|
1 /* glpapi16.c (graph and network analysis routines) */ |
|
2 |
|
3 /*********************************************************************** |
|
4 * This code is part of GLPK (GNU Linear Programming Kit). |
|
5 * |
|
6 * Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, |
|
7 * 2009, 2010 Andrew Makhorin, Department for Applied Informatics, |
|
8 * Moscow Aviation Institute, Moscow, Russia. All rights reserved. |
|
9 * E-mail: <mao@gnu.org>. |
|
10 * |
|
11 * GLPK is free software: you can redistribute it and/or modify it |
|
12 * under the terms of the GNU General Public License as published by |
|
13 * the Free Software Foundation, either version 3 of the License, or |
|
14 * (at your option) any later version. |
|
15 * |
|
16 * GLPK is distributed in the hope that it will be useful, but WITHOUT |
|
17 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY |
|
18 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public |
|
19 * License for more details. |
|
20 * |
|
21 * You should have received a copy of the GNU General Public License |
|
22 * along with GLPK. If not, see <http://www.gnu.org/licenses/>. |
|
23 ***********************************************************************/ |
|
24 |
|
25 #include "glpapi.h" |
|
26 #include "glpnet.h" |
|
27 |
|
28 /*********************************************************************** |
|
29 * NAME |
|
30 * |
|
31 * glp_weak_comp - find all weakly connected components of graph |
|
32 * |
|
33 * SYNOPSIS |
|
34 * |
|
35 * int glp_weak_comp(glp_graph *G, int v_num); |
|
36 * |
|
37 * DESCRIPTION |
|
38 * |
|
39 * The routine glp_weak_comp finds all weakly connected components of |
|
40 * the specified graph. |
|
41 * |
|
42 * The parameter v_num specifies an offset of the field of type int |
|
43 * in the vertex data block, to which the routine stores the number of |
|
44 * a (weakly) connected component containing that vertex. If v_num < 0, |
|
45 * no component numbers are stored. |
|
46 * |
|
47 * The components are numbered in arbitrary order from 1 to nc, where |
|
48 * nc is the total number of components found, 0 <= nc <= |V|. |
|
49 * |
|
50 * RETURNS |
|
51 * |
|
52 * The routine returns nc, the total number of components found. */ |
|
53 |
|
54 int glp_weak_comp(glp_graph *G, int v_num) |
|
55 { glp_vertex *v; |
|
56 glp_arc *a; |
|
57 int f, i, j, nc, nv, pos1, pos2, *prev, *next, *list; |
|
58 if (v_num >= 0 && v_num > G->v_size - (int)sizeof(int)) |
|
59 xerror("glp_weak_comp: v_num = %d; invalid offset\n", v_num); |
|
60 nv = G->nv; |
|
61 if (nv == 0) |
|
62 { nc = 0; |
|
63 goto done; |
|
64 } |
|
65 /* allocate working arrays */ |
|
66 prev = xcalloc(1+nv, sizeof(int)); |
|
67 next = xcalloc(1+nv, sizeof(int)); |
|
68 list = xcalloc(1+nv, sizeof(int)); |
|
69 /* if vertex i is unlabelled, prev[i] is the index of previous |
|
70 unlabelled vertex, and next[i] is the index of next unlabelled |
|
71 vertex; if vertex i is labelled, then prev[i] < 0, and next[i] |
|
72 is the connected component number */ |
|
73 /* initially all vertices are unlabelled */ |
|
74 f = 1; |
|
75 for (i = 1; i <= nv; i++) |
|
76 prev[i] = i - 1, next[i] = i + 1; |
|
77 next[nv] = 0; |
|
78 /* main loop (until all vertices have been labelled) */ |
|
79 nc = 0; |
|
80 while (f != 0) |
|
81 { /* take an unlabelled vertex */ |
|
82 i = f; |
|
83 /* and remove it from the list of unlabelled vertices */ |
|
84 f = next[i]; |
|
85 if (f != 0) prev[f] = 0; |
|
86 /* label the vertex; it begins a new component */ |
|
87 prev[i] = -1, next[i] = ++nc; |
|
88 /* breadth first search */ |
|
89 list[1] = i, pos1 = pos2 = 1; |
|
90 while (pos1 <= pos2) |
|
91 { /* dequeue vertex i */ |
|
92 i = list[pos1++]; |
|
93 /* consider all arcs incoming to vertex i */ |
|
94 for (a = G->v[i]->in; a != NULL; a = a->h_next) |
|
95 { /* vertex j is adjacent to vertex i */ |
|
96 j = a->tail->i; |
|
97 if (prev[j] >= 0) |
|
98 { /* vertex j is unlabelled */ |
|
99 /* remove it from the list of unlabelled vertices */ |
|
100 if (prev[j] == 0) |
|
101 f = next[j]; |
|
102 else |
|
103 next[prev[j]] = next[j]; |
|
104 if (next[j] == 0) |
|
105 ; |
|
106 else |
|
107 prev[next[j]] = prev[j]; |
|
108 /* label the vertex */ |
|
109 prev[j] = -1, next[j] = nc; |
|
110 /* and enqueue it for further consideration */ |
|
111 list[++pos2] = j; |
|
112 } |
|
113 } |
|
114 /* consider all arcs outgoing from vertex i */ |
|
115 for (a = G->v[i]->out; a != NULL; a = a->t_next) |
|
116 { /* vertex j is adjacent to vertex i */ |
|
117 j = a->head->i; |
|
118 if (prev[j] >= 0) |
|
119 { /* vertex j is unlabelled */ |
|
120 /* remove it from the list of unlabelled vertices */ |
|
121 if (prev[j] == 0) |
|
122 f = next[j]; |
|
123 else |
|
124 next[prev[j]] = next[j]; |
|
125 if (next[j] == 0) |
|
126 ; |
|
127 else |
|
128 prev[next[j]] = prev[j]; |
|
129 /* label the vertex */ |
|
130 prev[j] = -1, next[j] = nc; |
|
131 /* and enqueue it for further consideration */ |
|
132 list[++pos2] = j; |
|
133 } |
|
134 } |
|
135 } |
|
136 } |
|
137 /* store component numbers */ |
|
138 if (v_num >= 0) |
|
139 { for (i = 1; i <= nv; i++) |
|
140 { v = G->v[i]; |
|
141 memcpy((char *)v->data + v_num, &next[i], sizeof(int)); |
|
142 } |
|
143 } |
|
144 /* free working arrays */ |
|
145 xfree(prev); |
|
146 xfree(next); |
|
147 xfree(list); |
|
148 done: return nc; |
|
149 } |
|
150 |
|
151 /*********************************************************************** |
|
152 * NAME |
|
153 * |
|
154 * glp_strong_comp - find all strongly connected components of graph |
|
155 * |
|
156 * SYNOPSIS |
|
157 * |
|
158 * int glp_strong_comp(glp_graph *G, int v_num); |
|
159 * |
|
160 * DESCRIPTION |
|
161 * |
|
162 * The routine glp_strong_comp finds all strongly connected components |
|
163 * of the specified graph. |
|
164 * |
|
165 * The parameter v_num specifies an offset of the field of type int |
|
166 * in the vertex data block, to which the routine stores the number of |
|
167 * a strongly connected component containing that vertex. If v_num < 0, |
|
168 * no component numbers are stored. |
|
169 * |
|
170 * The components are numbered in arbitrary order from 1 to nc, where |
|
171 * nc is the total number of components found, 0 <= nc <= |V|. However, |
|
172 * the component numbering has the property that for every arc (i->j) |
|
173 * in the graph the condition num(i) >= num(j) holds. |
|
174 * |
|
175 * RETURNS |
|
176 * |
|
177 * The routine returns nc, the total number of components found. */ |
|
178 |
|
179 int glp_strong_comp(glp_graph *G, int v_num) |
|
180 { glp_vertex *v; |
|
181 glp_arc *a; |
|
182 int i, k, last, n, na, nc, *icn, *ip, *lenr, *ior, *ib, *lowl, |
|
183 *numb, *prev; |
|
184 if (v_num >= 0 && v_num > G->v_size - (int)sizeof(int)) |
|
185 xerror("glp_strong_comp: v_num = %d; invalid offset\n", |
|
186 v_num); |
|
187 n = G->nv; |
|
188 if (n == 0) |
|
189 { nc = 0; |
|
190 goto done; |
|
191 } |
|
192 na = G->na; |
|
193 icn = xcalloc(1+na, sizeof(int)); |
|
194 ip = xcalloc(1+n, sizeof(int)); |
|
195 lenr = xcalloc(1+n, sizeof(int)); |
|
196 ior = xcalloc(1+n, sizeof(int)); |
|
197 ib = xcalloc(1+n, sizeof(int)); |
|
198 lowl = xcalloc(1+n, sizeof(int)); |
|
199 numb = xcalloc(1+n, sizeof(int)); |
|
200 prev = xcalloc(1+n, sizeof(int)); |
|
201 k = 1; |
|
202 for (i = 1; i <= n; i++) |
|
203 { v = G->v[i]; |
|
204 ip[i] = k; |
|
205 for (a = v->out; a != NULL; a = a->t_next) |
|
206 icn[k++] = a->head->i; |
|
207 lenr[i] = k - ip[i]; |
|
208 } |
|
209 xassert(na == k-1); |
|
210 nc = mc13d(n, icn, ip, lenr, ior, ib, lowl, numb, prev); |
|
211 if (v_num >= 0) |
|
212 { xassert(ib[1] == 1); |
|
213 for (k = 1; k <= nc; k++) |
|
214 { last = (k < nc ? ib[k+1] : n+1); |
|
215 xassert(ib[k] < last); |
|
216 for (i = ib[k]; i < last; i++) |
|
217 { v = G->v[ior[i]]; |
|
218 memcpy((char *)v->data + v_num, &k, sizeof(int)); |
|
219 } |
|
220 } |
|
221 } |
|
222 xfree(icn); |
|
223 xfree(ip); |
|
224 xfree(lenr); |
|
225 xfree(ior); |
|
226 xfree(ib); |
|
227 xfree(lowl); |
|
228 xfree(numb); |
|
229 xfree(prev); |
|
230 done: return nc; |
|
231 } |
|
232 |
|
233 /*********************************************************************** |
|
234 * NAME |
|
235 * |
|
236 * glp_top_sort - topological sorting of acyclic digraph |
|
237 * |
|
238 * SYNOPSIS |
|
239 * |
|
240 * int glp_top_sort(glp_graph *G, int v_num); |
|
241 * |
|
242 * DESCRIPTION |
|
243 * |
|
244 * The routine glp_top_sort performs topological sorting of vertices of |
|
245 * the specified acyclic digraph. |
|
246 * |
|
247 * The parameter v_num specifies an offset of the field of type int in |
|
248 * the vertex data block, to which the routine stores the vertex number |
|
249 * assigned. If v_num < 0, vertex numbers are not stored. |
|
250 * |
|
251 * The vertices are numbered from 1 to n, where n is the total number |
|
252 * of vertices in the graph. The vertex numbering has the property that |
|
253 * for every arc (i->j) in the graph the condition num(i) < num(j) |
|
254 * holds. Special case num(i) = 0 means that vertex i is not assigned a |
|
255 * number, because the graph is *not* acyclic. |
|
256 * |
|
257 * RETURNS |
|
258 * |
|
259 * If the graph is acyclic and therefore all the vertices have been |
|
260 * assigned numbers, the routine glp_top_sort returns zero. Otherwise, |
|
261 * if the graph is not acyclic, the routine returns the number of |
|
262 * vertices which have not been numbered, i.e. for which num(i) = 0. */ |
|
263 |
|
264 static int top_sort(glp_graph *G, int num[]) |
|
265 { glp_arc *a; |
|
266 int i, j, cnt, top, *stack, *indeg; |
|
267 /* allocate working arrays */ |
|
268 indeg = xcalloc(1+G->nv, sizeof(int)); |
|
269 stack = xcalloc(1+G->nv, sizeof(int)); |
|
270 /* determine initial indegree of each vertex; push into the stack |
|
271 the vertices having zero indegree */ |
|
272 top = 0; |
|
273 for (i = 1; i <= G->nv; i++) |
|
274 { num[i] = indeg[i] = 0; |
|
275 for (a = G->v[i]->in; a != NULL; a = a->h_next) |
|
276 indeg[i]++; |
|
277 if (indeg[i] == 0) |
|
278 stack[++top] = i; |
|
279 } |
|
280 /* assign numbers to vertices in the sorted order */ |
|
281 cnt = 0; |
|
282 while (top > 0) |
|
283 { /* pull vertex i from the stack */ |
|
284 i = stack[top--]; |
|
285 /* it has zero indegree in the current graph */ |
|
286 xassert(indeg[i] == 0); |
|
287 /* so assign it a next number */ |
|
288 xassert(num[i] == 0); |
|
289 num[i] = ++cnt; |
|
290 /* remove vertex i from the current graph, update indegree of |
|
291 its adjacent vertices, and push into the stack new vertices |
|
292 whose indegree becomes zero */ |
|
293 for (a = G->v[i]->out; a != NULL; a = a->t_next) |
|
294 { j = a->head->i; |
|
295 /* there exists arc (i->j) in the graph */ |
|
296 xassert(indeg[j] > 0); |
|
297 indeg[j]--; |
|
298 if (indeg[j] == 0) |
|
299 stack[++top] = j; |
|
300 } |
|
301 } |
|
302 /* free working arrays */ |
|
303 xfree(indeg); |
|
304 xfree(stack); |
|
305 return G->nv - cnt; |
|
306 } |
|
307 |
|
308 int glp_top_sort(glp_graph *G, int v_num) |
|
309 { glp_vertex *v; |
|
310 int i, cnt, *num; |
|
311 if (v_num >= 0 && v_num > G->v_size - (int)sizeof(int)) |
|
312 xerror("glp_top_sort: v_num = %d; invalid offset\n", v_num); |
|
313 if (G->nv == 0) |
|
314 { cnt = 0; |
|
315 goto done; |
|
316 } |
|
317 num = xcalloc(1+G->nv, sizeof(int)); |
|
318 cnt = top_sort(G, num); |
|
319 if (v_num >= 0) |
|
320 { for (i = 1; i <= G->nv; i++) |
|
321 { v = G->v[i]; |
|
322 memcpy((char *)v->data + v_num, &num[i], sizeof(int)); |
|
323 } |
|
324 } |
|
325 xfree(num); |
|
326 done: return cnt; |
|
327 } |
|
328 |
|
329 /* eof */ |