src/glpios11.c
changeset 2 4c8956a7bdf4
equal deleted inserted replaced
-1:000000000000 0:c6779ffad6cf
       
     1 /* glpios11.c (process cuts stored in the local cut pool) */
       
     2 
       
     3 /***********************************************************************
       
     4 *  This code is part of GLPK (GNU Linear Programming Kit).
       
     5 *
       
     6 *  Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
       
     7 *  2009, 2010 Andrew Makhorin, Department for Applied Informatics,
       
     8 *  Moscow Aviation Institute, Moscow, Russia. All rights reserved.
       
     9 *  E-mail: <mao@gnu.org>.
       
    10 *
       
    11 *  GLPK is free software: you can redistribute it and/or modify it
       
    12 *  under the terms of the GNU General Public License as published by
       
    13 *  the Free Software Foundation, either version 3 of the License, or
       
    14 *  (at your option) any later version.
       
    15 *
       
    16 *  GLPK is distributed in the hope that it will be useful, but WITHOUT
       
    17 *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
       
    18 *  or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
       
    19 *  License for more details.
       
    20 *
       
    21 *  You should have received a copy of the GNU General Public License
       
    22 *  along with GLPK. If not, see <http://www.gnu.org/licenses/>.
       
    23 ***********************************************************************/
       
    24 
       
    25 #include "glpios.h"
       
    26 
       
    27 /***********************************************************************
       
    28 *  NAME
       
    29 *
       
    30 *  ios_process_cuts - process cuts stored in the local cut pool
       
    31 *
       
    32 *  SYNOPSIS
       
    33 *
       
    34 *  #include "glpios.h"
       
    35 *  void ios_process_cuts(glp_tree *T);
       
    36 *
       
    37 *  DESCRIPTION
       
    38 *
       
    39 *  The routine ios_process_cuts analyzes each cut currently stored in
       
    40 *  the local cut pool, which must be non-empty, and either adds the cut
       
    41 *  to the current subproblem or just discards it. All cuts are assumed
       
    42 *  to be locally valid. On exit the local cut pool remains unchanged.
       
    43 *
       
    44 *  REFERENCES
       
    45 *
       
    46 *  1. E.Balas, S.Ceria, G.Cornuejols, "Mixed 0-1 Programming by
       
    47 *     Lift-and-Project in a Branch-and-Cut Framework", Management Sc.,
       
    48 *     42 (1996) 1229-1246.
       
    49 *
       
    50 *  2. G.Andreello, A.Caprara, and M.Fischetti, "Embedding Cuts in
       
    51 *     a Branch&Cut Framework: a Computational Study with {0,1/2}-Cuts",
       
    52 *     Preliminary Draft, October 28, 2003, pp.6-8. */
       
    53 
       
    54 struct info
       
    55 {     /* estimated cut efficiency */
       
    56       IOSCUT *cut;
       
    57       /* pointer to cut in the cut pool */
       
    58       char flag;
       
    59       /* if this flag is set, the cut is included into the current
       
    60          subproblem */
       
    61       double eff;
       
    62       /* cut efficacy (normalized residual) */
       
    63       double deg;
       
    64       /* lower bound to objective degradation */
       
    65 };
       
    66 
       
    67 static int fcmp(const void *arg1, const void *arg2)
       
    68 {     const struct info *info1 = arg1, *info2 = arg2;
       
    69       if (info1->deg == 0.0 && info2->deg == 0.0)
       
    70       {  if (info1->eff > info2->eff) return -1;
       
    71          if (info1->eff < info2->eff) return +1;
       
    72       }
       
    73       else
       
    74       {  if (info1->deg > info2->deg) return -1;
       
    75          if (info1->deg < info2->deg) return +1;
       
    76       }
       
    77       return 0;
       
    78 }
       
    79 
       
    80 static double parallel(IOSCUT *a, IOSCUT *b, double work[]);
       
    81 
       
    82 void ios_process_cuts(glp_tree *T)
       
    83 {     IOSPOOL *pool;
       
    84       IOSCUT *cut;
       
    85       IOSAIJ *aij;
       
    86       struct info *info;
       
    87       int k, kk, max_cuts, len, ret, *ind;
       
    88       double *val, *work;
       
    89       /* the current subproblem must exist */
       
    90       xassert(T->curr != NULL);
       
    91       /* the pool must exist and be non-empty */
       
    92       pool = T->local;
       
    93       xassert(pool != NULL);
       
    94       xassert(pool->size > 0);
       
    95       /* allocate working arrays */
       
    96       info = xcalloc(1+pool->size, sizeof(struct info));
       
    97       ind = xcalloc(1+T->n, sizeof(int));
       
    98       val = xcalloc(1+T->n, sizeof(double));
       
    99       work = xcalloc(1+T->n, sizeof(double));
       
   100       for (k = 1; k <= T->n; k++) work[k] = 0.0;
       
   101       /* build the list of cuts stored in the cut pool */
       
   102       for (k = 0, cut = pool->head; cut != NULL; cut = cut->next)
       
   103          k++, info[k].cut = cut, info[k].flag = 0;
       
   104       xassert(k == pool->size);
       
   105       /* estimate efficiency of all cuts in the cut pool */
       
   106       for (k = 1; k <= pool->size; k++)
       
   107       {  double temp, dy, dz;
       
   108          cut = info[k].cut;
       
   109          /* build the vector of cut coefficients and compute its
       
   110             Euclidean norm */
       
   111          len = 0; temp = 0.0;
       
   112          for (aij = cut->ptr; aij != NULL; aij = aij->next)
       
   113          {  xassert(1 <= aij->j && aij->j <= T->n);
       
   114             len++, ind[len] = aij->j, val[len] = aij->val;
       
   115             temp += aij->val * aij->val;
       
   116          }
       
   117          if (temp < DBL_EPSILON * DBL_EPSILON) temp = DBL_EPSILON;
       
   118          /* transform the cut to express it only through non-basic
       
   119             (auxiliary and structural) variables */
       
   120          len = glp_transform_row(T->mip, len, ind, val);
       
   121          /* determine change in the cut value and in the objective
       
   122             value for the adjacent basis by simulating one step of the
       
   123             dual simplex */
       
   124          ret = _glp_analyze_row(T->mip, len, ind, val, cut->type,
       
   125             cut->rhs, 1e-9, NULL, NULL, NULL, NULL, &dy, &dz);
       
   126          /* determine normalized residual and lower bound to objective
       
   127             degradation */
       
   128          if (ret == 0)
       
   129          {  info[k].eff = fabs(dy) / sqrt(temp);
       
   130             /* if some reduced costs violates (slightly) their zero
       
   131                bounds (i.e. have wrong signs) due to round-off errors,
       
   132                dz also may have wrong sign being close to zero */
       
   133             if (T->mip->dir == GLP_MIN)
       
   134             {  if (dz < 0.0) dz = 0.0;
       
   135                info[k].deg = + dz;
       
   136             }
       
   137             else /* GLP_MAX */
       
   138             {  if (dz > 0.0) dz = 0.0;
       
   139                info[k].deg = - dz;
       
   140             }
       
   141          }
       
   142          else if (ret == 1)
       
   143          {  /* the constraint is not violated at the current point */
       
   144             info[k].eff = info[k].deg = 0.0;
       
   145          }
       
   146          else if (ret == 2)
       
   147          {  /* no dual feasible adjacent basis exists */
       
   148             info[k].eff = 1.0;
       
   149             info[k].deg = DBL_MAX;
       
   150          }
       
   151          else
       
   152             xassert(ret != ret);
       
   153          /* if the degradation is too small, just ignore it */
       
   154          if (info[k].deg < 0.01) info[k].deg = 0.0;
       
   155       }
       
   156       /* sort the list of cuts by decreasing objective degradation and
       
   157          then by decreasing efficacy */
       
   158       qsort(&info[1], pool->size, sizeof(struct info), fcmp);
       
   159       /* only first (most efficient) max_cuts in the list are qualified
       
   160          as candidates to be added to the current subproblem */
       
   161       max_cuts = (T->curr->level == 0 ? 90 : 10);
       
   162       if (max_cuts > pool->size) max_cuts = pool->size;
       
   163       /* add cuts to the current subproblem */
       
   164 #if 0
       
   165       xprintf("*** adding cuts ***\n");
       
   166 #endif
       
   167       for (k = 1; k <= max_cuts; k++)
       
   168       {  int i, len;
       
   169          /* if this cut seems to be inefficient, skip it */
       
   170          if (info[k].deg < 0.01 && info[k].eff < 0.01) continue;
       
   171          /* if the angle between this cut and every other cut included
       
   172             in the current subproblem is small, skip this cut */
       
   173          for (kk = 1; kk < k; kk++)
       
   174          {  if (info[kk].flag)
       
   175             {  if (parallel(info[k].cut, info[kk].cut, work) > 0.90)
       
   176                   break;
       
   177             }
       
   178          }
       
   179          if (kk < k) continue;
       
   180          /* add this cut to the current subproblem */
       
   181 #if 0
       
   182          xprintf("eff = %g; deg = %g\n", info[k].eff, info[k].deg);
       
   183 #endif
       
   184          cut = info[k].cut, info[k].flag = 1;
       
   185          i = glp_add_rows(T->mip, 1);
       
   186          if (cut->name != NULL)
       
   187             glp_set_row_name(T->mip, i, cut->name);
       
   188          xassert(T->mip->row[i]->origin == GLP_RF_CUT);
       
   189          T->mip->row[i]->klass = cut->klass;
       
   190          len = 0;
       
   191          for (aij = cut->ptr; aij != NULL; aij = aij->next)
       
   192             len++, ind[len] = aij->j, val[len] = aij->val;
       
   193          glp_set_mat_row(T->mip, i, len, ind, val);
       
   194          xassert(cut->type == GLP_LO || cut->type == GLP_UP);
       
   195          glp_set_row_bnds(T->mip, i, cut->type, cut->rhs, cut->rhs);
       
   196       }
       
   197       /* free working arrays */
       
   198       xfree(info);
       
   199       xfree(ind);
       
   200       xfree(val);
       
   201       xfree(work);
       
   202       return;
       
   203 }
       
   204 
       
   205 #if 0
       
   206 /***********************************************************************
       
   207 *  Given a cut a * x >= b (<= b) the routine efficacy computes the cut
       
   208 *  efficacy as follows:
       
   209 *
       
   210 *     eff = d * (a * x~ - b) / ||a||,
       
   211 *
       
   212 *  where d is -1 (in case of '>= b') or +1 (in case of '<= b'), x~ is
       
   213 *  the vector of values of structural variables in optimal solution to
       
   214 *  LP relaxation of the current subproblem, ||a|| is the Euclidean norm
       
   215 *  of the vector of cut coefficients.
       
   216 *
       
   217 *  If the cut is violated at point x~, the efficacy eff is positive,
       
   218 *  and its value is the Euclidean distance between x~ and the cut plane
       
   219 *  a * x = b in the space of structural variables.
       
   220 *
       
   221 *  Following geometrical intuition, it is quite natural to consider
       
   222 *  this distance as a first-order measure of the expected efficacy of
       
   223 *  the cut: the larger the distance the better the cut [1]. */
       
   224 
       
   225 static double efficacy(glp_tree *T, IOSCUT *cut)
       
   226 {     glp_prob *mip = T->mip;
       
   227       IOSAIJ *aij;
       
   228       double s = 0.0, t = 0.0, temp;
       
   229       for (aij = cut->ptr; aij != NULL; aij = aij->next)
       
   230       {  xassert(1 <= aij->j && aij->j <= mip->n);
       
   231          s += aij->val * mip->col[aij->j]->prim;
       
   232          t += aij->val * aij->val;
       
   233       }
       
   234       temp = sqrt(t);
       
   235       if (temp < DBL_EPSILON) temp = DBL_EPSILON;
       
   236       if (cut->type == GLP_LO)
       
   237          temp = (s >= cut->rhs ? 0.0 : (cut->rhs - s) / temp);
       
   238       else if (cut->type == GLP_UP)
       
   239          temp = (s <= cut->rhs ? 0.0 : (s - cut->rhs) / temp);
       
   240       else
       
   241          xassert(cut != cut);
       
   242       return temp;
       
   243 }
       
   244 #endif
       
   245 
       
   246 /***********************************************************************
       
   247 *  Given two cuts a1 * x >= b1 (<= b1) and a2 * x >= b2 (<= b2) the
       
   248 *  routine parallel computes the cosine of angle between the cut planes
       
   249 *  a1 * x = b1 and a2 * x = b2 (which is the acute angle between two
       
   250 *  normals to these planes) in the space of structural variables as
       
   251 *  follows:
       
   252 *
       
   253 *     cos phi = (a1' * a2) / (||a1|| * ||a2||),
       
   254 *
       
   255 *  where (a1' * a2) is a dot product of vectors of cut coefficients,
       
   256 *  ||a1|| and ||a2|| are Euclidean norms of vectors a1 and a2.
       
   257 *
       
   258 *  Note that requirement cos phi = 0 forces the cuts to be orthogonal,
       
   259 *  i.e. with disjoint support, while requirement cos phi <= 0.999 means
       
   260 *  only avoiding duplicate (parallel) cuts [1]. */
       
   261 
       
   262 static double parallel(IOSCUT *a, IOSCUT *b, double work[])
       
   263 {     IOSAIJ *aij;
       
   264       double s = 0.0, sa = 0.0, sb = 0.0, temp;
       
   265       for (aij = a->ptr; aij != NULL; aij = aij->next)
       
   266       {  work[aij->j] = aij->val;
       
   267          sa += aij->val * aij->val;
       
   268       }
       
   269       for (aij = b->ptr; aij != NULL; aij = aij->next)
       
   270       {  s += work[aij->j] * aij->val;
       
   271          sb += aij->val * aij->val;
       
   272       }
       
   273       for (aij = a->ptr; aij != NULL; aij = aij->next)
       
   274          work[aij->j] = 0.0;
       
   275       temp = sqrt(sa) * sqrt(sb);
       
   276       if (temp < DBL_EPSILON * DBL_EPSILON) temp = DBL_EPSILON;
       
   277       return s / temp;
       
   278 }
       
   279 
       
   280 /* eof */