|
1117 entries are removed prior to ordering, and placed last in the |
|
1118 output ordering. |
|
1119 |
|
1120 knobs [0] dense row control |
|
1121 |
|
1122 knobs [1] dense column control |
|
1123 |
|
1124 knobs [2] if nonzero, do aggresive absorption |
|
1125 |
|
1126 knobs [3..19] unused, but future versions might use this |
|
1127 |
|
1128 */ |
|
1129 |
|
1130 PUBLIC void COLAMD_set_defaults |
|
1131 ( |
|
1132 /* === Parameters ======================================================= */ |
|
1133 |
|
1134 double knobs [COLAMD_KNOBS] /* knob array */ |
|
1135 ) |
|
1136 { |
|
1137 /* === Local variables ================================================== */ |
|
1138 |
|
1139 Int i ; |
|
1140 |
|
1141 if (!knobs) |
|
1142 { |
|
1143 return ; /* no knobs to initialize */ |
|
1144 } |
|
1145 for (i = 0 ; i < COLAMD_KNOBS ; i++) |
|
1146 { |
|
1147 knobs [i] = 0 ; |
|
1148 } |
|
1149 knobs [COLAMD_DENSE_ROW] = 10 ; |
|
1150 knobs [COLAMD_DENSE_COL] = 10 ; |
|
1151 knobs [COLAMD_AGGRESSIVE] = TRUE ; /* default: do aggressive absorption*/ |
|
1152 } |
|
1153 |
|
1154 |
|
1155 /* ========================================================================== */ |
|
1156 /* === symamd =============================================================== */ |
|
1157 /* ========================================================================== */ |
|
1158 |
|
1159 PUBLIC Int SYMAMD_MAIN /* return TRUE if OK, FALSE otherwise */ |
|
1160 ( |
|
1161 /* === Parameters ======================================================= */ |
|
1162 |
|
1163 Int n, /* number of rows and columns of A */ |
|
1164 Int A [], /* row indices of A */ |
|
1165 Int p [], /* column pointers of A */ |
|
1166 Int perm [], /* output permutation, size n+1 */ |
|
1167 double knobs [COLAMD_KNOBS], /* parameters (uses defaults if NULL) */ |
|
1168 Int stats [COLAMD_STATS], /* output statistics and error codes */ |
|
1169 void * (*allocate) (size_t, size_t), |
|
1170 /* pointer to calloc (ANSI C) or */ |
|
1171 /* mxCalloc (for MATLAB mexFunction) */ |
|
1172 void (*release) (void *) |
|
1173 /* pointer to free (ANSI C) or */ |
|
1174 /* mxFree (for MATLAB mexFunction) */ |
|
1175 ) |
|
1176 { |
|
1177 /* === Local variables ================================================== */ |
|
1178 |
|
1179 Int *count ; /* length of each column of M, and col pointer*/ |
|
1180 Int *mark ; /* mark array for finding duplicate entries */ |
|
1181 Int *M ; /* row indices of matrix M */ |
|
1182 size_t Mlen ; /* length of M */ |
|
1183 Int n_row ; /* number of rows in M */ |
|
1184 Int nnz ; /* number of entries in A */ |
|
1185 Int i ; /* row index of A */ |
|
1186 Int j ; /* column index of A */ |
|
1187 Int k ; /* row index of M */ |
|
1188 Int mnz ; /* number of nonzeros in M */ |
|
1189 Int pp ; /* index into a column of A */ |
|
1190 Int last_row ; /* last row seen in the current column */ |
|
1191 Int length ; /* number of nonzeros in a column */ |
|
1192 |
|
1193 double cknobs [COLAMD_KNOBS] ; /* knobs for colamd */ |
|
1194 double default_knobs [COLAMD_KNOBS] ; /* default knobs for colamd */ |
|
1195 |
|
1196 #ifndef NDEBUG |
|
1197 colamd_get_debug ("symamd") ; |
|
1198 #endif /* NDEBUG */ |
|
1199 |
|
1200 /* === Check the input arguments ======================================== */ |
|
1201 |
|
1202 if (!stats) |
|
1203 { |
|
1204 DEBUG0 (("symamd: stats not present\n")) ; |
|
1205 return (FALSE) ; |
|
1206 } |
|
1207 for (i = 0 ; i < COLAMD_STATS ; i++) |
|
1208 { |
|
1209 stats [i] = 0 ; |
|
1210 } |
|
1211 stats [COLAMD_STATUS] = COLAMD_OK ; |
|
1212 stats [COLAMD_INFO1] = -1 ; |
|
1213 stats [COLAMD_INFO2] = -1 ; |
|
1214 |
|
1215 if (!A) |
|
1216 { |
|
1217 stats [COLAMD_STATUS] = COLAMD_ERROR_A_not_present ; |
|
1218 DEBUG0 (("symamd: A not present\n")) ; |
|
1219 return (FALSE) ; |
|
1220 } |
|
1221 |
|
1222 if (!p) /* p is not present */ |
|
1223 { |
|
1224 stats [COLAMD_STATUS] = COLAMD_ERROR_p_not_present ; |
|
1225 DEBUG0 (("symamd: p not present\n")) ; |
|
1226 return (FALSE) ; |
|
1227 } |
|
1228 |
|
1229 if (n < 0) /* n must be >= 0 */ |
|
1230 { |
|
1231 stats [COLAMD_STATUS] = COLAMD_ERROR_ncol_negative ; |
|
1232 stats [COLAMD_INFO1] = n ; |
|
1233 DEBUG0 (("symamd: n negative %d\n", n)) ; |
|
1234 return (FALSE) ; |
|
1235 } |
|
1236 |
|
1237 nnz = p [n] ; |
|
1238 if (nnz < 0) /* nnz must be >= 0 */ |
|
1239 { |
|
1240 stats [COLAMD_STATUS] = COLAMD_ERROR_nnz_negative ; |
|
1241 stats [COLAMD_INFO1] = nnz ; |
|
1242 DEBUG0 (("symamd: number of entries negative %d\n", nnz)) ; |
|
1243 return (FALSE) ; |
|
1244 } |
|
1245 |
|
1246 if (p [0] != 0) |
|
1247 { |
|
1248 stats [COLAMD_STATUS] = COLAMD_ERROR_p0_nonzero ; |
|
1249 stats [COLAMD_INFO1] = p [0] ; |
|
1250 DEBUG0 (("symamd: p[0] not zero %d\n", p [0])) ; |
|
1251 return (FALSE) ; |
|
1252 } |
|
1253 |
|
1254 /* === If no knobs, set default knobs =================================== */ |
|
1255 |
|
1256 if (!knobs) |
|
1257 { |
|
1258 COLAMD_set_defaults (default_knobs) ; |
|
1259 knobs = default_knobs ; |
|
1260 } |
|
1261 |
|
1262 /* === Allocate count and mark ========================================== */ |
|
1263 |
|
1264 count = (Int *) ((*allocate) (n+1, sizeof (Int))) ; |
|
1265 if (!count) |
|
1266 { |
|
1267 stats [COLAMD_STATUS] = COLAMD_ERROR_out_of_memory ; |
|
1268 DEBUG0 (("symamd: allocate count (size %d) failed\n", n+1)) ; |
|
1269 return (FALSE) ; |
|
1270 } |
|
1271 |
|
1272 mark = (Int *) ((*allocate) (n+1, sizeof (Int))) ; |
|
1273 if (!mark) |
|
1274 { |
|
1275 stats [COLAMD_STATUS] = COLAMD_ERROR_out_of_memory ; |
|
1276 (*release) ((void *) count) ; |
|
1277 DEBUG0 (("symamd: allocate mark (size %d) failed\n", n+1)) ; |
|
1278 return (FALSE) ; |
|
1279 } |
|
1280 |
|
1281 /* === Compute column counts of M, check if A is valid ================== */ |
|
1282 |
|
1283 stats [COLAMD_INFO3] = 0 ; /* number of duplicate or unsorted row indices*/ |
|
1284 |
|
1285 for (i = 0 ; i < n ; i++) |
|
1286 { |
|
1287 mark [i] = -1 ; |
|
1288 } |
|
1289 |
|
1290 for (j = 0 ; j < n ; j++) |
|
1291 { |
|
1292 last_row = -1 ; |
|
1293 |
|
1294 length = p [j+1] - p [j] ; |
|
1295 if (length < 0) |
|
1296 { |
|
1297 /* column pointers must be non-decreasing */ |
|
1298 stats [COLAMD_STATUS] = COLAMD_ERROR_col_length_negative ; |
|
1299 stats [COLAMD_INFO1] = j ; |
|
1300 stats [COLAMD_INFO2] = length ; |
|
1301 (*release) ((void *) count) ; |
|
1302 (*release) ((void *) mark) ; |
|
1303 DEBUG0 (("symamd: col %d negative length %d\n", j, length)) ; |
|
1304 return (FALSE) ; |
|
1305 } |
|
1306 |
|
1307 for (pp = p [j] ; pp < p [j+1] ; pp++) |
|
1308 { |
|
1309 i = A [pp] ; |
|
1310 if (i < 0 || i >= n) |
|
1311 { |
|
1312 /* row index i, in column j, is out of bounds */ |
|
1313 stats [COLAMD_STATUS] = COLAMD_ERROR_row_index_out_of_bounds ; |
|
1314 stats [COLAMD_INFO1] = j ; |
|
1315 stats [COLAMD_INFO2] = i ; |
|
1316 stats [COLAMD_INFO3] = n ; |
|
1317 (*release) ((void *) count) ; |
|
1318 (*release) ((void *) mark) ; |
|
1319 DEBUG0 (("symamd: row %d col %d out of bounds\n", i, j)) ; |
|
1320 return (FALSE) ; |
|
1321 } |
|
1322 |
|
1323 if (i <= last_row || mark [i] == j) |
|
1324 { |
|
1325 /* row index is unsorted or repeated (or both), thus col */ |
|
1326 /* is jumbled. This is a notice, not an error condition. */ |
|
1327 stats [COLAMD_STATUS] = COLAMD_OK_BUT_JUMBLED ; |
|
1328 stats [COLAMD_INFO1] = j ; |
|
1329 stats [COLAMD_INFO2] = i ; |
|
1330 (stats [COLAMD_INFO3]) ++ ; |
|
1331 DEBUG1 (("symamd: row %d col %d unsorted/duplicate\n", i, j)) ; |
|
1332 } |
|
1333 |
|
1334 if (i > j && mark [i] != j) |
|
1335 { |
|
1336 /* row k of M will contain column indices i and j */ |
|
1337 count [i]++ ; |
|
1338 count [j]++ ; |
|
1339 } |
|
1340 |
|
1341 /* mark the row as having been seen in this column */ |
|
1342 mark [i] = j ; |
|
1343 |
|
1344 last_row = i ; |
|
1345 } |
|
1346 } |
|
1347 |
|
1348 /* v2.4: removed free(mark) */ |
|
1349 |
|
1350 /* === Compute column pointers of M ===================================== */ |
|
1351 |
|
1352 /* use output permutation, perm, for column pointers of M */ |
|
1353 perm [0] = 0 ; |
|
1354 for (j = 1 ; j <= n ; j++) |
|
1355 { |
|
1356 perm [j] = perm [j-1] + count [j-1] ; |
|
1357 } |
|
1358 for (j = 0 ; j < n ; j++) |
|
1359 { |
|
1360 count [j] = perm [j] ; |
|
1361 } |
|
1362 |
|
1363 /* === Construct M ====================================================== */ |
|
1364 |
|
1365 mnz = perm [n] ; |
|
1366 n_row = mnz / 2 ; |
|
1367 Mlen = COLAMD_recommended (mnz, n_row, n) ; |
|
1368 M = (Int *) ((*allocate) (Mlen, sizeof (Int))) ; |
|
1369 DEBUG0 (("symamd: M is %d-by-%d with %d entries, Mlen = %g\n", |
|
1370 n_row, n, mnz, (double) Mlen)) ; |
|
1371 |
|
1372 if (!M) |
|
1373 { |
|
1374 stats [COLAMD_STATUS] = COLAMD_ERROR_out_of_memory ; |
|
1375 (*release) ((void *) count) ; |
|
1376 (*release) ((void *) mark) ; |
|
1377 DEBUG0 (("symamd: allocate M (size %g) failed\n", (double) Mlen)) ; |
|
1378 return (FALSE) ; |
|
1379 } |
|
1380 |
|
1381 k = 0 ; |
|
1382 |
|
1383 if (stats [COLAMD_STATUS] == COLAMD_OK) |
|
1384 { |
|
1385 /* Matrix is OK */ |
|
1386 for (j = 0 ; j < n ; j++) |
|
1387 { |
|
1388 ASSERT (p [j+1] - p [j] >= 0) ; |
|
1389 for (pp = p [j] ; pp < p [j+1] ; pp++) |
|
1390 { |
|
1391 i = A [pp] ; |
|
1392 ASSERT (i >= 0 && i < n) ; |
|
1393 if (i > j) |
|
1394 { |
|
1395 /* row k of M contains column indices i and j */ |
|
1396 M [count [i]++] = k ; |
|
1397 M [count [j]++] = k ; |
|
1398 k++ ; |
|
1399 } |
|
1400 } |
|
1401 } |
|
1402 } |
|
1403 else |
|
1404 { |
|
1405 /* Matrix is jumbled. Do not add duplicates to M. Unsorted cols OK. */ |
|
1406 DEBUG0 (("symamd: Duplicates in A.\n")) ; |
|
1407 for (i = 0 ; i < n ; i++) |
|
1408 { |
|
1409 mark [i] = -1 ; |
|
1410 } |
|
1411 for (j = 0 ; j < n ; j++) |
|
1412 { |
|
1413 ASSERT (p [j+1] - p [j] >= 0) ; |
|
1414 for (pp = p [j] ; pp < p [j+1] ; pp++) |
|
1415 { |
|
1416 i = A [pp] ; |
|
1417 ASSERT (i >= 0 && i < n) ; |
|
1418 if (i > j && mark [i] != j) |
|
1419 { |
|
1420 /* row k of M contains column indices i and j */ |
|
1421 M [count [i]++] = k ; |
|
1422 M [count [j]++] = k ; |
|
1423 k++ ; |
|
1424 mark [i] = j ; |
|
1425 } |
|
1426 } |
|
1427 } |
|
1428 /* v2.4: free(mark) moved below */ |
|
1429 } |
|
1430 |
|
1431 /* count and mark no longer needed */ |
|
1432 (*release) ((void *) count) ; |
|
1433 (*release) ((void *) mark) ; /* v2.4: free (mark) moved here */ |
|
1434 ASSERT (k == n_row) ; |
|
1435 |
|
1436 /* === Adjust the knobs for M =========================================== */ |
|
1437 |
|
1438 for (i = 0 ; i < COLAMD_KNOBS ; i++) |
|
1439 { |
|
1440 cknobs [i] = knobs [i] ; |
|
1441 } |
|
1442 |
|
1443 /* there are no dense rows in M */ |
|
1444 cknobs [COLAMD_DENSE_ROW] = -1 ; |
|
1445 cknobs [COLAMD_DENSE_COL] = knobs [COLAMD_DENSE_ROW] ; |
|
1446 |
|
1447 /* === Order the columns of M =========================================== */ |
|
1448 |
|
1449 /* v2.4: colamd cannot fail here, so the error check is removed */ |
|
1450 (void) COLAMD_MAIN (n_row, n, (Int) Mlen, M, perm, cknobs, stats) ; |
|
1451 |
|
1452 /* Note that the output permutation is now in perm */ |
|
1453 |
|
1454 /* === get the statistics for symamd from colamd ======================== */ |
|
1455 |
|
1456 /* a dense column in colamd means a dense row and col in symamd */ |
|
1457 stats [COLAMD_DENSE_ROW] = stats [COLAMD_DENSE_COL] ; |
|
1458 |
|
1459 /* === Free M =========================================================== */ |
|
1460 |
|
1461 (*release) ((void *) M) ; |
|
1462 DEBUG0 (("symamd: done.\n")) ; |
|
1463 return (TRUE) ; |
|
1464 |
|
1465 } |
|
1466 |
|
1467 /* ========================================================================== */ |
|
1468 /* === colamd =============================================================== */ |
|
1469 /* ========================================================================== */ |
|
1470 |
|
1471 /* |
|
1472 The colamd routine computes a column ordering Q of a sparse matrix |
|
1473 A such that the LU factorization P(AQ) = LU remains sparse, where P is |
|
1474 selected via partial pivoting. The routine can also be viewed as |
|
1475 providing a permutation Q such that the Cholesky factorization |
|
1476 (AQ)'(AQ) = LL' remains sparse. |
|
1477 */ |
|
1478 |
|
1479 PUBLIC Int COLAMD_MAIN /* returns TRUE if successful, FALSE otherwise*/ |
|
1480 ( |
|
1481 /* === Parameters ======================================================= */ |
|
1482 |
|
1483 Int n_row, /* number of rows in A */ |
|
1484 Int n_col, /* number of columns in A */ |
|
1485 Int Alen, /* length of A */ |
|
1486 Int A [], /* row indices of A */ |
|
1487 Int p [], /* pointers to columns in A */ |
|
1488 double knobs [COLAMD_KNOBS],/* parameters (uses defaults if NULL) */ |
|
1489 Int stats [COLAMD_STATS] /* output statistics and error codes */ |
|
1490 ) |
|
1491 { |
|
1492 /* === Local variables ================================================== */ |
|
1493 |
|
1494 Int i ; /* loop index */ |
|
1495 Int nnz ; /* nonzeros in A */ |
|
1496 size_t Row_size ; /* size of Row [], in integers */ |
|
1497 size_t Col_size ; /* size of Col [], in integers */ |
|
1498 size_t need ; /* minimum required length of A */ |
|
1499 Colamd_Row *Row ; /* pointer into A of Row [0..n_row] array */ |
|
1500 Colamd_Col *Col ; /* pointer into A of Col [0..n_col] array */ |
|
1501 Int n_col2 ; /* number of non-dense, non-empty columns */ |
|
1502 Int n_row2 ; /* number of non-dense, non-empty rows */ |
|
1503 Int ngarbage ; /* number of garbage collections performed */ |
|
1504 Int max_deg ; /* maximum row degree */ |
|
1505 double default_knobs [COLAMD_KNOBS] ; /* default knobs array */ |
|
1506 Int aggressive ; /* do aggressive absorption */ |
|
1507 int ok ; |
|
1508 |
|
1509 #ifndef NDEBUG |
|
1510 colamd_get_debug ("colamd") ; |
|
1511 #endif /* NDEBUG */ |
|
1512 |
|
1513 /* === Check the input arguments ======================================== */ |
|
1514 |
|
1515 if (!stats) |
|
1516 { |
|
1517 DEBUG0 (("colamd: stats not present\n")) ; |
|
1518 return (FALSE) ; |
|
1519 } |
|
1520 for (i = 0 ; i < COLAMD_STATS ; i++) |
|
1521 { |
|
1522 stats [i] = 0 ; |
|
1523 } |
|
1524 stats [COLAMD_STATUS] = COLAMD_OK ; |
|
1525 stats [COLAMD_INFO1] = -1 ; |
|
1526 stats [COLAMD_INFO2] = -1 ; |
|
1527 |
|
1528 if (!A) /* A is not present */ |
|
1529 { |
|
1530 stats [COLAMD_STATUS] = COLAMD_ERROR_A_not_present ; |
|
1531 DEBUG0 (("colamd: A not present\n")) ; |
|
1532 return (FALSE) ; |
|
1533 } |
|
1534 |
|
1535 if (!p) /* p is not present */ |
|
1536 { |
|
1537 stats [COLAMD_STATUS] = COLAMD_ERROR_p_not_present ; |
|
1538 DEBUG0 (("colamd: p not present\n")) ; |
|
1539 return (FALSE) ; |
|
1540 } |
|
1541 |
|
1542 if (n_row < 0) /* n_row must be >= 0 */ |
|
1543 { |
|
1544 stats [COLAMD_STATUS] = COLAMD_ERROR_nrow_negative ; |
|
1545 stats [COLAMD_INFO1] = n_row ; |
|
1546 DEBUG0 (("colamd: nrow negative %d\n", n_row)) ; |
|
1547 return (FALSE) ; |
|
1548 } |
|
1549 |
|
1550 if (n_col < 0) /* n_col must be >= 0 */ |
|
1551 { |
|
1552 stats [COLAMD_STATUS] = COLAMD_ERROR_ncol_negative ; |
|
1553 stats [COLAMD_INFO1] = n_col ; |
|
1554 DEBUG0 (("colamd: ncol negative %d\n", n_col)) ; |
|
1555 return (FALSE) ; |
|
1556 } |
|
1557 |
|
1558 nnz = p [n_col] ; |
|
1559 if (nnz < 0) /* nnz must be >= 0 */ |
|
1560 { |
|
1561 stats [COLAMD_STATUS] = COLAMD_ERROR_nnz_negative ; |
|
1562 stats [COLAMD_INFO1] = nnz ; |
|
1563 DEBUG0 (("colamd: number of entries negative %d\n", nnz)) ; |
|
1564 return (FALSE) ; |
|
1565 } |
|
1566 |
|
1567 if (p [0] != 0) |
|
1568 { |
|
1569 stats [COLAMD_STATUS] = COLAMD_ERROR_p0_nonzero ; |
|
1570 stats [COLAMD_INFO1] = p [0] ; |
|
1571 DEBUG0 (("colamd: p[0] not zero %d\n", p [0])) ; |
|
1572 return (FALSE) ; |
|
1573 } |
|
1574 |
|
1575 /* === If no knobs, set default knobs =================================== */ |
|
1576 |
|
1577 if (!knobs) |
|
1578 { |
|
1579 COLAMD_set_defaults (default_knobs) ; |
|
1580 knobs = default_knobs ; |
|
1581 } |
|
1582 |
|
1583 aggressive = (knobs [COLAMD_AGGRESSIVE] != FALSE) ; |
|
1584 |
|
1585 /* === Allocate the Row and Col arrays from array A ===================== */ |
|
1586 |
|
1587 ok = TRUE ; |
|
1588 Col_size = COLAMD_C (n_col, &ok) ; /* size of Col array of structs */ |
|
1589 Row_size = COLAMD_R (n_row, &ok) ; /* size of Row array of structs */ |
|
1590 |
|
1591 /* need = 2*nnz + n_col + Col_size + Row_size ; */ |
|
1592 need = t_mult (nnz, 2, &ok) ; |
|
1593 need = t_add (need, n_col, &ok) ; |
|
1594 need = t_add (need, Col_size, &ok) ; |
|
1595 need = t_add (need, Row_size, &ok) ; |
|
1596 |
|
1597 if (!ok || need > (size_t) Alen || need > Int_MAX) |
|
1598 { |
|
1599 /* not enough space in array A to perform the ordering */ |
|
1600 stats [COLAMD_STATUS] = COLAMD_ERROR_A_too_small ; |
|
1601 stats [COLAMD_INFO1] = need ; |
|
1602 stats [COLAMD_INFO2] = Alen ; |
|
1603 DEBUG0 (("colamd: Need Alen >= %d, given only Alen = %d\n", need,Alen)); |
|
1604 return (FALSE) ; |
|
1605 } |
|
1606 |
|
1607 Alen -= Col_size + Row_size ; |
|
1608 Col = (Colamd_Col *) &A [Alen] ; |
|
1609 Row = (Colamd_Row *) &A [Alen + Col_size] ; |
|
1610 |
|
1611 /* === Construct the row and column data structures ===================== */ |
|
1612 |
|
1613 if (!init_rows_cols (n_row, n_col, Row, Col, A, p, stats)) |
|
1614 { |
|
1615 /* input matrix is invalid */ |
|
1616 DEBUG0 (("colamd: Matrix invalid\n")) ; |
|
1617 return (FALSE) ; |
|
1618 } |
|
1619 |
|
1620 /* === Initialize scores, kill dense rows/columns ======================= */ |
|
1621 |
|
1622 init_scoring (n_row, n_col, Row, Col, A, p, knobs, |
|
1623 &n_row2, &n_col2, &max_deg) ; |
|
1624 |
|
1625 /* === Order the supercolumns =========================================== */ |
|
1626 |
|
1627 ngarbage = find_ordering (n_row, n_col, Alen, Row, Col, A, p, |
|
1628 n_col2, max_deg, 2*nnz, aggressive) ; |
|
1629 |
|
1630 /* === Order the non-principal columns ================================== */ |
|
1631 |
|
1632 order_children (n_col, Col, p) ; |
|
1633 |
|
1634 /* === Return statistics in stats ======================================= */ |
|
1635 |
|
1636 stats [COLAMD_DENSE_ROW] = n_row - n_row2 ; |
|
1637 stats [COLAMD_DENSE_COL] = n_col - n_col2 ; |
|
1638 stats [COLAMD_DEFRAG_COUNT] = ngarbage ; |
|
1639 DEBUG0 (("colamd: done.\n")) ; |
|
1640 return (TRUE) ; |
|
1641 } |
|
1642 |
|
1643 |
|
1644 /* ========================================================================== */ |
|
1645 /* === colamd_report ======================================================== */ |
|
1646 /* ========================================================================== */ |
|
1647 |
|
1648 PUBLIC void COLAMD_report |
|
1649 ( |
|
1650 Int stats [COLAMD_STATS] |
|
1651 ) |
|
1652 { |
|
1653 print_report ("colamd", stats) ; |
|
1654 } |
|
1655 |
|
1656 |
|
1657 /* ========================================================================== */ |
|
1658 /* === symamd_report ======================================================== */ |
|
1659 /* ========================================================================== */ |
|
1660 |
|
1661 PUBLIC void SYMAMD_report |
|
1662 ( |
|
1663 Int stats [COLAMD_STATS] |
|
1664 ) |
|
1665 { |
|
1666 print_report ("symamd", stats) ; |
|
1667 } |
|
1668 |
|
1669 |
|
1670 |
|
1671 /* ========================================================================== */ |
|
1672 /* === NON-USER-CALLABLE ROUTINES: ========================================== */ |
|
1673 /* ========================================================================== */ |
|
1674 |
|
1675 /* There are no user-callable routines beyond this point in the file */ |
|
1676 |
|
1677 |
|
1678 /* ========================================================================== */ |
|
1679 /* === init_rows_cols ======================================================= */ |
|
1680 /* ========================================================================== */ |
|
1681 |
|
1682 /* |
|
1683 Takes the column form of the matrix in A and creates the row form of the |
|
1684 matrix. Also, row and column attributes are stored in the Col and Row |
|
1685 structs. If the columns are un-sorted or contain duplicate row indices, |
|
1686 this routine will also sort and remove duplicate row indices from the |
|
1687 column form of the matrix. Returns FALSE if the matrix is invalid, |
|
1688 TRUE otherwise. Not user-callable. |
|
1689 */ |
|
1690 |
|
1691 PRIVATE Int init_rows_cols /* returns TRUE if OK, or FALSE otherwise */ |
|
1692 ( |
|
1693 /* === Parameters ======================================================= */ |
|
1694 |
|
1695 Int n_row, /* number of rows of A */ |
|
1696 Int n_col, /* number of columns of A */ |
|
1697 Colamd_Row Row [], /* of size n_row+1 */ |
|
1698 Colamd_Col Col [], /* of size n_col+1 */ |
|
1699 Int A [], /* row indices of A, of size Alen */ |
|
1700 Int p [], /* pointers to columns in A, of size n_col+1 */ |
|
1701 Int stats [COLAMD_STATS] /* colamd statistics */ |
|
1702 ) |
|
1703 { |
|
1704 /* === Local variables ================================================== */ |
|
1705 |
|
1706 Int col ; /* a column index */ |
|
1707 Int row ; /* a row index */ |
|
1708 Int *cp ; /* a column pointer */ |
|
1709 Int *cp_end ; /* a pointer to the end of a column */ |
|
1710 Int *rp ; /* a row pointer */ |
|
1711 Int *rp_end ; /* a pointer to the end of a row */ |
|
1712 Int last_row ; /* previous row */ |
|
1713 |
|
1714 /* === Initialize columns, and check column pointers ==================== */ |
|
1715 |
|
1716 for (col = 0 ; col < n_col ; col++) |
|
1717 { |
|
1718 Col [col].start = p [col] ; |
|
1719 Col [col].length = p [col+1] - p [col] ; |
|
1720 |
|
1721 if (Col [col].length < 0) |
|
1722 { |
|
1723 /* column pointers must be non-decreasing */ |
|
1724 stats [COLAMD_STATUS] = COLAMD_ERROR_col_length_negative ; |
|
1725 stats [COLAMD_INFO1] = col ; |
|
1726 stats [COLAMD_INFO2] = Col [col].length ; |
|
1727 DEBUG0 (("colamd: col %d length %d < 0\n", col, Col [col].length)) ; |
|
1728 return (FALSE) ; |
|
1729 } |
|
1730 |
|
1731 Col [col].shared1.thickness = 1 ; |
|
1732 Col [col].shared2.score = 0 ; |
|
1733 Col [col].shared3.prev = EMPTY ; |
|
1734 Col [col].shared4.degree_next = EMPTY ; |
|
1735 } |
|
1736 |
|
1737 /* p [0..n_col] no longer needed, used as "head" in subsequent routines */ |
|
1738 |
|
1739 /* === Scan columns, compute row degrees, and check row indices ========= */ |
|
1740 |
|
1741 stats [COLAMD_INFO3] = 0 ; /* number of duplicate or unsorted row indices*/ |
|
1742 |
|
1743 for (row = 0 ; row < n_row ; row++) |
|
1744 { |
|
1745 Row [row].length = 0 ; |
|
1746 Row [row].shared2.mark = -1 ; |
|
1747 } |
|
1748 |
|
1749 for (col = 0 ; col < n_col ; col++) |
|
1750 { |
|
1751 last_row = -1 ; |
|
1752 |
|
1753 cp = &A [p [col]] ; |
|
1754 cp_end = &A [p [col+1]] ; |
|
1755 |
|
1756 while (cp < cp_end) |
|
1757 { |
|
1758 row = *cp++ ; |
|
1759 |
|
1760 /* make sure row indices within range */ |
|
1761 if (row < 0 || row >= n_row) |
|
1762 { |
|
1763 stats [COLAMD_STATUS] = COLAMD_ERROR_row_index_out_of_bounds ; |
|
1764 stats [COLAMD_INFO1] = col ; |
|
1765 stats [COLAMD_INFO2] = row ; |
|
1766 stats [COLAMD_INFO3] = n_row ; |
|
1767 DEBUG0 (("colamd: row %d col %d out of bounds\n", row, col)) ; |
|
1768 return (FALSE) ; |
|
1769 } |
|
1770 |
|
1771 if (row <= last_row || Row [row].shared2.mark == col) |
|
1772 { |
|
1773 /* row index are unsorted or repeated (or both), thus col */ |
|
1774 /* is jumbled. This is a notice, not an error condition. */ |
|
1775 stats [COLAMD_STATUS] = COLAMD_OK_BUT_JUMBLED ; |
|
1776 stats [COLAMD_INFO1] = col ; |
|
1777 stats [COLAMD_INFO2] = row ; |
|
1778 (stats [COLAMD_INFO3]) ++ ; |
|
1779 DEBUG1 (("colamd: row %d col %d unsorted/duplicate\n",row,col)); |
|
1780 } |
|
1781 |
|
1782 if (Row [row].shared2.mark != col) |
|
1783 { |
|
1784 Row [row].length++ ; |
|
1785 } |
|
1786 else |
|
1787 { |
|
1788 /* this is a repeated entry in the column, */ |
|
1789 /* it will be removed */ |
|
1790 Col [col].length-- ; |
|
1791 } |
|
1792 |
|
1793 /* mark the row as having been seen in this column */ |
|
1794 Row [row].shared2.mark = col ; |
|
1795 |
|
1796 last_row = row ; |
|
1797 } |
|
1798 } |
|
1799 |
|
1800 /* === Compute row pointers ============================================= */ |
|
1801 |
|
1802 /* row form of the matrix starts directly after the column */ |
|
1803 /* form of matrix in A */ |
|
1804 Row [0].start = p [n_col] ; |
|
1805 Row [0].shared1.p = Row [0].start ; |
|
1806 Row [0].shared2.mark = -1 ; |
|
1807 for (row = 1 ; row < n_row ; row++) |
|
1808 { |
|
1809 Row [row].start = Row [row-1].start + Row [row-1].length ; |
|
1810 Row [row].shared1.p = Row [row].start ; |
|
1811 Row [row].shared2.mark = -1 ; |
|
1812 } |
|
1813 |
|
1814 /* === Create row form ================================================== */ |
|
1815 |
|
1816 if (stats [COLAMD_STATUS] == COLAMD_OK_BUT_JUMBLED) |
|
1817 { |
|
1818 /* if cols jumbled, watch for repeated row indices */ |
|
1819 for (col = 0 ; col < n_col ; col++) |
|
1820 { |
|
1821 cp = &A [p [col]] ; |
|
1822 cp_end = &A [p [col+1]] ; |
|
1823 while (cp < cp_end) |
|
1824 { |
|
1825 row = *cp++ ; |
|
1826 if (Row [row].shared2.mark != col) |
|
1827 { |
|
1828 A [(Row [row].shared1.p)++] = col ; |
|
1829 Row [row].shared2.mark = col ; |
|
1830 } |
|
1831 } |
|
1832 } |
|
1833 } |
|
1834 else |
|
1835 { |
|
1836 /* if cols not jumbled, we don't need the mark (this is faster) */ |
|
1837 for (col = 0 ; col < n_col ; col++) |
|
1838 { |
|
1839 cp = &A [p [col]] ; |
|
1840 cp_end = &A [p [col+1]] ; |
|
1841 while (cp < cp_end) |
|
1842 { |
|
1843 A [(Row [*cp++].shared1.p)++] = col ; |
|
1844 } |
|
1845 } |
|
1846 } |
|
1847 |
|
1848 /* === Clear the row marks and set row degrees ========================== */ |
|
1849 |
|
1850 for (row = 0 ; row < n_row ; row++) |
|
1851 { |
|
1852 Row [row].shared2.mark = 0 ; |
|
1853 Row [row].shared1.degree = Row [row].length ; |
|
1854 } |
|
1855 |
|
1856 /* === See if we need to re-create columns ============================== */ |
|
1857 |
|
1858 if (stats [COLAMD_STATUS] == COLAMD_OK_BUT_JUMBLED) |
|
1859 { |
|
1860 DEBUG0 (("colamd: reconstructing column form, matrix jumbled\n")) ; |
|
1861 |
|
1862 #ifndef NDEBUG |
|
1863 /* make sure column lengths are correct */ |
|
1864 for (col = 0 ; col < n_col ; col++) |
|
1865 { |
|
1866 p [col] = Col [col].length ; |
|
1867 } |
|
1868 for (row = 0 ; row < n_row ; row++) |
|
1869 { |
|
1870 rp = &A [Row [row].start] ; |
|
1871 rp_end = rp + Row [row].length ; |
|
1872 while (rp < rp_end) |
|
1873 { |
|
1874 p [*rp++]-- ; |
|
1875 } |
|
1876 } |
|
1877 for (col = 0 ; col < n_col ; col++) |
|
1878 { |
|
1879 ASSERT (p [col] == 0) ; |
|
1880 } |
|
1881 /* now p is all zero (different than when debugging is turned off) */ |
|
1882 #endif /* NDEBUG */ |
|
1883 |
|
1884 /* === Compute col pointers ========================================= */ |
|
1885 |
|
1886 /* col form of the matrix starts at A [0]. */ |
|
1887 /* Note, we may have a gap between the col form and the row */ |
|
1888 /* form if there were duplicate entries, if so, it will be */ |
|
1889 /* removed upon the first garbage collection */ |
|
1890 Col [0].start = 0 ; |
|
1891 p [0] = Col [0].start ; |
|
1892 for (col = 1 ; col < n_col ; col++) |
|
1893 { |
|
1894 /* note that the lengths here are for pruned columns, i.e. */ |
|
1895 /* no duplicate row indices will exist for these columns */ |
|
1896 Col [col].start = Col [col-1].start + Col [col-1].length ; |
|
1897 p [col] = Col [col].start ; |
|
1898 } |
|
1899 |
|
1900 /* === Re-create col form =========================================== */ |
|
1901 |
|
1902 for (row = 0 ; row < n_row ; row++) |
|
1903 { |
|
1904 rp = &A [Row [row].start] ; |
|
1905 rp_end = rp + Row [row].length ; |
|
1906 while (rp < rp_end) |
|
1907 { |
|
1908 A [(p [*rp++])++] = row ; |
|
1909 } |
|
1910 } |
|
1911 } |
|
1912 |
|
1913 /* === Done. Matrix is not (or no longer) jumbled ====================== */ |
|
1914 |
|
1915 return (TRUE) ; |
|
1916 } |
|
1917 |
|
1918 |
|
1919 /* ========================================================================== */ |
|
1920 /* === init_scoring ========================================================= */ |
|
1921 /* ========================================================================== */ |
|
1922 |
|
1923 /* |
|
1924 Kills dense or empty columns and rows, calculates an initial score for |
|
1925 each column, and places all columns in the degree lists. Not user-callable. |
|
1926 */ |
|
1927 |
|
1928 PRIVATE void init_scoring |
|
1929 ( |
|
1930 /* === Parameters ======================================================= */ |
|
1931 |
|
1932 Int n_row, /* number of rows of A */ |
|
1933 Int n_col, /* number of columns of A */ |
|
1934 Colamd_Row Row [], /* of size n_row+1 */ |
|
1935 Colamd_Col Col [], /* of size n_col+1 */ |
|
1936 Int A [], /* column form and row form of A */ |
|
1937 Int head [], /* of size n_col+1 */ |
|
1938 double knobs [COLAMD_KNOBS],/* parameters */ |
|
1939 Int *p_n_row2, /* number of non-dense, non-empty rows */ |
|
1940 Int *p_n_col2, /* number of non-dense, non-empty columns */ |
|
1941 Int *p_max_deg /* maximum row degree */ |
|
1942 ) |
|
1943 { |
|
1944 /* === Local variables ================================================== */ |
|
1945 |
|
1946 Int c ; /* a column index */ |
|
1947 Int r, row ; /* a row index */ |
|
1948 Int *cp ; /* a column pointer */ |
|
1949 Int deg ; /* degree of a row or column */ |
|
1950 Int *cp_end ; /* a pointer to the end of a column */ |
|
1951 Int *new_cp ; /* new column pointer */ |
|
1952 Int col_length ; /* length of pruned column */ |
|
1953 Int score ; /* current column score */ |
|
1954 Int n_col2 ; /* number of non-dense, non-empty columns */ |
|
1955 Int n_row2 ; /* number of non-dense, non-empty rows */ |
|
1956 Int dense_row_count ; /* remove rows with more entries than this */ |
|
1957 Int dense_col_count ; /* remove cols with more entries than this */ |
|
1958 Int min_score ; /* smallest column score */ |
|
1959 Int max_deg ; /* maximum row degree */ |
|
1960 Int next_col ; /* Used to add to degree list.*/ |
|
1961 |
|
1962 #ifndef NDEBUG |
|
1963 Int debug_count ; /* debug only. */ |
|
1964 #endif /* NDEBUG */ |
|
1965 |
|
1966 /* === Extract knobs ==================================================== */ |
|
1967 |
|
1968 /* Note: if knobs contains a NaN, this is undefined: */ |
|
1969 if (knobs [COLAMD_DENSE_ROW] < 0) |
|
1970 { |
|
1971 /* only remove completely dense rows */ |
|
1972 dense_row_count = n_col-1 ; |
|
1973 } |
|
1974 else |
|
1975 { |
|
1976 dense_row_count = DENSE_DEGREE (knobs [COLAMD_DENSE_ROW], n_col) ; |
|
1977 } |
|
1978 if (knobs [COLAMD_DENSE_COL] < 0) |
|
1979 { |
|
1980 /* only remove completely dense columns */ |
|
1981 dense_col_count = n_row-1 ; |
|
1982 } |
|
1983 else |
|
1984 { |
|
1985 dense_col_count = |
|
1986 DENSE_DEGREE (knobs [COLAMD_DENSE_COL], MIN (n_row, n_col)) ; |
|
1987 } |
|
1988 |
|
1989 DEBUG1 (("colamd: densecount: %d %d\n", dense_row_count, dense_col_count)) ; |
|
1990 max_deg = 0 ; |
|
1991 n_col2 = n_col ; |
|
1992 n_row2 = n_row ; |
|
1993 |
|
1994 /* === Kill empty columns =============================================== */ |
|
1995 |
|
1996 /* Put the empty columns at the end in their natural order, so that LU */ |
|
1997 /* factorization can proceed as far as possible. */ |
|
1998 for (c = n_col-1 ; c >= 0 ; c--) |
|
1999 { |
|
2000 deg = Col [c].length ; |
|
2001 if (deg == 0) |
|
2002 { |
|
2003 /* this is a empty column, kill and order it last */ |
|
2004 Col [c].shared2.order = --n_col2 ; |
|
2005 KILL_PRINCIPAL_COL (c) ; |
|
2006 } |
|
2007 } |
|
2008 DEBUG1 (("colamd: null columns killed: %d\n", n_col - n_col2)) ; |
|
2009 |
|
2010 /* === Kill dense columns =============================================== */ |
|
2011 |
|
2012 /* Put the dense columns at the end, in their natural order */ |
|
2013 for (c = n_col-1 ; c >= 0 ; c--) |
|
2014 { |
|
2015 /* skip any dead columns */ |
|
2016 if (COL_IS_DEAD (c)) |
|
2017 { |
|
2018 continue ; |
|
2019 } |
|
2020 deg = Col [c].length ; |
|
2021 if (deg > dense_col_count) |
|
2022 { |
|
2023 /* this is a dense column, kill and order it last */ |
|
2024 Col [c].shared2.order = --n_col2 ; |
|
2025 /* decrement the row degrees */ |
|
2026 cp = &A [Col [c].start] ; |
|
2027 cp_end = cp + Col [c].length ; |
|
2028 while (cp < cp_end) |
|
2029 { |
|
2030 Row [*cp++].shared1.degree-- ; |
|
2031 } |
|
2032 KILL_PRINCIPAL_COL (c) ; |
|
2033 } |
|
2034 } |
|
2035 DEBUG1 (("colamd: Dense and null columns killed: %d\n", n_col - n_col2)) ; |
|
2036 |
|
2037 /* === Kill dense and empty rows ======================================== */ |
|
2038 |
|
2039 for (r = 0 ; r < n_row ; r++) |
|
2040 { |
|
2041 deg = Row [r].shared1.degree ; |
|
2042 ASSERT (deg >= 0 && deg <= n_col) ; |
|
2043 if (deg > dense_row_count || deg == 0) |
|
2044 { |
|
2045 /* kill a dense or empty row */ |
|
2046 KILL_ROW (r) ; |
|
2047 --n_row2 ; |
|
2048 } |
|
2049 else |
|
2050 { |
|
2051 /* keep track of max degree of remaining rows */ |
|
2052 max_deg = MAX (max_deg, deg) ; |
|
2053 } |
|
2054 } |
|
2055 DEBUG1 (("colamd: Dense and null rows killed: %d\n", n_row - n_row2)) ; |
|
2056 |
|
2057 /* === Compute initial column scores ==================================== */ |
|
2058 |
|
2059 /* At this point the row degrees are accurate. They reflect the number */ |
|
2060 /* of "live" (non-dense) columns in each row. No empty rows exist. */ |
|
2061 /* Some "live" columns may contain only dead rows, however. These are */ |
|
2062 /* pruned in the code below. */ |
|
2063 |
|
2064 /* now find the initial matlab score for each column */ |
|
2065 for (c = n_col-1 ; c >= 0 ; c--) |
|
2066 { |
|
2067 /* skip dead column */ |
|
2068 if (COL_IS_DEAD (c)) |
|
2069 { |
|
2070 continue ; |
|
2071 } |
|
2072 score = 0 ; |
|
2073 cp = &A [Col [c].start] ; |
|
2074 new_cp = cp ; |
|
2075 cp_end = cp + Col [c].length ; |
|
2076 while (cp < cp_end) |
|
2077 { |
|
2078 /* get a row */ |
|
2079 row = *cp++ ; |
|
2080 /* skip if dead */ |
|
2081 if (ROW_IS_DEAD (row)) |
|
2082 { |
|
2083 continue ; |
|
2084 } |
|
2085 /* compact the column */ |
|
2086 *new_cp++ = row ; |
|
2087 /* add row's external degree */ |
|
2088 score += Row [row].shared1.degree - 1 ; |
|
2089 /* guard against integer overflow */ |
|
2090 score = MIN (score, n_col) ; |
|
2091 } |
|
2092 /* determine pruned column length */ |
|
2093 col_length = (Int) (new_cp - &A [Col [c].start]) ; |
|
2094 if (col_length == 0) |
|
2095 { |
|
2096 /* a newly-made null column (all rows in this col are "dense" */ |
|
2097 /* and have already been killed) */ |
|
2098 DEBUG2 (("Newly null killed: %d\n", c)) ; |
|
2099 Col [c].shared2.order = --n_col2 ; |
|
2100 KILL_PRINCIPAL_COL (c) ; |
|
2101 } |
|
2102 else |
|
2103 { |
|
2104 /* set column length and set score */ |
|
2105 ASSERT (score >= 0) ; |
|
2106 ASSERT (score <= n_col) ; |
|
2107 Col [c].length = col_length ; |
|
2108 Col [c].shared2.score = score ; |
|
2109 } |
|
2110 } |
|
2111 DEBUG1 (("colamd: Dense, null, and newly-null columns killed: %d\n", |
|
2112 n_col-n_col2)) ; |
|
2113 |
|
2114 /* At this point, all empty rows and columns are dead. All live columns */ |
|
2115 /* are "clean" (containing no dead rows) and simplicial (no supercolumns */ |
|
2116 /* yet). Rows may contain dead columns, but all live rows contain at */ |
|
2117 /* least one live column. */ |
|
2118 |
|
2119 #ifndef NDEBUG |
|
2120 debug_structures (n_row, n_col, Row, Col, A, n_col2) ; |
|
2121 #endif /* NDEBUG */ |
|
2122 |
|
2123 /* === Initialize degree lists ========================================== */ |
|
2124 |
|
2125 #ifndef NDEBUG |
|
2126 debug_count = 0 ; |
|
2127 #endif /* NDEBUG */ |
|
2128 |
|
2129 /* clear the hash buckets */ |
|
2130 for (c = 0 ; c <= n_col ; c++) |
|
2131 { |
|
2132 head [c] = EMPTY ; |
|
2133 } |
|
2134 min_score = n_col ; |
|
2135 /* place in reverse order, so low column indices are at the front */ |
|
2136 /* of the lists. This is to encourage natural tie-breaking */ |
|
2137 for (c = n_col-1 ; c >= 0 ; c--) |
|
2138 { |
|
2139 /* only add principal columns to degree lists */ |
|
2140 if (COL_IS_ALIVE (c)) |
|
2141 { |
|
2142 DEBUG4 (("place %d score %d minscore %d ncol %d\n", |
|
2143 c, Col [c].shared2.score, min_score, n_col)) ; |
|
2144 |
|
2145 /* === Add columns score to DList =============================== */ |
|
2146 |
|
2147 score = Col [c].shared2.score ; |
|
2148 |
|
2149 ASSERT (min_score >= 0) ; |
|
2150 ASSERT (min_score <= n_col) ; |
|
2151 ASSERT (score >= 0) ; |
|
2152 ASSERT (score <= n_col) ; |
|
2153 ASSERT (head [score] >= EMPTY) ; |
|
2154 |
|
2155 /* now add this column to dList at proper score location */ |
|
2156 next_col = head [score] ; |
|
2157 Col [c].shared3.prev = EMPTY ; |
|
2158 Col [c].shared4.degree_next = next_col ; |
|
2159 |
|
2160 /* if there already was a column with the same score, set its */ |
|
2161 /* previous pointer to this new column */ |
|
2162 if (next_col != EMPTY) |
|
2163 { |
|
2164 Col [next_col].shared3.prev = c ; |
|
2165 } |
|
2166 head [score] = c ; |
|
2167 |
|
2168 /* see if this score is less than current min */ |
|
2169 min_score = MIN (min_score, score) ; |
|
2170 |
|
2171 #ifndef NDEBUG |
|
2172 debug_count++ ; |
|
2173 #endif /* NDEBUG */ |
|
2174 |
|
2175 } |
|
2176 } |
|
2177 |
|
2178 #ifndef NDEBUG |
|
2179 DEBUG1 (("colamd: Live cols %d out of %d, non-princ: %d\n", |
|
2180 debug_count, n_col, n_col-debug_count)) ; |
|
2181 ASSERT (debug_count == n_col2) ; |
|
2182 debug_deg_lists (n_row, n_col, Row, Col, head, min_score, n_col2, max_deg) ; |
|
2183 #endif /* NDEBUG */ |
|
2184 |
|
2185 /* === Return number of remaining columns, and max row degree =========== */ |
|
2186 |
|
2187 *p_n_col2 = n_col2 ; |
|
2188 *p_n_row2 = n_row2 ; |
|
2189 *p_max_deg = max_deg ; |
|
2190 } |
|
2191 |
|
2192 |
|
2193 /* ========================================================================== */ |
|
2194 /* === find_ordering ======================================================== */ |
|
2195 /* ========================================================================== */ |
|
2196 |
|
2197 /* |
|
2198 Order the principal columns of the supercolumn form of the matrix |
|
2199 (no supercolumns on input). Uses a minimum approximate column minimum |
|
2200 degree ordering method. Not user-callable. |
|
2201 */ |
|
2202 |
|
2203 PRIVATE Int find_ordering /* return the number of garbage collections */ |
|
2204 ( |
|
2205 /* === Parameters ======================================================= */ |
|
2206 |
|
2207 Int n_row, /* number of rows of A */ |
|
2208 Int n_col, /* number of columns of A */ |
|
2209 Int Alen, /* size of A, 2*nnz + n_col or larger */ |
|
2210 Colamd_Row Row [], /* of size n_row+1 */ |
|
2211 Colamd_Col Col [], /* of size n_col+1 */ |
|
2212 Int A [], /* column form and row form of A */ |
|
2213 Int head [], /* of size n_col+1 */ |
|
2214 Int n_col2, /* Remaining columns to order */ |
|
2215 Int max_deg, /* Maximum row degree */ |
|
2216 Int pfree, /* index of first free slot (2*nnz on entry) */ |
|
2217 Int aggressive |
|
2218 ) |
|
2219 { |
|
2220 /* === Local variables ================================================== */ |
|
2221 |
|
2222 Int k ; /* current pivot ordering step */ |
|
2223 Int pivot_col ; /* current pivot column */ |
|
2224 Int *cp ; /* a column pointer */ |
|
2225 Int *rp ; /* a row pointer */ |
|
2226 Int pivot_row ; /* current pivot row */ |
|
2227 Int *new_cp ; /* modified column pointer */ |
|
2228 Int *new_rp ; /* modified row pointer */ |
|
2229 Int pivot_row_start ; /* pointer to start of pivot row */ |
|
2230 Int pivot_row_degree ; /* number of columns in pivot row */ |
|
2231 Int pivot_row_length ; /* number of supercolumns in pivot row */ |
|
2232 Int pivot_col_score ; /* score of pivot column */ |
|
2233 Int needed_memory ; /* free space needed for pivot row */ |
|
2234 Int *cp_end ; /* pointer to the end of a column */ |
|
2235 Int *rp_end ; /* pointer to the end of a row */ |
|
2236 Int row ; /* a row index */ |
|
2237 Int col ; /* a column index */ |
|
2238 Int max_score ; /* maximum possible score */ |
|
2239 Int cur_score ; /* score of current column */ |
|
2240 unsigned Int hash ; /* hash value for supernode detection */ |
|
2241 Int head_column ; /* head of hash bucket */ |
|
2242 Int first_col ; /* first column in hash bucket */ |
|
2243 Int tag_mark ; /* marker value for mark array */ |
|
2244 Int row_mark ; /* Row [row].shared2.mark */ |
|
2245 Int set_difference ; /* set difference size of row with pivot row */ |
|
2246 Int min_score ; /* smallest column score */ |
|
2247 Int col_thickness ; /* "thickness" (no. of columns in a supercol) */ |
|
2248 Int max_mark ; /* maximum value of tag_mark */ |
|
2249 Int pivot_col_thickness ; /* number of columns represented by pivot col */ |
|
2250 Int prev_col ; /* Used by Dlist operations. */ |
|
2251 Int next_col ; /* Used by Dlist operations. */ |
|
2252 Int ngarbage ; /* number of garbage collections performed */ |
|
2253 |
|
2254 #ifndef NDEBUG |
|
2255 Int debug_d ; /* debug loop counter */ |
|
2256 Int debug_step = 0 ; /* debug loop counter */ |
|
2257 #endif /* NDEBUG */ |
|
2258 |
|
2259 /* === Initialization and clear mark ==================================== */ |
|
2260 |
|
2261 max_mark = INT_MAX - n_col ; /* INT_MAX defined in <limits.h> */ |
|
2262 tag_mark = clear_mark (0, max_mark, n_row, Row) ; |
|
2263 min_score = 0 ; |
|
2264 ngarbage = 0 ; |
|
2265 DEBUG1 (("colamd: Ordering, n_col2=%d\n", n_col2)) ; |
|
2266 |
|
2267 /* === Order the columns ================================================ */ |
|
2268 |
|
2269 for (k = 0 ; k < n_col2 ; /* 'k' is incremented below */) |
|
2270 { |
|
2271 |
|
2272 #ifndef NDEBUG |
|
2273 if (debug_step % 100 == 0) |
|
2274 { |
|
2275 DEBUG2 (("\n... Step k: %d out of n_col2: %d\n", k, n_col2)) ; |
|
2276 } |
|
2277 else |
|
2278 { |
|
2279 DEBUG3 (("\n----------Step k: %d out of n_col2: %d\n", k, n_col2)) ; |
|
2280 } |
|
2281 debug_step++ ; |
|
2282 debug_deg_lists (n_row, n_col, Row, Col, head, |
|
2283 min_score, n_col2-k, max_deg) ; |
|
2284 debug_matrix (n_row, n_col, Row, Col, A) ; |
|
2285 #endif /* NDEBUG */ |
|
2286 |
|
2287 /* === Select pivot column, and order it ============================ */ |
|
2288 |
|
2289 /* make sure degree list isn't empty */ |
|
2290 ASSERT (min_score >= 0) ; |
|
2291 ASSERT (min_score <= n_col) ; |
|
2292 ASSERT (head [min_score] >= EMPTY) ; |
|
2293 |
|
2294 #ifndef NDEBUG |
|
2295 for (debug_d = 0 ; debug_d < min_score ; debug_d++) |
|
2296 { |
|
2297 ASSERT (head [debug_d] == EMPTY) ; |
|
2298 } |
|
2299 #endif /* NDEBUG */ |
|
2300 |
|
2301 /* get pivot column from head of minimum degree list */ |
|
2302 while (head [min_score] == EMPTY && min_score < n_col) |
|
2303 { |
|
2304 min_score++ ; |
|
2305 } |
|
2306 pivot_col = head [min_score] ; |
|
2307 ASSERT (pivot_col >= 0 && pivot_col <= n_col) ; |
|
2308 next_col = Col [pivot_col].shared4.degree_next ; |
|
2309 head [min_score] = next_col ; |
|
2310 if (next_col != EMPTY) |
|
2311 { |
|
2312 Col [next_col].shared3.prev = EMPTY ; |
|
2313 } |
|
2314 |
|
2315 ASSERT (COL_IS_ALIVE (pivot_col)) ; |
|
2316 |
|
2317 /* remember score for defrag check */ |
|
2318 pivot_col_score = Col [pivot_col].shared2.score ; |
|
2319 |
|
2320 /* the pivot column is the kth column in the pivot order */ |
|
2321 Col [pivot_col].shared2.order = k ; |
|
2322 |
|
2323 /* increment order count by column thickness */ |
|
2324 pivot_col_thickness = Col [pivot_col].shared1.thickness ; |
|
2325 k += pivot_col_thickness ; |
|
2326 ASSERT (pivot_col_thickness > 0) ; |
|
2327 DEBUG3 (("Pivot col: %d thick %d\n", pivot_col, pivot_col_thickness)) ; |
|
2328 |
|
2329 /* === Garbage_collection, if necessary ============================= */ |
|
2330 |
|
2331 needed_memory = MIN (pivot_col_score, n_col - k) ; |
|
2332 if (pfree + needed_memory >= Alen) |
|
2333 { |
|
2334 pfree = garbage_collection (n_row, n_col, Row, Col, A, &A [pfree]) ; |
|
2335 ngarbage++ ; |
|
2336 /* after garbage collection we will have enough */ |
|
2337 ASSERT (pfree + needed_memory < Alen) ; |
|
2338 /* garbage collection has wiped out the Row[].shared2.mark array */ |
|
2339 tag_mark = clear_mark (0, max_mark, n_row, Row) ; |
|
2340 |
|
2341 #ifndef NDEBUG |
|
2342 debug_matrix (n_row, n_col, Row, Col, A) ; |
|
2343 #endif /* NDEBUG */ |
|
2344 } |
|
2345 |
|
2346 /* === Compute pivot row pattern ==================================== */ |
|
2347 |
|
2348 /* get starting location for this new merged row */ |
|
2349 pivot_row_start = pfree ; |
|
2350 |
|
2351 /* initialize new row counts to zero */ |
|
2352 pivot_row_degree = 0 ; |
|
2353 |
|
2354 /* tag pivot column as having been visited so it isn't included */ |
|
2355 /* in merged pivot row */ |
|
2356 Col [pivot_col].shared1.thickness = -pivot_col_thickness ; |
|
2357 |
|
2358 /* pivot row is the union of all rows in the pivot column pattern */ |
|
2359 cp = &A [Col [pivot_col].start] ; |
|
2360 cp_end = cp + Col [pivot_col].length ; |
|
2361 while (cp < cp_end) |
|
2362 { |
|
2363 /* get a row */ |
|
2364 row = *cp++ ; |
|
2365 DEBUG4 (("Pivot col pattern %d %d\n", ROW_IS_ALIVE (row), row)) ; |
|
2366 /* skip if row is dead */ |
|
2367 if (ROW_IS_ALIVE (row)) |
|
2368 { |
|
2369 rp = &A [Row [row].start] ; |
|
2370 rp_end = rp + Row [row].length ; |
|
2371 while (rp < rp_end) |
|
2372 { |
|
2373 /* get a column */ |
|
2374 col = *rp++ ; |
|
2375 /* add the column, if alive and untagged */ |
|
2376 col_thickness = Col [col].shared1.thickness ; |
|
2377 if (col_thickness > 0 && COL_IS_ALIVE (col)) |
|
2378 { |
|
2379 /* tag column in pivot row */ |
|
2380 Col [col].shared1.thickness = -col_thickness ; |
|
2381 ASSERT (pfree < Alen) ; |
|
2382 /* place column in pivot row */ |
|
2383 A [pfree++] = col ; |
|
2384 pivot_row_degree += col_thickness ; |
|
2385 } |
|
2386 } |
|
2387 } |
|
2388 } |
|
2389 |
|
2390 /* clear tag on pivot column */ |
|
2391 Col [pivot_col].shared1.thickness = pivot_col_thickness ; |
|
2392 max_deg = MAX (max_deg, pivot_row_degree) ; |
|
2393 |
|
2394 #ifndef NDEBUG |
|
2395 DEBUG3 (("check2\n")) ; |
|
2396 debug_mark (n_row, Row, tag_mark, max_mark) ; |
|
2397 #endif /* NDEBUG */ |
|
2398 |
|
2399 /* === Kill all rows used to construct pivot row ==================== */ |
|
2400 |
|
2401 /* also kill pivot row, temporarily */ |
|
2402 cp = &A [Col [pivot_col].start] ; |
|
2403 cp_end = cp + Col [pivot_col].length ; |
|
2404 while (cp < cp_end) |
|
2405 { |
|
2406 /* may be killing an already dead row */ |
|
2407 row = *cp++ ; |
|
2408 DEBUG3 (("Kill row in pivot col: %d\n", row)) ; |
|
2409 KILL_ROW (row) ; |
|
2410 } |
|
2411 |
|
2412 /* === Select a row index to use as the new pivot row =============== */ |
|
2413 |
|
2414 pivot_row_length = pfree - pivot_row_start ; |
|
2415 if (pivot_row_length > 0) |
|
2416 { |
|
2417 /* pick the "pivot" row arbitrarily (first row in col) */ |
|
2418 pivot_row = A [Col [pivot_col].start] ; |
|
2419 DEBUG3 (("Pivotal row is %d\n", pivot_row)) ; |
|
2420 } |
|
2421 else |
|
2422 { |
|
2423 /* there is no pivot row, since it is of zero length */ |
|
2424 pivot_row = EMPTY ; |
|
2425 ASSERT (pivot_row_length == 0) ; |
|
2426 } |
|
2427 ASSERT (Col [pivot_col].length > 0 || pivot_row_length == 0) ; |
|
2428 |
|
2429 /* === Approximate degree computation =============================== */ |
|
2430 |
|
2431 /* Here begins the computation of the approximate degree. The column */ |
|
2432 /* score is the sum of the pivot row "length", plus the size of the */ |
|
2433 /* set differences of each row in the column minus the pattern of the */ |
|
2434 /* pivot row itself. The column ("thickness") itself is also */ |
|
2435 /* excluded from the column score (we thus use an approximate */ |
|
2436 /* external degree). */ |
|
2437 |
|
2438 /* The time taken by the following code (compute set differences, and */ |
|
2439 /* add them up) is proportional to the size of the data structure */ |
|
2440 /* being scanned - that is, the sum of the sizes of each column in */ |
|
2441 /* the pivot row. Thus, the amortized time to compute a column score */ |
|
2442 /* is proportional to the size of that column (where size, in this */ |
|
2443 /* context, is the column "length", or the number of row indices */ |
|
2444 /* in that column). The number of row indices in a column is */ |
|
2445 /* monotonically non-decreasing, from the length of the original */ |
|
2446 /* column on input to colamd. */ |
|
2447 |
|
2448 /* === Compute set differences ====================================== */ |
|
2449 |
|
2450 DEBUG3 (("** Computing set differences phase. **\n")) ; |
|
2451 |
|
2452 /* pivot row is currently dead - it will be revived later. */ |
|
2453 |
|
2454 DEBUG3 (("Pivot row: ")) ; |
|
2455 /* for each column in pivot row */ |
|
2456 rp = &A [pivot_row_start] ; |
|
2457 rp_end = rp + pivot_row_length ; |
|
2458 while (rp < rp_end) |
|
2459 { |
|
2460 col = *rp++ ; |
|
2461 ASSERT (COL_IS_ALIVE (col) && col != pivot_col) ; |
|
2462 DEBUG3 (("Col: %d\n", col)) ; |
|
2463 |
|
2464 /* clear tags used to construct pivot row pattern */ |
|
2465 col_thickness = -Col [col].shared1.thickness ; |
|
2466 ASSERT (col_thickness > 0) ; |
|
2467 Col [col].shared1.thickness = col_thickness ; |
|
2468 |
|
2469 /* === Remove column from degree list =========================== */ |
|
2470 |
|
2471 cur_score = Col [col].shared2.score ; |
|
2472 prev_col = Col [col].shared3.prev ; |
|
2473 next_col = Col [col].shared4.degree_next ; |
|
2474 ASSERT (cur_score >= 0) ; |
|
2475 ASSERT (cur_score <= n_col) ; |
|
2476 ASSERT (cur_score >= EMPTY) ; |
|
2477 if (prev_col == EMPTY) |
|
2478 { |
|
2479 head [cur_score] = next_col ; |
|
2480 } |
|
2481 else |
|
2482 { |
|
2483 Col [prev_col].shared4.degree_next = next_col ; |
|
2484 } |
|
2485 if (next_col != EMPTY) |
|
2486 { |
|
2487 Col [next_col].shared3.prev = prev_col ; |
|
2488 } |
|
2489 |
|
2490 /* === Scan the column ========================================== */ |
|
2491 |
|
2492 cp = &A [Col [col].start] ; |
|
2493 cp_end = cp + Col [col].length ; |
|
2494 while (cp < cp_end) |
|
2495 { |
|
2496 /* get a row */ |
|
2497 row = *cp++ ; |
|
2498 row_mark = Row [row].shared2.mark ; |
|
2499 /* skip if dead */ |
|
2500 if (ROW_IS_MARKED_DEAD (row_mark)) |
|
2501 { |
|
2502 continue ; |
|
2503 } |
|
2504 ASSERT (row != pivot_row) ; |
|
2505 set_difference = row_mark - tag_mark ; |
|
2506 /* check if the row has been seen yet */ |
|
2507 if (set_difference < 0) |
|
2508 { |
|
2509 ASSERT (Row [row].shared1.degree <= max_deg) ; |
|
2510 set_difference = Row [row].shared1.degree ; |
|
2511 } |
|
2512 /* subtract column thickness from this row's set difference */ |
|
2513 set_difference -= col_thickness ; |
|
2514 ASSERT (set_difference >= 0) ; |
|
2515 /* absorb this row if the set difference becomes zero */ |
|
2516 if (set_difference == 0 && aggressive) |
|
2517 { |
|
2518 DEBUG3 (("aggressive absorption. Row: %d\n", row)) ; |
|
2519 KILL_ROW (row) ; |
|
2520 } |
|
2521 else |
|
2522 { |
|
2523 /* save the new mark */ |
|
2524 Row [row].shared2.mark = set_difference + tag_mark ; |
|
2525 } |
|
2526 } |
|
2527 } |
|
2528 |
|
2529 #ifndef NDEBUG |
|
2530 debug_deg_lists (n_row, n_col, Row, Col, head, |
|
2531 min_score, n_col2-k-pivot_row_degree, max_deg) ; |
|
2532 #endif /* NDEBUG */ |
|
2533 |
|
2534 /* === Add up set differences for each column ======================= */ |
|
2535 |
|
2536 DEBUG3 (("** Adding set differences phase. **\n")) ; |
|
2537 |
|
2538 /* for each column in pivot row */ |
|
2539 rp = &A [pivot_row_start] ; |
|
2540 rp_end = rp + pivot_row_length ; |
|
2541 while (rp < rp_end) |
|
2542 { |
|
2543 /* get a column */ |
|
2544 col = *rp++ ; |
|
2545 ASSERT (COL_IS_ALIVE (col) && col != pivot_col) ; |
|
2546 hash = 0 ; |
|
2547 cur_score = 0 ; |
|
2548 cp = &A [Col [col].start] ; |
|
2549 /* compact the column */ |
|
2550 new_cp = cp ; |
|
2551 cp_end = cp + Col [col].length ; |
|
2552 |
|
2553 DEBUG4 (("Adding set diffs for Col: %d.\n", col)) ; |
|
2554 |
|
2555 while (cp < cp_end) |
|
2556 { |
|
2557 /* get a row */ |
|
2558 row = *cp++ ; |
|
2559 ASSERT(row >= 0 && row < n_row) ; |
|
2560 row_mark = Row [row].shared2.mark ; |
|
2561 /* skip if dead */ |
|
2562 if (ROW_IS_MARKED_DEAD (row_mark)) |
|
2563 { |
|
2564 DEBUG4 ((" Row %d, dead\n", row)) ; |
|
2565 continue ; |
|
2566 } |
|
2567 DEBUG4 ((" Row %d, set diff %d\n", row, row_mark-tag_mark)); |
|
2568 ASSERT (row_mark >= tag_mark) ; |
|
2569 /* compact the column */ |
|
2570 *new_cp++ = row ; |
|
2571 /* compute hash function */ |
|
2572 hash += row ; |
|
2573 /* add set difference */ |
|
2574 cur_score += row_mark - tag_mark ; |
|
2575 /* integer overflow... */ |
|
2576 cur_score = MIN (cur_score, n_col) ; |
|
2577 } |
|
2578 |
|
2579 /* recompute the column's length */ |
|
2580 Col [col].length = (Int) (new_cp - &A [Col [col].start]) ; |
|
2581 |
|
2582 /* === Further mass elimination ================================= */ |
|
2583 |
|
2584 if (Col [col].length == 0) |
|
2585 { |
|
2586 DEBUG4 (("further mass elimination. Col: %d\n", col)) ; |
|
2587 /* nothing left but the pivot row in this column */ |
|
2588 KILL_PRINCIPAL_COL (col) ; |
|
2589 pivot_row_degree -= Col [col].shared1.thickness ; |
|
2590 ASSERT (pivot_row_degree >= 0) ; |
|
2591 /* order it */ |
|
2592 Col [col].shared2.order = k ; |
|
2593 /* increment order count by column thickness */ |
|
2594 k += Col [col].shared1.thickness ; |
|
2595 } |
|
2596 else |
|
2597 { |
|
2598 /* === Prepare for supercolumn detection ==================== */ |
|
2599 |
|
2600 DEBUG4 (("Preparing supercol detection for Col: %d.\n", col)) ; |
|
2601 |
|
2602 /* save score so far */ |
|
2603 Col [col].shared2.score = cur_score ; |
|
2604 |
|
2605 /* add column to hash table, for supercolumn detection */ |
|
2606 hash %= n_col + 1 ; |
|
2607 |
|
2608 DEBUG4 ((" Hash = %d, n_col = %d.\n", hash, n_col)) ; |
|
2609 ASSERT (((Int) hash) <= n_col) ; |
|
2610 |
|
2611 head_column = head [hash] ; |
|
2612 if (head_column > EMPTY) |
|
2613 { |
|
2614 /* degree list "hash" is non-empty, use prev (shared3) of */ |
|
2615 /* first column in degree list as head of hash bucket */ |
|
2616 first_col = Col [head_column].shared3.headhash ; |
|
2617 Col [head_column].shared3.headhash = col ; |
|
2618 } |
|
2619 else |
|
2620 { |
|
2621 /* degree list "hash" is empty, use head as hash bucket */ |
|
2622 first_col = - (head_column + 2) ; |
|
2623 head [hash] = - (col + 2) ; |
|
2624 } |
|
2625 Col [col].shared4.hash_next = first_col ; |
|
2626 |
|
2627 /* save hash function in Col [col].shared3.hash */ |
|
2628 Col [col].shared3.hash = (Int) hash ; |
|
2629 ASSERT (COL_IS_ALIVE (col)) ; |
|
2630 } |
|
2631 } |
|
2632 |
|
2633 /* The approximate external column degree is now computed. */ |
|
2634 |
|
2635 /* === Supercolumn detection ======================================== */ |
|
2636 |
|
2637 DEBUG3 (("** Supercolumn detection phase. **\n")) ; |
|
2638 |
|
2639 detect_super_cols ( |
|
2640 |
|
2641 #ifndef NDEBUG |
|
2642 n_col, Row, |
|
2643 #endif /* NDEBUG */ |
|
2644 |
|
2645 Col, A, head, pivot_row_start, pivot_row_length) ; |
|
2646 |
|
2647 /* === Kill the pivotal column ====================================== */ |
|
2648 |
|
2649 KILL_PRINCIPAL_COL (pivot_col) ; |
|
2650 |
|
2651 /* === Clear mark =================================================== */ |
|
2652 |
|
2653 tag_mark = clear_mark (tag_mark+max_deg+1, max_mark, n_row, Row) ; |
|
2654 |
|
2655 #ifndef NDEBUG |
|
2656 DEBUG3 (("check3\n")) ; |
|
2657 debug_mark (n_row, Row, tag_mark, max_mark) ; |
|
2658 #endif /* NDEBUG */ |
|
2659 |
|
2660 /* === Finalize the new pivot row, and column scores ================ */ |
|
2661 |
|
2662 DEBUG3 (("** Finalize scores phase. **\n")) ; |
|
2663 |
|
2664 /* for each column in pivot row */ |
|
2665 rp = &A [pivot_row_start] ; |
|
2666 /* compact the pivot row */ |
|
2667 new_rp = rp ; |
|
2668 rp_end = rp + pivot_row_length ; |
|
2669 while (rp < rp_end) |
|
2670 { |
|
2671 col = *rp++ ; |
|
2672 /* skip dead columns */ |
|
2673 if (COL_IS_DEAD (col)) |
|
2674 { |
|
2675 continue ; |
|
2676 } |
|
2677 *new_rp++ = col ; |
|
2678 /* add new pivot row to column */ |
|
2679 A [Col [col].start + (Col [col].length++)] = pivot_row ; |
|
2680 |
|
2681 /* retrieve score so far and add on pivot row's degree. */ |
|
2682 /* (we wait until here for this in case the pivot */ |
|
2683 /* row's degree was reduced due to mass elimination). */ |
|
2684 cur_score = Col [col].shared2.score + pivot_row_degree ; |
|
2685 |
|
2686 /* calculate the max possible score as the number of */ |
|
2687 /* external columns minus the 'k' value minus the */ |
|
2688 /* columns thickness */ |
|
2689 max_score = n_col - k - Col [col].shared1.thickness ; |
|
2690 |
|
2691 /* make the score the external degree of the union-of-rows */ |
|
2692 cur_score -= Col [col].shared1.thickness ; |
|
2693 |
|
2694 /* make sure score is less or equal than the max score */ |
|
2695 cur_score = MIN (cur_score, max_score) ; |
|
2696 ASSERT (cur_score >= 0) ; |
|
2697 |
|
2698 /* store updated score */ |
|
2699 Col [col].shared2.score = cur_score ; |
|
2700 |
|
2701 /* === Place column back in degree list ========================= */ |
|
2702 |
|
2703 ASSERT (min_score >= 0) ; |
|
2704 ASSERT (min_score <= n_col) ; |
|
2705 ASSERT (cur_score >= 0) ; |
|
2706 ASSERT (cur_score <= n_col) ; |
|
2707 ASSERT (head [cur_score] >= EMPTY) ; |
|
2708 next_col = head [cur_score] ; |
|
2709 Col [col].shared4.degree_next = next_col ; |
|
2710 Col [col].shared3.prev = EMPTY ; |
|
2711 if (next_col != EMPTY) |
|
2712 { |
|
2713 Col [next_col].shared3.prev = col ; |
|
2714 } |
|
2715 head [cur_score] = col ; |
|
2716 |
|
2717 /* see if this score is less than current min */ |
|
2718 min_score = MIN (min_score, cur_score) ; |
|
2719 |
|
2720 } |
|
2721 |
|
2722 #ifndef NDEBUG |
|
2723 debug_deg_lists (n_row, n_col, Row, Col, head, |
|
2724 min_score, n_col2-k, max_deg) ; |
|
2725 #endif /* NDEBUG */ |
|
2726 |
|
2727 /* === Resurrect the new pivot row ================================== */ |
|
2728 |
|
2729 if (pivot_row_degree > 0) |
|
2730 { |
|
2731 /* update pivot row length to reflect any cols that were killed */ |
|
2732 /* during super-col detection and mass elimination */ |
|
2733 Row [pivot_row].start = pivot_row_start ; |
|
2734 Row [pivot_row].length = (Int) (new_rp - &A[pivot_row_start]) ; |
|
2735 ASSERT (Row [pivot_row].length > 0) ; |
|
2736 Row [pivot_row].shared1.degree = pivot_row_degree ; |
|
2737 Row [pivot_row].shared2.mark = 0 ; |
|
2738 /* pivot row is no longer dead */ |
|
2739 |
|
2740 DEBUG1 (("Resurrect Pivot_row %d deg: %d\n", |
|
2741 pivot_row, pivot_row_degree)) ; |
|
2742 } |
|
2743 } |
|
2744 |
|
2745 /* === All principal columns have now been ordered ====================== */ |
|
2746 |
|
2747 return (ngarbage) ; |
|
2748 } |
|
2749 |
|
2750 |
|
2751 /* ========================================================================== */ |
|
2752 /* === order_children ======================================================= */ |
|
2753 /* ========================================================================== */ |
|
2754 |
|
2755 /* |
|
2756 The find_ordering routine has ordered all of the principal columns (the |
|
2757 representatives of the supercolumns). The non-principal columns have not |
|
2758 yet been ordered. This routine orders those columns by walking up the |
|
2759 parent tree (a column is a child of the column which absorbed it). The |
|
2760 final permutation vector is then placed in p [0 ... n_col-1], with p [0] |
|
2761 being the first column, and p [n_col-1] being the last. It doesn't look |
|
2762 like it at first glance, but be assured that this routine takes time linear |
|
2763 in the number of columns. Although not immediately obvious, the time |
|
2764 taken by this routine is O (n_col), that is, linear in the number of |
|
2765 columns. Not user-callable. |
|
2766 */ |
|
2767 |
|
2768 PRIVATE void order_children |
|
2769 ( |
|
2770 /* === Parameters ======================================================= */ |
|
2771 |
|
2772 Int n_col, /* number of columns of A */ |
|
2773 Colamd_Col Col [], /* of size n_col+1 */ |
|
2774 Int p [] /* p [0 ... n_col-1] is the column permutation*/ |
|
2775 ) |
|
2776 { |
|
2777 /* === Local variables ================================================== */ |
|
2778 |
|
2779 Int i ; /* loop counter for all columns */ |
|
2780 Int c ; /* column index */ |
|
2781 Int parent ; /* index of column's parent */ |
|
2782 Int order ; /* column's order */ |
|
2783 |
|
2784 /* === Order each non-principal column ================================== */ |
|
2785 |
|
2786 for (i = 0 ; i < n_col ; i++) |
|
2787 { |
|
2788 /* find an un-ordered non-principal column */ |
|
2789 ASSERT (COL_IS_DEAD (i)) ; |
|
2790 if (!COL_IS_DEAD_PRINCIPAL (i) && Col [i].shared2.order == EMPTY) |
|
2791 { |
|
2792 parent = i ; |
|
2793 /* once found, find its principal parent */ |
|
2794 do |
|
2795 { |
|
2796 parent = Col [parent].shared1.parent ; |
|
2797 } while (!COL_IS_DEAD_PRINCIPAL (parent)) ; |
|
2798 |
|
2799 /* now, order all un-ordered non-principal columns along path */ |
|
2800 /* to this parent. collapse tree at the same time */ |
|
2801 c = i ; |
|
2802 /* get order of parent */ |
|
2803 order = Col [parent].shared2.order ; |
|
2804 |
|
2805 do |
|
2806 { |
|
2807 ASSERT (Col [c].shared2.order == EMPTY) ; |
|
2808 |
|
2809 /* order this column */ |
|
2810 Col [c].shared2.order = order++ ; |
|
2811 /* collaps tree */ |
|
2812 Col [c].shared1.parent = parent ; |
|
2813 |
|
2814 /* get immediate parent of this column */ |
|
2815 c = Col [c].shared1.parent ; |
|
2816 |
|
2817 /* continue until we hit an ordered column. There are */ |
|
2818 /* guarranteed not to be anymore unordered columns */ |
|
2819 /* above an ordered column */ |
|
2820 } while (Col [c].shared2.order == EMPTY) ; |
|
2821 |
|
2822 /* re-order the super_col parent to largest order for this group */ |
|
2823 Col [parent].shared2.order = order ; |
|
2824 } |
|
2825 } |
|
2826 |
|
2827 /* === Generate the permutation ========================================= */ |
|
2828 |
|
2829 for (c = 0 ; c < n_col ; c++) |
|
2830 { |
|
2831 p [Col [c].shared2.order] = c ; |
|
2832 } |
|
2833 } |
|
2834 |
|
2835 |
|
2836 /* ========================================================================== */ |
|
2837 /* === detect_super_cols ==================================================== */ |
|
2838 /* ========================================================================== */ |
|
2839 |
|
2840 /* |
|
2841 Detects supercolumns by finding matches between columns in the hash buckets. |
|
2842 Check amongst columns in the set A [row_start ... row_start + row_length-1]. |
|
2843 The columns under consideration are currently *not* in the degree lists, |
|
2844 and have already been placed in the hash buckets. |
|
2845 |
|
2846 The hash bucket for columns whose hash function is equal to h is stored |
|
2847 as follows: |
|
2848 |
|
2849 if head [h] is >= 0, then head [h] contains a degree list, so: |
|
2850 |
|
2851 head [h] is the first column in degree bucket h. |
|
2852 Col [head [h]].headhash gives the first column in hash bucket h. |
|
2853 |
|
2854 otherwise, the degree list is empty, and: |
|
2855 |
|
2856 -(head [h] + 2) is the first column in hash bucket h. |
|
2857 |
|
2858 For a column c in a hash bucket, Col [c].shared3.prev is NOT a "previous |
|
2859 column" pointer. Col [c].shared3.hash is used instead as the hash number |
|
2860 for that column. The value of Col [c].shared4.hash_next is the next column |
|
2861 in the same hash bucket. |
|
2862 |
|
2863 Assuming no, or "few" hash collisions, the time taken by this routine is |
|
2864 linear in the sum of the sizes (lengths) of each column whose score has |
|
2865 just been computed in the approximate degree computation. |
|
2866 Not user-callable. |
|
2867 */ |
|
2868 |
|
2869 PRIVATE void detect_super_cols |
|
2870 ( |
|
2871 /* === Parameters ======================================================= */ |
|
2872 |
|
2873 #ifndef NDEBUG |
|
2874 /* these two parameters are only needed when debugging is enabled: */ |
|
2875 Int n_col, /* number of columns of A */ |
|
2876 Colamd_Row Row [], /* of size n_row+1 */ |
|
2877 #endif /* NDEBUG */ |
|
2878 |
|
2879 Colamd_Col Col [], /* of size n_col+1 */ |
|
2880 Int A [], /* row indices of A */ |
|
2881 Int head [], /* head of degree lists and hash buckets */ |
|
2882 Int row_start, /* pointer to set of columns to check */ |
|
2883 Int row_length /* number of columns to check */ |
|
2884 ) |
|
2885 { |
|
2886 /* === Local variables ================================================== */ |
|
2887 |
|
2888 Int hash ; /* hash value for a column */ |
|
2889 Int *rp ; /* pointer to a row */ |
|
2890 Int c ; /* a column index */ |
|
2891 Int super_c ; /* column index of the column to absorb into */ |
|
2892 Int *cp1 ; /* column pointer for column super_c */ |
|
2893 Int *cp2 ; /* column pointer for column c */ |
|
2894 Int length ; /* length of column super_c */ |
|
2895 Int prev_c ; /* column preceding c in hash bucket */ |
|
2896 Int i ; /* loop counter */ |
|
2897 Int *rp_end ; /* pointer to the end of the row */ |
|
2898 Int col ; /* a column index in the row to check */ |
|
2899 Int head_column ; /* first column in hash bucket or degree list */ |
|
2900 Int first_col ; /* first column in hash bucket */ |
|
2901 |
|
2902 /* === Consider each column in the row ================================== */ |
|
2903 |
|
2904 rp = &A [row_start] ; |
|
2905 rp_end = rp + row_length ; |
|
2906 while (rp < rp_end) |
|
2907 { |
|
2908 col = *rp++ ; |
|
2909 if (COL_IS_DEAD (col)) |
|
2910 { |
|
2911 continue ; |
|
2912 } |
|
2913 |
|
2914 /* get hash number for this column */ |
|
2915 hash = Col [col].shared3.hash ; |
|
2916 ASSERT (hash <= n_col) ; |
|
2917 |
|
2918 /* === Get the first column in this hash bucket ===================== */ |
|
2919 |
|
2920 head_column = head [hash] ; |
|
2921 if (head_column > EMPTY) |
|
2922 { |
|
2923 first_col = Col [head_column].shared3.headhash ; |
|
2924 } |
|
2925 else |
|
2926 { |
|
2927 first_col = - (head_column + 2) ; |
|
2928 } |
|
2929 |
|
2930 /* === Consider each column in the hash bucket ====================== */ |
|
2931 |
|
2932 for (super_c = first_col ; super_c != EMPTY ; |
|
2933 super_c = Col [super_c].shared4.hash_next) |
|
2934 { |
|
2935 ASSERT (COL_IS_ALIVE (super_c)) ; |
|
2936 ASSERT (Col [super_c].shared3.hash == hash) ; |
|
2937 length = Col [super_c].length ; |
|
2938 |
|
2939 /* prev_c is the column preceding column c in the hash bucket */ |
|
2940 prev_c = super_c ; |
|
2941 |
|
2942 /* === Compare super_c with all columns after it ================ */ |
|
2943 |
|
2944 for (c = Col [super_c].shared4.hash_next ; |
|
2945 c != EMPTY ; c = Col [c].shared4.hash_next) |
|
2946 { |
|
2947 ASSERT (c != super_c) ; |
|
2948 ASSERT (COL_IS_ALIVE (c)) ; |
|
2949 ASSERT (Col [c].shared3.hash == hash) ; |
|
2950 |
|
2951 /* not identical if lengths or scores are different */ |
|
2952 if (Col [c].length != length || |
|
2953 Col [c].shared2.score != Col [super_c].shared2.score) |
|
2954 { |
|
2955 prev_c = c ; |
|
2956 continue ; |
|
2957 } |
|
2958 |
|
2959 /* compare the two columns */ |
|
2960 cp1 = &A [Col [super_c].start] ; |
|
2961 cp2 = &A [Col [c].start] ; |
|
2962 |
|
2963 for (i = 0 ; i < length ; i++) |
|
2964 { |
|
2965 /* the columns are "clean" (no dead rows) */ |
|
2966 ASSERT (ROW_IS_ALIVE (*cp1)) ; |
|
2967 ASSERT (ROW_IS_ALIVE (*cp2)) ; |
|
2968 /* row indices will same order for both supercols, */ |
|
2969 /* no gather scatter nessasary */ |
|
2970 if (*cp1++ != *cp2++) |
|
2971 { |
|
2972 break ; |
|
2973 } |
|
2974 } |
|
2975 |
|
2976 /* the two columns are different if the for-loop "broke" */ |
|
2977 if (i != length) |
|
2978 { |
|
2979 prev_c = c ; |
|
2980 continue ; |
|
2981 } |
|
2982 |
|
2983 /* === Got it! two columns are identical =================== */ |
|
2984 |
|
2985 ASSERT (Col [c].shared2.score == Col [super_c].shared2.score) ; |
|
2986 |
|
2987 Col [super_c].shared1.thickness += Col [c].shared1.thickness ; |
|
2988 Col [c].shared1.parent = super_c ; |
|
2989 KILL_NON_PRINCIPAL_COL (c) ; |
|
2990 /* order c later, in order_children() */ |
|
2991 Col [c].shared2.order = EMPTY ; |
|
2992 /* remove c from hash bucket */ |
|
2993 Col [prev_c].shared4.hash_next = Col [c].shared4.hash_next ; |
|
2994 } |
|
2995 } |
|
2996 |
|
2997 /* === Empty this hash bucket ======================================= */ |
|
2998 |
|
2999 if (head_column > EMPTY) |
|
3000 { |
|
3001 /* corresponding degree list "hash" is not empty */ |
|
3002 Col [head_column].shared3.headhash = EMPTY ; |
|
3003 } |
|
3004 else |
|
3005 { |
|
3006 /* corresponding degree list "hash" is empty */ |
|
3007 head [hash] = EMPTY ; |
|
3008 } |
|
3009 } |
|
3010 } |
|
3011 |
|
3012 |
|
3013 /* ========================================================================== */ |
|
3014 /* === garbage_collection =================================================== */ |
|
3015 /* ========================================================================== */ |
|
3016 |
|
3017 /* |
|
3018 Defragments and compacts columns and rows in the workspace A. Used when |
|
3019 all avaliable memory has been used while performing row merging. Returns |
|
3020 the index of the first free position in A, after garbage collection. The |
|
3021 time taken by this routine is linear is the size of the array A, which is |
|
3022 itself linear in the number of nonzeros in the input matrix. |
|
3023 Not user-callable. |
|
3024 */ |
|
3025 |
|
3026 PRIVATE Int garbage_collection /* returns the new value of pfree */ |
|
3027 ( |
|
3028 /* === Parameters ======================================================= */ |
|
3029 |
|
3030 Int n_row, /* number of rows */ |
|
3031 Int n_col, /* number of columns */ |
|
3032 Colamd_Row Row [], /* row info */ |
|
3033 Colamd_Col Col [], /* column info */ |
|
3034 Int A [], /* A [0 ... Alen-1] holds the matrix */ |
|
3035 Int *pfree /* &A [0] ... pfree is in use */ |
|
3036 ) |
|
3037 { |
|
3038 /* === Local variables ================================================== */ |
|
3039 |
|
3040 Int *psrc ; /* source pointer */ |
|
3041 Int *pdest ; /* destination pointer */ |
|
3042 Int j ; /* counter */ |
|
3043 Int r ; /* a row index */ |
|
3044 Int c ; /* a column index */ |
|
3045 Int length ; /* length of a row or column */ |
|
3046 |
|
3047 #ifndef NDEBUG |
|
3048 Int debug_rows ; |
|
3049 DEBUG2 (("Defrag..\n")) ; |
|
3050 for (psrc = &A[0] ; psrc < pfree ; psrc++) ASSERT (*psrc >= 0) ; |
|
3051 debug_rows = 0 ; |
|
3052 #endif /* NDEBUG */ |
|
3053 |
|
3054 /* === Defragment the columns =========================================== */ |
|
3055 |
|
3056 pdest = &A[0] ; |
|
3057 for (c = 0 ; c < n_col ; c++) |
|
3058 { |
|
3059 if (COL_IS_ALIVE (c)) |
|
3060 { |
|
3061 psrc = &A [Col [c].start] ; |
|
3062 |
|
3063 /* move and compact the column */ |
|
3064 ASSERT (pdest <= psrc) ; |
|
3065 Col [c].start = (Int) (pdest - &A [0]) ; |
|
3066 length = Col [c].length ; |
|
3067 for (j = 0 ; j < length ; j++) |
|
3068 { |
|
3069 r = *psrc++ ; |
|
3070 if (ROW_IS_ALIVE (r)) |
|
3071 { |
|
3072 *pdest++ = r ; |
|
3073 } |
|
3074 } |
|
3075 Col [c].length = (Int) (pdest - &A [Col [c].start]) ; |
|
3076 } |
|
3077 } |
|
3078 |
|
3079 /* === Prepare to defragment the rows =================================== */ |
|
3080 |
|
3081 for (r = 0 ; r < n_row ; r++) |
|
3082 { |
|
3083 if (ROW_IS_DEAD (r) || (Row [r].length == 0)) |
|
3084 { |
|
3085 /* This row is already dead, or is of zero length. Cannot compact |
|
3086 * a row of zero length, so kill it. NOTE: in the current version, |
|
3087 * there are no zero-length live rows. Kill the row (for the first |
|
3088 * time, or again) just to be safe. */ |
|
3089 KILL_ROW (r) ; |
|
3090 } |
|
3091 else |
|
3092 { |
|
3093 /* save first column index in Row [r].shared2.first_column */ |
|
3094 psrc = &A [Row [r].start] ; |
|
3095 Row [r].shared2.first_column = *psrc ; |
|
3096 ASSERT (ROW_IS_ALIVE (r)) ; |
|
3097 /* flag the start of the row with the one's complement of row */ |
|
3098 *psrc = ONES_COMPLEMENT (r) ; |
|
3099 #ifndef NDEBUG |
|
3100 debug_rows++ ; |
|
3101 #endif /* NDEBUG */ |
|
3102 } |
|
3103 } |
|
3104 |
|
3105 /* === Defragment the rows ============================================== */ |
|
3106 |
|
3107 psrc = pdest ; |
|
3108 while (psrc < pfree) |
|
3109 { |
|
3110 /* find a negative number ... the start of a row */ |
|
3111 if (*psrc++ < 0) |
|
3112 { |
|
3113 psrc-- ; |
|
3114 /* get the row index */ |
|
3115 r = ONES_COMPLEMENT (*psrc) ; |
|
3116 ASSERT (r >= 0 && r < n_row) ; |
|
3117 /* restore first column index */ |
|
3118 *psrc = Row [r].shared2.first_column ; |
|
3119 ASSERT (ROW_IS_ALIVE (r)) ; |
|
3120 ASSERT (Row [r].length > 0) ; |
|
3121 /* move and compact the row */ |
|
3122 ASSERT (pdest <= psrc) ; |
|
3123 Row [r].start = (Int) (pdest - &A [0]) ; |
|
3124 length = Row [r].length ; |
|
3125 for (j = 0 ; j < length ; j++) |
|
3126 { |
|
3127 c = *psrc++ ; |
|
3128 if (COL_IS_ALIVE (c)) |
|
3129 { |
|
3130 *pdest++ = c ; |
|
3131 } |
|
3132 } |
|
3133 Row [r].length = (Int) (pdest - &A [Row [r].start]) ; |
|
3134 ASSERT (Row [r].length > 0) ; |
|
3135 #ifndef NDEBUG |
|
3136 debug_rows-- ; |
|
3137 #endif /* NDEBUG */ |
|
3138 } |
|
3139 } |
|
3140 /* ensure we found all the rows */ |
|
3141 ASSERT (debug_rows == 0) ; |
|
3142 |
|
3143 /* === Return the new value of pfree ==================================== */ |
|
3144 |
|
3145 return ((Int) (pdest - &A [0])) ; |
|
3146 } |
|
3147 |
|
3148 |
|
3149 /* ========================================================================== */ |
|
3150 /* === clear_mark =========================================================== */ |
|
3151 /* ========================================================================== */ |
|
3152 |
|
3153 /* |
|
3154 Clears the Row [].shared2.mark array, and returns the new tag_mark. |
|
3155 Return value is the new tag_mark. Not user-callable. |
|
3156 */ |
|
3157 |
|
3158 PRIVATE Int clear_mark /* return the new value for tag_mark */ |
|
3159 ( |
|
3160 /* === Parameters ======================================================= */ |
|
3161 |
|
3162 Int tag_mark, /* new value of tag_mark */ |
|
3163 Int max_mark, /* max allowed value of tag_mark */ |
|
3164 |
|
3165 Int n_row, /* number of rows in A */ |
|
3166 Colamd_Row Row [] /* Row [0 ... n_row-1].shared2.mark is set to zero */ |
|
3167 ) |
|
3168 { |
|
3169 /* === Local variables ================================================== */ |
|
3170 |
|
3171 Int r ; |
|
3172 |
|
3173 if (tag_mark <= 0 || tag_mark >= max_mark) |
|
3174 { |
|
3175 for (r = 0 ; r < n_row ; r++) |
|
3176 { |
|
3177 if (ROW_IS_ALIVE (r)) |
|
3178 { |
|
3179 Row [r].shared2.mark = 0 ; |
|
3180 } |
|
3181 } |
|
3182 tag_mark = 1 ; |
|
3183 } |
|
3184 |
|
3185 return (tag_mark) ; |
|
3186 } |
|
3187 |
|
3188 |
|
3189 /* ========================================================================== */ |
|
3190 /* === print_report ========================================================= */ |
|
3191 /* ========================================================================== */ |
|
3192 |
|
3193 PRIVATE void print_report |
|
3194 ( |
|
3195 char *method, |
|
3196 Int stats [COLAMD_STATS] |
|
3197 ) |
|
3198 { |
|
3199 |
|
3200 Int i1, i2, i3 ; |
|
3201 |
|
3202 PRINTF (("\n%s version %d.%d, %s: ", method, |
|
3203 COLAMD_MAIN_VERSION, COLAMD_SUB_VERSION, COLAMD_DATE)) ; |
|
3204 |
|
3205 if (!stats) |
|
3206 { |
|
3207 PRINTF (("No statistics available.\n")) ; |
|
3208 return ; |
|
3209 } |
|
3210 |
|
3211 i1 = stats [COLAMD_INFO1] ; |
|
3212 i2 = stats [COLAMD_INFO2] ; |
|
3213 i3 = stats [COLAMD_INFO3] ; |
|
3214 |
|
3215 if (stats [COLAMD_STATUS] >= 0) |
|
3216 { |
|
3217 PRINTF (("OK. ")) ; |
|
3218 } |
|
3219 else |
|
3220 { |
|
3221 PRINTF (("ERROR. ")) ; |
|
3222 } |
|
3223 |
|
3224 switch (stats [COLAMD_STATUS]) |
|
3225 { |
|
3226 |
|
3227 case COLAMD_OK_BUT_JUMBLED: |
|
3228 |
|
3229 PRINTF(("Matrix has unsorted or duplicate row indices.\n")) ; |
|
3230 |
|
3231 PRINTF(("%s: number of duplicate or out-of-order row indices: %d\n", |
|
3232 method, i3)) ; |
|
3233 |
|
3234 PRINTF(("%s: last seen duplicate or out-of-order row index: %d\n", |
|
3235 method, INDEX (i2))) ; |
|
3236 |
|
3237 PRINTF(("%s: last seen in column: %d", |
|
3238 method, INDEX (i1))) ; |
|
3239 |
|
3240 /* no break - fall through to next case instead */ |
|
3241 |
|
3242 case COLAMD_OK: |
|
3243 |
|
3244 PRINTF(("\n")) ; |
|
3245 |
|
3246 PRINTF(("%s: number of dense or empty rows ignored: %d\n", |
|
3247 method, stats [COLAMD_DENSE_ROW])) ; |
|
3248 |
|
3249 PRINTF(("%s: number of dense or empty columns ignored: %d\n", |
|
3250 method, stats [COLAMD_DENSE_COL])) ; |
|
3251 |
|
3252 PRINTF(("%s: number of garbage collections performed: %d\n", |
|
3253 method, stats [COLAMD_DEFRAG_COUNT])) ; |
|
3254 break ; |
|
3255 |
|
3256 case COLAMD_ERROR_A_not_present: |
|
3257 |
|
3258 PRINTF(("Array A (row indices of matrix) not present.\n")) ; |
|
3259 break ; |
|
3260 |
|
3261 case COLAMD_ERROR_p_not_present: |
|
3262 |
|
3263 PRINTF(("Array p (column pointers for matrix) not present.\n")) ; |
|
3264 break ; |
|
3265 |
|
3266 case COLAMD_ERROR_nrow_negative: |
|
3267 |
|
3268 PRINTF(("Invalid number of rows (%d).\n", i1)) ; |
|
3269 break ; |
|
3270 |
|
3271 case COLAMD_ERROR_ncol_negative: |
|
3272 |
|
3273 PRINTF(("Invalid number of columns (%d).\n", i1)) ; |
|
3274 break ; |
|
3275 |
|
3276 case COLAMD_ERROR_nnz_negative: |
|
3277 |
|
3278 PRINTF(("Invalid number of nonzero entries (%d).\n", i1)) ; |
|
3279 break ; |
|
3280 |
|
3281 case COLAMD_ERROR_p0_nonzero: |
|
3282 |
|
3283 PRINTF(("Invalid column pointer, p [0] = %d, must be zero.\n", i1)); |
|
3284 break ; |
|
3285 |
|
3286 case COLAMD_ERROR_A_too_small: |
|
3287 |
|
3288 PRINTF(("Array A too small.\n")) ; |
|
3289 PRINTF((" Need Alen >= %d, but given only Alen = %d.\n", |
|
3290 i1, i2)) ; |
|
3291 break ; |
|
3292 |
|
3293 case COLAMD_ERROR_col_length_negative: |
|
3294 |
|
3295 PRINTF |
|
3296 (("Column %d has a negative number of nonzero entries (%d).\n", |
|
3297 INDEX (i1), i2)) ; |
|
3298 break ; |
|
3299 |
|
3300 case COLAMD_ERROR_row_index_out_of_bounds: |
|
3301 |
|
3302 PRINTF |
|
3303 (("Row index (row %d) out of bounds (%d to %d) in column %d.\n", |
|
3304 INDEX (i2), INDEX (0), INDEX (i3-1), INDEX (i1))) ; |
|
3305 break ; |
|
3306 |
|
3307 case COLAMD_ERROR_out_of_memory: |
|
3308 |
|
3309 PRINTF(("Out of memory.\n")) ; |
|
3310 break ; |
|
3311 |
|
3312 /* v2.4: internal-error case deleted */ |
|
3313 } |
|
3314 } |
|
3315 |
|
3316 |
|
3317 |
|
3318 |
|
3319 /* ========================================================================== */ |
|
3320 /* === colamd debugging routines ============================================ */ |
|
3321 /* ========================================================================== */ |
|
3322 |
|
3323 /* When debugging is disabled, the remainder of this file is ignored. */ |
|
3324 |
|
3325 #ifndef NDEBUG |
|
3326 |
|
3327 |
|
3328 /* ========================================================================== */ |
|
3329 /* === debug_structures ===================================================== */ |
|
3330 /* ========================================================================== */ |
|
3331 |
|
3332 /* |
|
3333 At this point, all empty rows and columns are dead. All live columns |
|
3334 are "clean" (containing no dead rows) and simplicial (no supercolumns |
|
3335 yet). Rows may contain dead columns, but all live rows contain at |
|
3336 least one live column. |
|
3337 */ |
|
3338 |
|
3339 PRIVATE void debug_structures |
|
3340 ( |
|
3341 /* === Parameters ======================================================= */ |
|
3342 |
|
3343 Int n_row, |
|
3344 Int n_col, |
|
3345 Colamd_Row Row [], |
|
3346 Colamd_Col Col [], |
|
3347 Int A [], |
|
3348 Int n_col2 |
|
3349 ) |
|
3350 { |
|
3351 /* === Local variables ================================================== */ |
|
3352 |
|
3353 Int i ; |
|
3354 Int c ; |
|
3355 Int *cp ; |
|
3356 Int *cp_end ; |
|
3357 Int len ; |
|
3358 Int score ; |
|
3359 Int r ; |
|
3360 Int *rp ; |
|
3361 Int *rp_end ; |
|
3362 Int deg ; |
|
3363 |
|
3364 /* === Check A, Row, and Col ============================================ */ |
|
3365 |
|
3366 for (c = 0 ; c < n_col ; c++) |
|
3367 { |
|
3368 if (COL_IS_ALIVE (c)) |
|
3369 { |
|
3370 len = Col [c].length ; |
|
3371 score = Col [c].shared2.score ; |
|
3372 DEBUG4 (("initial live col %5d %5d %5d\n", c, len, score)) ; |
|
3373 ASSERT (len > 0) ; |
|
3374 ASSERT (score >= 0) ; |
|
3375 ASSERT (Col [c].shared1.thickness == 1) ; |
|
3376 cp = &A [Col [c].start] ; |
|
3377 cp_end = cp + len ; |
|
3378 while (cp < cp_end) |
|
3379 { |
|
3380 r = *cp++ ; |
|
3381 ASSERT (ROW_IS_ALIVE (r)) ; |
|
3382 } |
|
3383 } |
|
3384 else |
|
3385 { |
|
3386 i = Col [c].shared2.order ; |
|
3387 ASSERT (i >= n_col2 && i < n_col) ; |
|
3388 } |
|
3389 } |
|
3390 |
|
3391 for (r = 0 ; r < n_row ; r++) |
|
3392 { |
|
3393 if (ROW_IS_ALIVE (r)) |
|
3394 { |
|
3395 i = 0 ; |
|
3396 len = Row [r].length ; |
|
3397 deg = Row [r].shared1.degree ; |
|
3398 ASSERT (len > 0) ; |
|
3399 ASSERT (deg > 0) ; |
|
3400 rp = &A [Row [r].start] ; |
|
3401 rp_end = rp + len ; |
|
3402 while (rp < rp_end) |
|
3403 { |
|
3404 c = *rp++ ; |
|
3405 if (COL_IS_ALIVE (c)) |
|
3406 { |
|
3407 i++ ; |
|
3408 } |
|
3409 } |
|
3410 ASSERT (i > 0) ; |
|
3411 } |
|
3412 } |
|
3413 } |
|
3414 |
|
3415 |
|
3416 /* ========================================================================== */ |
|
3417 /* === debug_deg_lists ====================================================== */ |
|
3418 /* ========================================================================== */ |
|
3419 |
|
3420 /* |
|
3421 Prints the contents of the degree lists. Counts the number of columns |
|
3422 in the degree list and compares it to the total it should have. Also |
|
3423 checks the row degrees. |
|
3424 */ |
|
3425 |
|
3426 PRIVATE void debug_deg_lists |
|
3427 ( |
|
3428 /* === Parameters ======================================================= */ |
|
3429 |
|
3430 Int n_row, |
|
3431 Int n_col, |
|
3432 Colamd_Row Row [], |
|
3433 Colamd_Col Col [], |
|
3434 Int head [], |
|
3435 Int min_score, |
|
3436 Int should, |
|
3437 Int max_deg |
|
3438 ) |
|
3439 { |
|
3440 /* === Local variables ================================================== */ |
|
3441 |
|
3442 Int deg ; |
|
3443 Int col ; |
|
3444 Int have ; |
|
3445 Int row ; |
|
3446 |
|
3447 /* === Check the degree lists =========================================== */ |
|
3448 |
|
3449 if (n_col > 10000 && colamd_debug <= 0) |
|
3450 { |
|
3451 return ; |
|
3452 } |
|
3453 have = 0 ; |
|
3454 DEBUG4 (("Degree lists: %d\n", min_score)) ; |
|
3455 for (deg = 0 ; deg <= n_col ; deg++) |
|
3456 { |
|
3457 col = head [deg] ; |
|
3458 if (col == EMPTY) |
|
3459 { |
|
3460 continue ; |
|
3461 } |
|
3462 DEBUG4 (("%d:", deg)) ; |
|
3463 while (col != EMPTY) |
|
3464 { |
|
3465 DEBUG4 ((" %d", col)) ; |
|
3466 have += Col [col].shared1.thickness ; |
|
3467 ASSERT (COL_IS_ALIVE (col)) ; |
|
3468 col = Col [col].shared4.degree_next ; |
|
3469 } |
|
3470 DEBUG4 (("\n")) ; |
|
3471 } |
|
3472 DEBUG4 (("should %d have %d\n", should, have)) ; |
|
3473 ASSERT (should == have) ; |
|
3474 |
|
3475 /* === Check the row degrees ============================================ */ |
|
3476 |
|
3477 if (n_row > 10000 && colamd_debug <= 0) |
|
3478 { |
|
3479 return ; |
|
3480 } |
|
3481 for (row = 0 ; row < n_row ; row++) |
|
3482 { |
|
3483 if (ROW_IS_ALIVE (row)) |
|
3484 { |
|
3485 ASSERT (Row [row].shared1.degree <= max_deg) ; |
|
3486 } |
|
3487 } |
|
3488 } |
|
3489 |
|
3490 |
|
3491 /* ========================================================================== */ |
|
3492 /* === debug_mark =========================================================== */ |
|
3493 /* ========================================================================== */ |
|
3494 |
|
3495 /* |
|
3496 Ensures that the tag_mark is less that the maximum and also ensures that |
|
3497 each entry in the mark array is less than the tag mark. |
|
3498 */ |
|
3499 |
|
3500 PRIVATE void debug_mark |
|
3501 ( |
|
3502 /* === Parameters ======================================================= */ |
|
3503 |
|
3504 Int n_row, |
|
3505 Colamd_Row Row [], |
|
3506 Int tag_mark, |
|
3507 Int max_mark |
|
3508 ) |
|
3509 { |
|
3510 /* === Local variables ================================================== */ |
|
3511 |
|
3512 Int r ; |
|
3513 |
|
3514 /* === Check the Row marks ============================================== */ |
|
3515 |
|
3516 ASSERT (tag_mark > 0 && tag_mark <= max_mark) ; |
|
3517 if (n_row > 10000 && colamd_debug <= 0) |
|
3518 { |
|
3519 return ; |
|
3520 } |
|
3521 for (r = 0 ; r < n_row ; r++) |
|
3522 { |
|
3523 ASSERT (Row [r].shared2.mark < tag_mark) ; |
|
3524 } |
|
3525 } |
|
3526 |
|
3527 |
|
3528 /* ========================================================================== */ |
|
3529 /* === debug_matrix ========================================================= */ |
|
3530 /* ========================================================================== */ |
|
3531 |
|
3532 /* |
|
3533 Prints out the contents of the columns and the rows. |
|
3534 */ |
|
3535 |
|
3536 PRIVATE void debug_matrix |
|
3537 ( |
|
3538 /* === Parameters ======================================================= */ |
|
3539 |
|
3540 Int n_row, |
|
3541 Int n_col, |
|
3542 Colamd_Row Row [], |
|
3543 Colamd_Col Col [], |
|
3544 Int A [] |
|
3545 ) |
|
3546 { |
|
3547 /* === Local variables ================================================== */ |
|
3548 |
|
3549 Int r ; |
|
3550 Int c ; |
|
3551 Int *rp ; |
|
3552 Int *rp_end ; |
|
3553 Int *cp ; |
|
3554 Int *cp_end ; |
|
3555 |
|
3556 /* === Dump the rows and columns of the matrix ========================== */ |
|
3557 |
|
3558 if (colamd_debug < 3) |
|
3559 { |
|
3560 return ; |
|
3561 } |
|
3562 DEBUG3 (("DUMP MATRIX:\n")) ; |
|
3563 for (r = 0 ; r < n_row ; r++) |
|
3564 { |
|
3565 DEBUG3 (("Row %d alive? %d\n", r, ROW_IS_ALIVE (r))) ; |
|
3566 if (ROW_IS_DEAD (r)) |
|
3567 { |
|
3568 continue ; |
|
3569 } |
|
3570 DEBUG3 (("start %d length %d degree %d\n", |
|
3571 Row [r].start, Row [r].length, Row [r].shared1.degree)) ; |
|
3572 rp = &A [Row [r].start] ; |
|
3573 rp_end = rp + Row [r].length ; |
|
3574 while (rp < rp_end) |
|
3575 { |
|
3576 c = *rp++ ; |
|
3577 DEBUG4 ((" %d col %d\n", COL_IS_ALIVE (c), c)) ; |
|
3578 } |
|
3579 } |
|
3580 |
|
3581 for (c = 0 ; c < n_col ; c++) |
|
3582 { |
|
3583 DEBUG3 (("Col %d alive? %d\n", c, COL_IS_ALIVE (c))) ; |
|
3584 if (COL_IS_DEAD (c)) |
|
3585 { |
|
3586 continue ; |
|
3587 } |
|
3588 DEBUG3 (("start %d length %d shared1 %d shared2 %d\n", |
|
3589 Col [c].start, Col [c].length, |
|
3590 Col [c].shared1.thickness, Col [c].shared2.score)) ; |
|
3591 cp = &A [Col [c].start] ; |
|
3592 cp_end = cp + Col [c].length ; |
|
3593 while (cp < cp_end) |
|
3594 { |
|
3595 r = *cp++ ; |
|
3596 DEBUG4 ((" %d row %d\n", ROW_IS_ALIVE (r), r)) ; |
|
3597 } |
|
3598 } |
|
3599 } |
|
3600 |
|
3601 PRIVATE void colamd_get_debug |
|
3602 ( |
|
3603 char *method |
|
3604 ) |
|
3605 { |
|
3606 FILE *f ; |
|
3607 colamd_debug = 0 ; /* no debug printing */ |
|
3608 f = fopen ("debug", "r") ; |
|
3609 if (f == (FILE *) NULL) |
|
3610 { |
|
3611 colamd_debug = 0 ; |
|
3612 } |
|
3613 else |
|
3614 { |
|
3615 fscanf (f, "%d", &colamd_debug) ; |
|
3616 fclose (f) ; |
|
3617 } |
|
3618 DEBUG0 (("%s: debug version, D = %d (THIS WILL BE SLOW!)\n", |
|
3619 method, colamd_debug)) ; |
|
3620 } |
|
3621 |
|
3622 #endif /* NDEBUG */ |