|
1 /* glpmat.h (linear algebra routines) */ |
|
2 |
|
3 /*********************************************************************** |
|
4 * This code is part of GLPK (GNU Linear Programming Kit). |
|
5 * |
|
6 * Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, |
|
7 * 2009, 2010 Andrew Makhorin, Department for Applied Informatics, |
|
8 * Moscow Aviation Institute, Moscow, Russia. All rights reserved. |
|
9 * E-mail: <mao@gnu.org>. |
|
10 * |
|
11 * GLPK is free software: you can redistribute it and/or modify it |
|
12 * under the terms of the GNU General Public License as published by |
|
13 * the Free Software Foundation, either version 3 of the License, or |
|
14 * (at your option) any later version. |
|
15 * |
|
16 * GLPK is distributed in the hope that it will be useful, but WITHOUT |
|
17 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY |
|
18 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public |
|
19 * License for more details. |
|
20 * |
|
21 * You should have received a copy of the GNU General Public License |
|
22 * along with GLPK. If not, see <http://www.gnu.org/licenses/>. |
|
23 ***********************************************************************/ |
|
24 |
|
25 #ifndef GLPMAT_H |
|
26 #define GLPMAT_H |
|
27 |
|
28 /*********************************************************************** |
|
29 * FULL-VECTOR STORAGE |
|
30 * |
|
31 * For a sparse vector x having n elements, ne of which are non-zero, |
|
32 * the full-vector storage format uses two arrays x_ind and x_vec, which |
|
33 * are set up as follows: |
|
34 * |
|
35 * x_ind is an integer array of length [1+ne]. Location x_ind[0] is |
|
36 * not used, and locations x_ind[1], ..., x_ind[ne] contain indices of |
|
37 * non-zero elements in vector x. |
|
38 * |
|
39 * x_vec is a floating-point array of length [1+n]. Location x_vec[0] |
|
40 * is not used, and locations x_vec[1], ..., x_vec[n] contain numeric |
|
41 * values of ALL elements in vector x, including its zero elements. |
|
42 * |
|
43 * Let, for example, the following sparse vector x be given: |
|
44 * |
|
45 * (0, 1, 0, 0, 2, 3, 0, 4) |
|
46 * |
|
47 * Then the arrays are: |
|
48 * |
|
49 * x_ind = { X; 2, 5, 6, 8 } |
|
50 * |
|
51 * x_vec = { X; 0, 1, 0, 0, 2, 3, 0, 4 } |
|
52 * |
|
53 * COMPRESSED-VECTOR STORAGE |
|
54 * |
|
55 * For a sparse vector x having n elements, ne of which are non-zero, |
|
56 * the compressed-vector storage format uses two arrays x_ind and x_vec, |
|
57 * which are set up as follows: |
|
58 * |
|
59 * x_ind is an integer array of length [1+ne]. Location x_ind[0] is |
|
60 * not used, and locations x_ind[1], ..., x_ind[ne] contain indices of |
|
61 * non-zero elements in vector x. |
|
62 * |
|
63 * x_vec is a floating-point array of length [1+ne]. Location x_vec[0] |
|
64 * is not used, and locations x_vec[1], ..., x_vec[ne] contain numeric |
|
65 * values of corresponding non-zero elements in vector x. |
|
66 * |
|
67 * Let, for example, the following sparse vector x be given: |
|
68 * |
|
69 * (0, 1, 0, 0, 2, 3, 0, 4) |
|
70 * |
|
71 * Then the arrays are: |
|
72 * |
|
73 * x_ind = { X; 2, 5, 6, 8 } |
|
74 * |
|
75 * x_vec = { X; 1, 2, 3, 4 } |
|
76 * |
|
77 * STORAGE-BY-ROWS |
|
78 * |
|
79 * For a sparse matrix A, which has m rows, n columns, and ne non-zero |
|
80 * elements the storage-by-rows format uses three arrays A_ptr, A_ind, |
|
81 * and A_val, which are set up as follows: |
|
82 * |
|
83 * A_ptr is an integer array of length [1+m+1] also called "row pointer |
|
84 * array". It contains the relative starting positions of each row of A |
|
85 * in the arrays A_ind and A_val, i.e. element A_ptr[i], 1 <= i <= m, |
|
86 * indicates where row i begins in the arrays A_ind and A_val. If all |
|
87 * elements in row i are zero, then A_ptr[i] = A_ptr[i+1]. Location |
|
88 * A_ptr[0] is not used, location A_ptr[1] must contain 1, and location |
|
89 * A_ptr[m+1] must contain ne+1 that indicates the position after the |
|
90 * last element in the arrays A_ind and A_val. |
|
91 * |
|
92 * A_ind is an integer array of length [1+ne]. Location A_ind[0] is not |
|
93 * used, and locations A_ind[1], ..., A_ind[ne] contain column indices |
|
94 * of (non-zero) elements in matrix A. |
|
95 * |
|
96 * A_val is a floating-point array of length [1+ne]. Location A_val[0] |
|
97 * is not used, and locations A_val[1], ..., A_val[ne] contain numeric |
|
98 * values of non-zero elements in matrix A. |
|
99 * |
|
100 * Non-zero elements of matrix A are stored contiguously, and the rows |
|
101 * of matrix A are stored consecutively from 1 to m in the arrays A_ind |
|
102 * and A_val. The elements in each row of A may be stored in any order |
|
103 * in A_ind and A_val. Note that elements with duplicate column indices |
|
104 * are not allowed. |
|
105 * |
|
106 * Let, for example, the following sparse matrix A be given: |
|
107 * |
|
108 * | 11 . 13 . . . | |
|
109 * | 21 22 . 24 . . | |
|
110 * | . 32 33 . . . | |
|
111 * | . . 43 44 . 46 | |
|
112 * | . . . . . . | |
|
113 * | 61 62 . . . 66 | |
|
114 * |
|
115 * Then the arrays are: |
|
116 * |
|
117 * A_ptr = { X; 1, 3, 6, 8, 11, 11; 14 } |
|
118 * |
|
119 * A_ind = { X; 1, 3; 4, 2, 1; 2, 3; 4, 3, 6; 1, 2, 6 } |
|
120 * |
|
121 * A_val = { X; 11, 13; 24, 22, 21; 32, 33; 44, 43, 46; 61, 62, 66 } |
|
122 * |
|
123 * PERMUTATION MATRICES |
|
124 * |
|
125 * Let P be a permutation matrix of the order n. It is represented as |
|
126 * an integer array P_per of length [1+n+n] as follows: if p[i,j] = 1, |
|
127 * then P_per[i] = j and P_per[n+j] = i. Location P_per[0] is not used. |
|
128 * |
|
129 * Let A' = P*A. If i-th row of A corresponds to i'-th row of A', then |
|
130 * P_per[i'] = i and P_per[n+i] = i'. |
|
131 * |
|
132 * References: |
|
133 * |
|
134 * 1. Gustavson F.G. Some basic techniques for solving sparse systems of |
|
135 * linear equations. In Rose and Willoughby (1972), pp. 41-52. |
|
136 * |
|
137 * 2. Basic Linear Algebra Subprograms Technical (BLAST) Forum Standard. |
|
138 * University of Tennessee (2001). */ |
|
139 |
|
140 #define check_fvs _glp_mat_check_fvs |
|
141 int check_fvs(int n, int nnz, int ind[], double vec[]); |
|
142 /* check sparse vector in full-vector storage format */ |
|
143 |
|
144 #define check_pattern _glp_mat_check_pattern |
|
145 int check_pattern(int m, int n, int A_ptr[], int A_ind[]); |
|
146 /* check pattern of sparse matrix */ |
|
147 |
|
148 #define transpose _glp_mat_transpose |
|
149 void transpose(int m, int n, int A_ptr[], int A_ind[], double A_val[], |
|
150 int AT_ptr[], int AT_ind[], double AT_val[]); |
|
151 /* transpose sparse matrix */ |
|
152 |
|
153 #define adat_symbolic _glp_mat_adat_symbolic |
|
154 int *adat_symbolic(int m, int n, int P_per[], int A_ptr[], int A_ind[], |
|
155 int S_ptr[]); |
|
156 /* compute S = P*A*D*A'*P' (symbolic phase) */ |
|
157 |
|
158 #define adat_numeric _glp_mat_adat_numeric |
|
159 void adat_numeric(int m, int n, int P_per[], |
|
160 int A_ptr[], int A_ind[], double A_val[], double D_diag[], |
|
161 int S_ptr[], int S_ind[], double S_val[], double S_diag[]); |
|
162 /* compute S = P*A*D*A'*P' (numeric phase) */ |
|
163 |
|
164 #define min_degree _glp_mat_min_degree |
|
165 void min_degree(int n, int A_ptr[], int A_ind[], int P_per[]); |
|
166 /* minimum degree ordering */ |
|
167 |
|
168 #define amd_order1 _glp_mat_amd_order1 |
|
169 void amd_order1(int n, int A_ptr[], int A_ind[], int P_per[]); |
|
170 /* approximate minimum degree ordering (AMD) */ |
|
171 |
|
172 #define symamd_ord _glp_mat_symamd_ord |
|
173 void symamd_ord(int n, int A_ptr[], int A_ind[], int P_per[]); |
|
174 /* approximate minimum degree ordering (SYMAMD) */ |
|
175 |
|
176 #define chol_symbolic _glp_mat_chol_symbolic |
|
177 int *chol_symbolic(int n, int A_ptr[], int A_ind[], int U_ptr[]); |
|
178 /* compute Cholesky factorization (symbolic phase) */ |
|
179 |
|
180 #define chol_numeric _glp_mat_chol_numeric |
|
181 int chol_numeric(int n, |
|
182 int A_ptr[], int A_ind[], double A_val[], double A_diag[], |
|
183 int U_ptr[], int U_ind[], double U_val[], double U_diag[]); |
|
184 /* compute Cholesky factorization (numeric phase) */ |
|
185 |
|
186 #define u_solve _glp_mat_u_solve |
|
187 void u_solve(int n, int U_ptr[], int U_ind[], double U_val[], |
|
188 double U_diag[], double x[]); |
|
189 /* solve upper triangular system U*x = b */ |
|
190 |
|
191 #define ut_solve _glp_mat_ut_solve |
|
192 void ut_solve(int n, int U_ptr[], int U_ind[], double U_val[], |
|
193 double U_diag[], double x[]); |
|
194 /* solve lower triangular system U'*x = b */ |
|
195 |
|
196 #endif |
|
197 |
|
198 /* eof */ |