src/glpfhv.h
changeset 2 4c8956a7bdf4
equal deleted inserted replaced
-1:000000000000 0:b2b10dea3373
       
     1 /* glpfhv.h (LP basis factorization, FHV eta file version) */
       
     2 
       
     3 /***********************************************************************
       
     4 *  This code is part of GLPK (GNU Linear Programming Kit).
       
     5 *
       
     6 *  Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
       
     7 *  2009, 2010 Andrew Makhorin, Department for Applied Informatics,
       
     8 *  Moscow Aviation Institute, Moscow, Russia. All rights reserved.
       
     9 *  E-mail: <mao@gnu.org>.
       
    10 *
       
    11 *  GLPK is free software: you can redistribute it and/or modify it
       
    12 *  under the terms of the GNU General Public License as published by
       
    13 *  the Free Software Foundation, either version 3 of the License, or
       
    14 *  (at your option) any later version.
       
    15 *
       
    16 *  GLPK is distributed in the hope that it will be useful, but WITHOUT
       
    17 *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
       
    18 *  or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
       
    19 *  License for more details.
       
    20 *
       
    21 *  You should have received a copy of the GNU General Public License
       
    22 *  along with GLPK. If not, see <http://www.gnu.org/licenses/>.
       
    23 ***********************************************************************/
       
    24 
       
    25 #ifndef GLPFHV_H
       
    26 #define GLPFHV_H
       
    27 
       
    28 #include "glpluf.h"
       
    29 
       
    30 /***********************************************************************
       
    31 *  The structure FHV defines the factorization of the basis mxm-matrix
       
    32 *  B, where m is the number of rows in corresponding problem instance.
       
    33 *
       
    34 *  This factorization is the following sextet:
       
    35 *
       
    36 *     [B] = (F, H, V, P0, P, Q),                                     (1)
       
    37 *
       
    38 *  where F, H, and V are such matrices that
       
    39 *
       
    40 *     B = F * H * V,                                                 (2)
       
    41 *
       
    42 *  and P0, P, and Q are such permutation matrices that the matrix
       
    43 *
       
    44 *     L = P0 * F * inv(P0)                                           (3)
       
    45 *
       
    46 *  is lower triangular with unity diagonal, and the matrix
       
    47 *
       
    48 *     U = P * V * Q                                                  (4)
       
    49 *
       
    50 *  is upper triangular. All the matrices have the same order m, which
       
    51 *  is the order of the basis matrix B.
       
    52 *
       
    53 *  The matrices F, V, P, and Q are stored in the structure LUF (see the
       
    54 *  module GLPLUF), which is a member of the structure FHV.
       
    55 *
       
    56 *  The matrix H is stored in the form of eta file using row-like format
       
    57 *  as follows:
       
    58 *
       
    59 *     H = H[1] * H[2] * ... * H[nfs],                                (5)
       
    60 *
       
    61 *  where H[k], k = 1, 2, ..., nfs, is a row-like factor, which differs
       
    62 *  from the unity matrix only by one row, nfs is current number of row-
       
    63 *  like factors. After the factorization has been built for some given
       
    64 *  basis matrix B the matrix H has no factors and thus it is the unity
       
    65 *  matrix. Then each time when the factorization is recomputed for an
       
    66 *  adjacent basis matrix, the next factor H[k], k = 1, 2, ... is built
       
    67 *  and added to the end of the eta file H.
       
    68 *
       
    69 *  Being sparse vectors non-trivial rows of the factors H[k] are stored
       
    70 *  in the right part of the sparse vector area (SVA) in the same manner
       
    71 *  as rows and columns of the matrix F.
       
    72 *
       
    73 *  For more details see the program documentation. */
       
    74 
       
    75 typedef struct FHV FHV;
       
    76 
       
    77 struct FHV
       
    78 {     /* LP basis factorization */
       
    79       int m_max;
       
    80       /* maximal value of m (increased automatically, if necessary) */
       
    81       int m;
       
    82       /* the order of matrices B, F, H, V, P0, P, Q */
       
    83       int valid;
       
    84       /* the factorization is valid only if this flag is set */
       
    85       LUF *luf;
       
    86       /* LU-factorization (contains the matrices F, V, P, Q) */
       
    87       /*--------------------------------------------------------------*/
       
    88       /* matrix H in the form of eta file */
       
    89       int hh_max;
       
    90       /* maximal number of row-like factors (which limits the number of
       
    91          updates of the factorization) */
       
    92       int hh_nfs;
       
    93       /* current number of row-like factors (0 <= hh_nfs <= hh_max) */
       
    94       int *hh_ind; /* int hh_ind[1+hh_max]; */
       
    95       /* hh_ind[k], k = 1, ..., nfs, is the number of a non-trivial row
       
    96          of factor H[k] */
       
    97       int *hh_ptr; /* int hh_ptr[1+hh_max]; */
       
    98       /* hh_ptr[k], k = 1, ..., nfs, is a pointer to the first element
       
    99          of the non-trivial row of factor H[k] in the SVA */
       
   100       int *hh_len; /* int hh_len[1+hh_max]; */
       
   101       /* hh_len[k], k = 1, ..., nfs, is the number of non-zero elements
       
   102          in the non-trivial row of factor H[k] */
       
   103       /*--------------------------------------------------------------*/
       
   104       /* matrix P0 */
       
   105       int *p0_row; /* int p0_row[1+m_max]; */
       
   106       /* p0_row[i] = j means that p0[i,j] = 1 */
       
   107       int *p0_col; /* int p0_col[1+m_max]; */
       
   108       /* p0_col[j] = i means that p0[i,j] = 1 */
       
   109       /* if i-th row or column of the matrix F corresponds to i'-th row
       
   110          or column of the matrix L = P0*F*inv(P0), then p0_row[i'] = i
       
   111          and p0_col[i] = i' */
       
   112       /*--------------------------------------------------------------*/
       
   113       /* working arrays */
       
   114       int *cc_ind; /* int cc_ind[1+m_max]; */
       
   115       /* integer working array */
       
   116       double *cc_val; /* double cc_val[1+m_max]; */
       
   117       /* floating-point working array */
       
   118       /*--------------------------------------------------------------*/
       
   119       /* control parameters */
       
   120       double upd_tol;
       
   121       /* update tolerance; if after updating the factorization absolute
       
   122          value of some diagonal element u[k,k] of matrix U = P*V*Q is
       
   123          less than upd_tol * max(|u[k,*]|, |u[*,k]|), the factorization
       
   124          is considered as inaccurate */
       
   125       /*--------------------------------------------------------------*/
       
   126       /* some statistics */
       
   127       int nnz_h;
       
   128       /* current number of non-zeros in all factors of matrix H */
       
   129 };
       
   130 
       
   131 /* return codes: */
       
   132 #define FHV_ESING    1  /* singular matrix */
       
   133 #define FHV_ECOND    2  /* ill-conditioned matrix */
       
   134 #define FHV_ECHECK   3  /* insufficient accuracy */
       
   135 #define FHV_ELIMIT   4  /* update limit reached */
       
   136 #define FHV_EROOM    5  /* SVA overflow */
       
   137 
       
   138 #define fhv_create_it _glp_fhv_create_it
       
   139 FHV *fhv_create_it(void);
       
   140 /* create LP basis factorization */
       
   141 
       
   142 #define fhv_factorize _glp_fhv_factorize
       
   143 int fhv_factorize(FHV *fhv, int m, int (*col)(void *info, int j,
       
   144       int ind[], double val[]), void *info);
       
   145 /* compute LP basis factorization */
       
   146 
       
   147 #define fhv_h_solve _glp_fhv_h_solve
       
   148 void fhv_h_solve(FHV *fhv, int tr, double x[]);
       
   149 /* solve system H*x = b or H'*x = b */
       
   150 
       
   151 #define fhv_ftran _glp_fhv_ftran
       
   152 void fhv_ftran(FHV *fhv, double x[]);
       
   153 /* perform forward transformation (solve system B*x = b) */
       
   154 
       
   155 #define fhv_btran _glp_fhv_btran
       
   156 void fhv_btran(FHV *fhv, double x[]);
       
   157 /* perform backward transformation (solve system B'*x = b) */
       
   158 
       
   159 #define fhv_update_it _glp_fhv_update_it
       
   160 int fhv_update_it(FHV *fhv, int j, int len, const int ind[],
       
   161       const double val[]);
       
   162 /* update LP basis factorization */
       
   163 
       
   164 #define fhv_delete_it _glp_fhv_delete_it
       
   165 void fhv_delete_it(FHV *fhv);
       
   166 /* delete LP basis factorization */
       
   167 
       
   168 #endif
       
   169 
       
   170 /* eof */