src/glpnet02.c
changeset 2 4c8956a7bdf4
equal deleted inserted replaced
-1:000000000000 0:325e7da0cc6f
       
     1 /* glpnet02.c (permutations to block triangular form) */
       
     2 
       
     3 /***********************************************************************
       
     4 *  This code is part of GLPK (GNU Linear Programming Kit).
       
     5 *
       
     6 *  This code is the result of translation of the Fortran subroutines
       
     7 *  MC13D and MC13E associated with the following paper:
       
     8 *
       
     9 *  I.S.Duff, J.K.Reid, Algorithm 529: Permutations to block triangular
       
    10 *  form, ACM Trans. on Math. Softw. 4 (1978), 189-192.
       
    11 *
       
    12 *  Use of ACM Algorithms is subject to the ACM Software Copyright and
       
    13 *  License Agreement. See <http://www.acm.org/publications/policies>.
       
    14 *
       
    15 *  The translation was made by Andrew Makhorin <mao@gnu.org>.
       
    16 *
       
    17 *  GLPK is free software: you can redistribute it and/or modify it
       
    18 *  under the terms of the GNU General Public License as published by
       
    19 *  the Free Software Foundation, either version 3 of the License, or
       
    20 *  (at your option) any later version.
       
    21 *
       
    22 *  GLPK is distributed in the hope that it will be useful, but WITHOUT
       
    23 *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
       
    24 *  or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
       
    25 *  License for more details.
       
    26 *
       
    27 *  You should have received a copy of the GNU General Public License
       
    28 *  along with GLPK. If not, see <http://www.gnu.org/licenses/>.
       
    29 ***********************************************************************/
       
    30 
       
    31 #include "glpnet.h"
       
    32 
       
    33 /***********************************************************************
       
    34 *  NAME
       
    35 *
       
    36 *  mc13d - permutations to block triangular form
       
    37 *
       
    38 *  SYNOPSIS
       
    39 *
       
    40 *  #include "glpnet.h"
       
    41 *  int mc13d(int n, const int icn[], const int ip[], const int lenr[],
       
    42 *     int ior[], int ib[], int lowl[], int numb[], int prev[]);
       
    43 *
       
    44 *  DESCRIPTION
       
    45 *
       
    46 *  Given the column numbers of the nonzeros in each row of the sparse
       
    47 *  matrix, the routine mc13d finds a symmetric permutation that makes
       
    48 *  the matrix block lower triangular.
       
    49 *
       
    50 *  INPUT PARAMETERS
       
    51 *
       
    52 *  n     order of the matrix.
       
    53 *
       
    54 *  icn   array containing the column indices of the non-zeros. Those
       
    55 *        belonging to a single row must be contiguous but the ordering
       
    56 *        of column indices within each row is unimportant and wasted
       
    57 *        space between rows is permitted.
       
    58 *
       
    59 *  ip    ip[i], i = 1,2,...,n, is the position in array icn of the
       
    60 *        first column index of a non-zero in row i.
       
    61 *
       
    62 *  lenr  lenr[i], i = 1,2,...,n, is the number of non-zeros in row i.
       
    63 *
       
    64 *  OUTPUT PARAMETERS
       
    65 *
       
    66 *  ior   ior[i], i = 1,2,...,n, gives the position on the original
       
    67 *        ordering of the row or column which is in position i in the
       
    68 *        permuted form.
       
    69 *
       
    70 *  ib    ib[i], i = 1,2,...,num, is the row number in the permuted
       
    71 *        matrix of the beginning of block i, 1 <= num <= n.
       
    72 *
       
    73 *  WORKING ARRAYS
       
    74 *
       
    75 *  arp   working array of length [1+n], where arp[0] is not used.
       
    76 *        arp[i] is one less than the number of unsearched edges leaving
       
    77 *        node i. At the end of the algorithm it is set to a permutation
       
    78 *        which puts the matrix in block lower triangular form.
       
    79 *
       
    80 *  ib    working array of length [1+n], where ib[0] is not used.
       
    81 *        ib[i] is the position in the ordering of the start of the ith
       
    82 *        block. ib[n+1-i] holds the node number of the ith node on the
       
    83 *        stack.
       
    84 *
       
    85 *  lowl  working array of length [1+n], where lowl[0] is not used.
       
    86 *        lowl[i] is the smallest stack position of any node to which a
       
    87 *        path from node i has been found. It is set to n+1 when node i
       
    88 *        is removed from the stack.
       
    89 *
       
    90 *  numb  working array of length [1+n], where numb[0] is not used.
       
    91 *        numb[i] is the position of node i in the stack if it is on it,
       
    92 *        is the permuted order of node i for those nodes whose final
       
    93 *        position has been found and is otherwise zero.
       
    94 *
       
    95 *  prev  working array of length [1+n], where prev[0] is not used.
       
    96 *        prev[i] is the node at the end of the path when node i was
       
    97 *        placed on the stack.
       
    98 *
       
    99 *  RETURNS
       
   100 *
       
   101 *  The routine mc13d returns num, the number of blocks found. */
       
   102 
       
   103 int mc13d(int n, const int icn[], const int ip[], const int lenr[],
       
   104       int ior[], int ib[], int lowl[], int numb[], int prev[])
       
   105 {     int *arp = ior;
       
   106       int dummy, i, i1, i2, icnt, ii, isn, ist, ist1, iv, iw, j, lcnt,
       
   107          nnm1, num, stp;
       
   108       /* icnt is the number of nodes whose positions in final ordering
       
   109          have been found. */
       
   110       icnt = 0;
       
   111       /* num is the number of blocks that have been found. */
       
   112       num = 0;
       
   113       nnm1 = n + n - 1;
       
   114       /* Initialization of arrays. */
       
   115       for (j = 1; j <= n; j++)
       
   116       {  numb[j] = 0;
       
   117          arp[j] = lenr[j] - 1;
       
   118       }
       
   119       for (isn = 1; isn <= n; isn++)
       
   120       {  /* Look for a starting node. */
       
   121          if (numb[isn] != 0) continue;
       
   122          iv = isn;
       
   123          /* ist is the number of nodes on the stack ... it is the stack
       
   124             pointer. */
       
   125          ist = 1;
       
   126          /* Put node iv at beginning of stack. */
       
   127          lowl[iv] = numb[iv] = 1;
       
   128          ib[n] = iv;
       
   129          /* The body of this loop puts a new node on the stack or
       
   130             backtracks. */
       
   131          for (dummy = 1; dummy <= nnm1; dummy++)
       
   132          {  i1 = arp[iv];
       
   133             /* Have all edges leaving node iv been searched? */
       
   134             if (i1 >= 0)
       
   135             {  i2 = ip[iv] + lenr[iv] - 1;
       
   136                i1 = i2 - i1;
       
   137                /* Look at edges leaving node iv until one enters a new
       
   138                   node or all edges are exhausted. */
       
   139                for (ii = i1; ii <= i2; ii++)
       
   140                {  iw = icn[ii];
       
   141                   /* Has node iw been on stack already? */
       
   142                   if (numb[iw] == 0) goto L70;
       
   143                   /* Update value of lowl[iv] if necessary. */
       
   144                   if (lowl[iw] < lowl[iv]) lowl[iv] = lowl[iw];
       
   145                }
       
   146                /* There are no more edges leaving node iv. */
       
   147                arp[iv] = -1;
       
   148             }
       
   149             /* Is node iv the root of a block? */
       
   150             if (lowl[iv] < numb[iv]) goto L60;
       
   151             /* Order nodes in a block. */
       
   152             num++;
       
   153             ist1 = n + 1 - ist;
       
   154             lcnt = icnt + 1;
       
   155             /* Peel block off the top of the stack starting at the top
       
   156                and working down to the root of the block. */
       
   157             for (stp = ist1; stp <= n; stp++)
       
   158             {  iw = ib[stp];
       
   159                lowl[iw] = n + 1;
       
   160                numb[iw] = ++icnt;
       
   161                if (iw == iv) break;
       
   162             }
       
   163             ist = n - stp;
       
   164             ib[num] = lcnt;
       
   165             /* Are there any nodes left on the stack? */
       
   166             if (ist != 0) goto L60;
       
   167             /* Have all the nodes been ordered? */
       
   168             if (icnt < n) break;
       
   169             goto L100;
       
   170 L60:        /* Backtrack to previous node on path. */
       
   171             iw = iv;
       
   172             iv = prev[iv];
       
   173             /* Update value of lowl[iv] if necessary. */
       
   174             if (lowl[iw] < lowl[iv]) lowl[iv] = lowl[iw];
       
   175             continue;
       
   176 L70:        /* Put new node on the stack. */
       
   177             arp[iv] = i2 - ii - 1;
       
   178             prev[iw] = iv;
       
   179             iv = iw;
       
   180             lowl[iv] = numb[iv] = ++ist;
       
   181             ib[n+1-ist] = iv;
       
   182          }
       
   183       }
       
   184 L100: /* Put permutation in the required form. */
       
   185       for (i = 1; i <= n; i++)
       
   186          arp[numb[i]] = i;
       
   187       return num;
       
   188 }
       
   189 
       
   190 /**********************************************************************/
       
   191 
       
   192 #if 0
       
   193 #include "glplib.h"
       
   194 
       
   195 void test(int n, int ipp);
       
   196 
       
   197 int main(void)
       
   198 {     /* test program for routine mc13d */
       
   199       test( 1,   0);
       
   200       test( 2,   1);
       
   201       test( 2,   2);
       
   202       test( 3,   3);
       
   203       test( 4,   4);
       
   204       test( 5,  10);
       
   205       test(10,  10);
       
   206       test(10,  20);
       
   207       test(20,  20);
       
   208       test(20,  50);
       
   209       test(50,  50);
       
   210       test(50, 200);
       
   211       return 0;
       
   212 }
       
   213 
       
   214 void fa01bs(int max, int *nrand);
       
   215 
       
   216 void setup(int n, char a[1+50][1+50], int ip[], int icn[], int lenr[]);
       
   217 
       
   218 void test(int n, int ipp)
       
   219 {     int ip[1+50], icn[1+1000], ior[1+50], ib[1+51], iw[1+150],
       
   220          lenr[1+50];
       
   221       char a[1+50][1+50], hold[1+100];
       
   222       int i, ii, iblock, ij, index, j, jblock, jj, k9, num;
       
   223       xprintf("\n\n\nMatrix is of order %d and has %d off-diagonal non-"
       
   224          "zeros\n", n, ipp);
       
   225       for (j = 1; j <= n; j++)
       
   226       {  for (i = 1; i <= n; i++)
       
   227             a[i][j] = 0;
       
   228          a[j][j] = 1;
       
   229       }
       
   230       for (k9 = 1; k9 <= ipp; k9++)
       
   231       {  /* these statements should be replaced by calls to your
       
   232             favorite random number generator to place two pseudo-random
       
   233             numbers between 1 and n in the variables i and j */
       
   234          for (;;)
       
   235          {  fa01bs(n, &i);
       
   236             fa01bs(n, &j);
       
   237             if (!a[i][j]) break;
       
   238          }
       
   239          a[i][j] = 1;
       
   240       }
       
   241       /* setup converts matrix a[i,j] to required sparsity-oriented
       
   242          storage format */
       
   243       setup(n, a, ip, icn, lenr);
       
   244       num = mc13d(n, icn, ip, lenr, ior, ib, &iw[0], &iw[n], &iw[n+n]);
       
   245       /* output reordered matrix with blocking to improve clarity */
       
   246       xprintf("\nThe reordered matrix which has %d block%s is of the fo"
       
   247          "rm\n", num, num == 1 ? "" : "s");
       
   248       ib[num+1] = n + 1;
       
   249       index = 100;
       
   250       iblock = 1;
       
   251       for (i = 1; i <= n; i++)
       
   252       {  for (ij = 1; ij <= index; ij++)
       
   253             hold[ij] = ' ';
       
   254          if (i == ib[iblock])
       
   255          {  xprintf("\n");
       
   256             iblock++;
       
   257          }
       
   258          jblock = 1;
       
   259          index = 0;
       
   260          for (j = 1; j <= n; j++)
       
   261          {  if (j == ib[jblock])
       
   262             {  hold[++index] = ' ';
       
   263                jblock++;
       
   264             }
       
   265             ii = ior[i];
       
   266             jj = ior[j];
       
   267             hold[++index] = (char)(a[ii][jj] ? 'X' : '0');
       
   268          }
       
   269          xprintf("%.*s\n", index, &hold[1]);
       
   270       }
       
   271       xprintf("\nThe starting point for each block is given by\n");
       
   272       for (i = 1; i <= num; i++)
       
   273       {  if ((i - 1) % 12 == 0) xprintf("\n");
       
   274          xprintf(" %4d", ib[i]);
       
   275       }
       
   276       xprintf("\n");
       
   277       return;
       
   278 }
       
   279 
       
   280 void setup(int n, char a[1+50][1+50], int ip[], int icn[], int lenr[])
       
   281 {     int i, j, ind;
       
   282       for (i = 1; i <= n; i++)
       
   283          lenr[i] = 0;
       
   284       ind = 1;
       
   285       for (i = 1; i <= n; i++)
       
   286       {  ip[i] = ind;
       
   287          for (j = 1; j <= n; j++)
       
   288          {  if (a[i][j])
       
   289             {  lenr[i]++;
       
   290                icn[ind++] = j;
       
   291             }
       
   292          }
       
   293       }
       
   294       return;
       
   295 }
       
   296 
       
   297 double g = 1431655765.0;
       
   298 
       
   299 double fa01as(int i)
       
   300 {     /* random number generator */
       
   301       g = fmod(g * 9228907.0, 4294967296.0);
       
   302       if (i >= 0)
       
   303          return g / 4294967296.0;
       
   304       else
       
   305          return 2.0 * g / 4294967296.0 - 1.0;
       
   306 }
       
   307 
       
   308 void fa01bs(int max, int *nrand)
       
   309 {     *nrand = (int)(fa01as(1) * (double)max) + 1;
       
   310       return;
       
   311 }
       
   312 #endif
       
   313 
       
   314 /* eof */