src/glpnet01.c
changeset 2 4c8956a7bdf4
equal deleted inserted replaced
-1:000000000000 0:2522d5fcbfb8
       
     1 /* glpnet01.c (permutations for zero-free diagonal) */
       
     2 
       
     3 /***********************************************************************
       
     4 *  This code is part of GLPK (GNU Linear Programming Kit).
       
     5 *
       
     6 *  This code is the result of translation of the Fortran subroutines
       
     7 *  MC21A and MC21B associated with the following paper:
       
     8 *
       
     9 *  I.S.Duff, Algorithm 575: Permutations for zero-free diagonal, ACM
       
    10 *  Trans. on Math. Softw. 7 (1981), 387-390.
       
    11 *
       
    12 *  Use of ACM Algorithms is subject to the ACM Software Copyright and
       
    13 *  License Agreement. See <http://www.acm.org/publications/policies>.
       
    14 *
       
    15 *  The translation was made by Andrew Makhorin <mao@gnu.org>.
       
    16 *
       
    17 *  GLPK is free software: you can redistribute it and/or modify it
       
    18 *  under the terms of the GNU General Public License as published by
       
    19 *  the Free Software Foundation, either version 3 of the License, or
       
    20 *  (at your option) any later version.
       
    21 *
       
    22 *  GLPK is distributed in the hope that it will be useful, but WITHOUT
       
    23 *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
       
    24 *  or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
       
    25 *  License for more details.
       
    26 *
       
    27 *  You should have received a copy of the GNU General Public License
       
    28 *  along with GLPK. If not, see <http://www.gnu.org/licenses/>.
       
    29 ***********************************************************************/
       
    30 
       
    31 #include "glpnet.h"
       
    32 
       
    33 /***********************************************************************
       
    34 *  NAME
       
    35 *
       
    36 *  mc21a - permutations for zero-free diagonal
       
    37 *
       
    38 *  SYNOPSIS
       
    39 *
       
    40 *  #include "glpnet.h"
       
    41 *  int mc21a(int n, const int icn[], const int ip[], const int lenr[],
       
    42 *     int iperm[], int pr[], int arp[], int cv[], int out[]);
       
    43 *
       
    44 *  DESCRIPTION
       
    45 *
       
    46 *  Given the pattern of nonzeros of a sparse matrix, the routine mc21a
       
    47 *  attempts to find a permutation of its rows that makes the matrix have
       
    48 *  no zeros on its diagonal.
       
    49 *
       
    50 *  INPUT PARAMETERS
       
    51 *
       
    52 *  n     order of matrix.
       
    53 *
       
    54 *  icn   array containing the column indices of the non-zeros. Those
       
    55 *        belonging to a single row must be contiguous but the ordering
       
    56 *        of column indices within each row is unimportant and wasted
       
    57 *        space between rows is permitted.
       
    58 *
       
    59 *  ip    ip[i], i = 1,2,...,n, is the position in array icn of the
       
    60 *        first column index of a non-zero in row i.
       
    61 *
       
    62 *  lenr  lenr[i], i = 1,2,...,n, is the number of non-zeros in row i.
       
    63 *
       
    64 *  OUTPUT PARAMETER
       
    65 *
       
    66 *  iperm contains permutation to make diagonal have the smallest
       
    67 *        number of zeros on it. Elements (iperm[i], i), i = 1,2,...,n,
       
    68 *        are non-zero at the end of the algorithm unless the matrix is
       
    69 *        structurally singular. In this case, (iperm[i], i) will be
       
    70 *        zero for n - numnz entries.
       
    71 *
       
    72 *  WORKING ARRAYS
       
    73 *
       
    74 *  pr    working array of length [1+n], where pr[0] is not used.
       
    75 *        pr[i] is the previous row to i in the depth first search.
       
    76 *
       
    77 *  arp   working array of length [1+n], where arp[0] is not used.
       
    78 *        arp[i] is one less than the number of non-zeros in row i which
       
    79 *        have not been scanned when looking for a cheap assignment.
       
    80 *
       
    81 *  cv    working array of length [1+n], where cv[0] is not used.
       
    82 *        cv[i] is the most recent row extension at which column i was
       
    83 *        visited.
       
    84 *
       
    85 *  out   working array of length [1+n], where out[0] is not used.
       
    86 *        out[i] is one less than the number of non-zeros in row i
       
    87 *        which have not been scanned during one pass through the main
       
    88 *        loop.
       
    89 *
       
    90 *  RETURNS
       
    91 *
       
    92 *  The routine mc21a returns numnz, the number of non-zeros on diagonal
       
    93 *  of permuted matrix. */
       
    94 
       
    95 int mc21a(int n, const int icn[], const int ip[], const int lenr[],
       
    96       int iperm[], int pr[], int arp[], int cv[], int out[])
       
    97 {     int i, ii, in1, in2, j, j1, jord, k, kk, numnz;
       
    98       /* Initialization of arrays. */
       
    99       for (i = 1; i <= n; i++)
       
   100       {  arp[i] = lenr[i] - 1;
       
   101          cv[i] = iperm[i] = 0;
       
   102       }
       
   103       numnz = 0;
       
   104       /* Main loop. */
       
   105       /* Each pass round this loop either results in a new assignment
       
   106          or gives a row with no assignment. */
       
   107       for (jord = 1; jord <= n; jord++)
       
   108       {  j = jord;
       
   109          pr[j] = -1;
       
   110          for (k = 1; k <= jord; k++)
       
   111          {  /* Look for a cheap assignment. */
       
   112             in1 = arp[j];
       
   113             if (in1 >= 0)
       
   114             {  in2 = ip[j] + lenr[j] - 1;
       
   115                in1 = in2 - in1;
       
   116                for (ii = in1; ii <= in2; ii++)
       
   117                {  i = icn[ii];
       
   118                   if (iperm[i] == 0) goto L110;
       
   119                }
       
   120                /* No cheap assignment in row. */
       
   121                arp[j] = -1;
       
   122             }
       
   123             /* Begin looking for assignment chain starting with row j.*/
       
   124             out[j] = lenr[j] - 1;
       
   125             /* Inner loop. Extends chain by one or backtracks. */
       
   126             for (kk = 1; kk <= jord; kk++)
       
   127             {  in1 = out[j];
       
   128                if (in1 >= 0)
       
   129                {  in2 = ip[j] + lenr[j] - 1;
       
   130                   in1 = in2 - in1;
       
   131                   /* Forward scan. */
       
   132                   for (ii = in1; ii <= in2; ii++)
       
   133                   {  i = icn[ii];
       
   134                      if (cv[i] != jord)
       
   135                      {  /* Column i has not yet been accessed during
       
   136                            this pass. */
       
   137                         j1 = j;
       
   138                         j = iperm[i];
       
   139                         cv[i] = jord;
       
   140                         pr[j] = j1;
       
   141                         out[j1] = in2 - ii - 1;
       
   142                         goto L100;
       
   143                      }
       
   144                   }
       
   145                }
       
   146                /* Backtracking step. */
       
   147                j = pr[j];
       
   148                if (j == -1) goto L130;
       
   149             }
       
   150 L100:       ;
       
   151          }
       
   152 L110:    /* New assignment is made. */
       
   153          iperm[i] = j;
       
   154          arp[j] = in2 - ii - 1;
       
   155          numnz++;
       
   156          for (k = 1; k <= jord; k++)
       
   157          {  j = pr[j];
       
   158             if (j == -1) break;
       
   159             ii = ip[j] + lenr[j] - out[j] - 2;
       
   160             i = icn[ii];
       
   161             iperm[i] = j;
       
   162          }
       
   163 L130:    ;
       
   164       }
       
   165       /* If matrix is structurally singular, we now complete the
       
   166          permutation iperm. */
       
   167       if (numnz < n)
       
   168       {  for (i = 1; i <= n; i++)
       
   169             arp[i] = 0;
       
   170          k = 0;
       
   171          for (i = 1; i <= n; i++)
       
   172          {  if (iperm[i] == 0)
       
   173                out[++k] = i;
       
   174             else
       
   175                arp[iperm[i]] = i;
       
   176          }
       
   177          k = 0;
       
   178          for (i = 1; i <= n; i++)
       
   179          {  if (arp[i] == 0)
       
   180                iperm[out[++k]] = i;
       
   181          }
       
   182       }
       
   183       return numnz;
       
   184 }
       
   185 
       
   186 /**********************************************************************/
       
   187 
       
   188 #if 0
       
   189 #include "glplib.h"
       
   190 
       
   191 int sing;
       
   192 
       
   193 void ranmat(int m, int n, int icn[], int iptr[], int nnnp1, int *knum,
       
   194       int iw[]);
       
   195 
       
   196 void fa01bs(int max, int *nrand);
       
   197 
       
   198 int main(void)
       
   199 {     /* test program for the routine mc21a */
       
   200       /* these runs on random matrices cause all possible statements in
       
   201          mc21a to be executed */
       
   202       int i, iold, j, j1, j2, jj, knum, l, licn, n, nov4, num, numnz;
       
   203       int ip[1+21], icn[1+1000], iperm[1+20], lenr[1+20], iw1[1+80];
       
   204       licn = 1000;
       
   205       /* run on random matrices of orders 1 through 20 */
       
   206       for (n = 1; n <= 20; n++)
       
   207       {  nov4 = n / 4;
       
   208          if (nov4 < 1) nov4 = 1;
       
   209 L10:     fa01bs(nov4, &l);
       
   210          knum = l * n;
       
   211          /* knum is requested number of non-zeros in random matrix */
       
   212          if (knum > licn) goto L10;
       
   213          /* if sing is false, matrix is guaranteed structurally
       
   214             non-singular */
       
   215          sing = ((n / 2) * 2 == n);
       
   216          /* call to subroutine to generate random matrix */
       
   217          ranmat(n, n, icn, ip, n+1, &knum, iw1);
       
   218          /* knum is now actual number of non-zeros in random matrix */
       
   219          if (knum > licn) goto L10;
       
   220          xprintf("n = %2d; nz = %4d; sing = %d\n", n, knum, sing);
       
   221          /* set up array of row lengths */
       
   222          for (i = 1; i <= n; i++)
       
   223             lenr[i] = ip[i+1] - ip[i];
       
   224          /* call to mc21a */
       
   225          numnz = mc21a(n, icn, ip, lenr, iperm, &iw1[0], &iw1[n],
       
   226             &iw1[n+n], &iw1[n+n+n]);
       
   227          /* testing to see if there are numnz non-zeros on the diagonal
       
   228             of the permuted matrix. */
       
   229          num = 0;
       
   230          for (i = 1; i <= n; i++)
       
   231          {  iold = iperm[i];
       
   232             j1 = ip[iold];
       
   233             j2 = j1 + lenr[iold] - 1;
       
   234             if (j2 < j1) continue;
       
   235             for (jj = j1; jj <= j2; jj++)
       
   236             {  j = icn[jj];
       
   237                if (j == i)
       
   238                {  num++;
       
   239                   break;
       
   240                }
       
   241             }
       
   242          }
       
   243          if (num != numnz)
       
   244             xprintf("Failure in mc21a, numnz = %d instead of %d\n",
       
   245                numnz, num);
       
   246       }
       
   247       return 0;
       
   248 }
       
   249 
       
   250 void ranmat(int m, int n, int icn[], int iptr[], int nnnp1, int *knum,
       
   251       int iw[])
       
   252 {     /* subroutine to generate random matrix */
       
   253       int i, ii, inum, j, lrow, matnum;
       
   254       inum = (*knum / n) * 2;
       
   255       if (inum > n-1) inum = n-1;
       
   256       matnum = 1;
       
   257       /* each pass through this loop generates a row of the matrix */
       
   258       for (j = 1; j <= m; j++)
       
   259       {  iptr[j] = matnum;
       
   260          if (!(sing || j > n))
       
   261             icn[matnum++] = j;
       
   262          if (n == 1) continue;
       
   263          for (i = 1; i <= n; i++) iw[i] = 0;
       
   264          if (!sing) iw[j] = 1;
       
   265          fa01bs(inum, &lrow);
       
   266          lrow--;
       
   267          if (lrow == 0) continue;
       
   268          /* lrow off-diagonal non-zeros in row j of the matrix */
       
   269          for (ii = 1; ii <= lrow; ii++)
       
   270          {  for (;;)
       
   271             {  fa01bs(n, &i);
       
   272                if (iw[i] != 1) break;
       
   273             }
       
   274             iw[i] = 1;
       
   275             icn[matnum++] = i;
       
   276          }
       
   277       }
       
   278       for (i = m+1; i <= nnnp1; i++)
       
   279          iptr[i] = matnum;
       
   280       *knum = matnum - 1;
       
   281       return;
       
   282 }
       
   283 
       
   284 double g = 1431655765.0;
       
   285 
       
   286 double fa01as(int i)
       
   287 {     /* random number generator */
       
   288       g = fmod(g * 9228907.0, 4294967296.0);
       
   289       if (i >= 0)
       
   290          return g / 4294967296.0;
       
   291       else
       
   292          return 2.0 * g / 4294967296.0 - 1.0;
       
   293 }
       
   294 
       
   295 void fa01bs(int max, int *nrand)
       
   296 {     *nrand = (int)(fa01as(1) * (double)max) + 1;
       
   297       return;
       
   298 }
       
   299 #endif
       
   300 
       
   301 /* eof */