|
1 /* glpssx.h (simplex method, bignum arithmetic) */ |
|
2 |
|
3 /*********************************************************************** |
|
4 * This code is part of GLPK (GNU Linear Programming Kit). |
|
5 * |
|
6 * Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, |
|
7 * 2009, 2010 Andrew Makhorin, Department for Applied Informatics, |
|
8 * Moscow Aviation Institute, Moscow, Russia. All rights reserved. |
|
9 * E-mail: <mao@gnu.org>. |
|
10 * |
|
11 * GLPK is free software: you can redistribute it and/or modify it |
|
12 * under the terms of the GNU General Public License as published by |
|
13 * the Free Software Foundation, either version 3 of the License, or |
|
14 * (at your option) any later version. |
|
15 * |
|
16 * GLPK is distributed in the hope that it will be useful, but WITHOUT |
|
17 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY |
|
18 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public |
|
19 * License for more details. |
|
20 * |
|
21 * You should have received a copy of the GNU General Public License |
|
22 * along with GLPK. If not, see <http://www.gnu.org/licenses/>. |
|
23 ***********************************************************************/ |
|
24 |
|
25 #ifndef GLPSSX_H |
|
26 #define GLPSSX_H |
|
27 |
|
28 #include "glpbfx.h" |
|
29 #include "glpenv.h" |
|
30 |
|
31 typedef struct SSX SSX; |
|
32 |
|
33 struct SSX |
|
34 { /* simplex solver workspace */ |
|
35 /*---------------------------------------------------------------------- |
|
36 // LP PROBLEM DATA |
|
37 // |
|
38 // It is assumed that LP problem has the following statement: |
|
39 // |
|
40 // minimize (or maximize) |
|
41 // |
|
42 // z = c[1]*x[1] + ... + c[m+n]*x[m+n] + c[0] (1) |
|
43 // |
|
44 // subject to equality constraints |
|
45 // |
|
46 // x[1] - a[1,1]*x[m+1] - ... - a[1,n]*x[m+n] = 0 |
|
47 // |
|
48 // . . . . . . . (2) |
|
49 // |
|
50 // x[m] - a[m,1]*x[m+1] + ... - a[m,n]*x[m+n] = 0 |
|
51 // |
|
52 // and bounds of variables |
|
53 // |
|
54 // l[1] <= x[1] <= u[1] |
|
55 // |
|
56 // . . . . . . . (3) |
|
57 // |
|
58 // l[m+n] <= x[m+n] <= u[m+n] |
|
59 // |
|
60 // where: |
|
61 // x[1], ..., x[m] - auxiliary variables; |
|
62 // x[m+1], ..., x[m+n] - structural variables; |
|
63 // z - objective function; |
|
64 // c[1], ..., c[m+n] - coefficients of the objective function; |
|
65 // c[0] - constant term of the objective function; |
|
66 // a[1,1], ..., a[m,n] - constraint coefficients; |
|
67 // l[1], ..., l[m+n] - lower bounds of variables; |
|
68 // u[1], ..., u[m+n] - upper bounds of variables. |
|
69 // |
|
70 // Bounds of variables can be finite as well as inifinite. Besides, |
|
71 // lower and upper bounds can be equal to each other. So the following |
|
72 // five types of variables are possible: |
|
73 // |
|
74 // Bounds of variable Type of variable |
|
75 // ------------------------------------------------- |
|
76 // -inf < x[k] < +inf Free (unbounded) variable |
|
77 // l[k] <= x[k] < +inf Variable with lower bound |
|
78 // -inf < x[k] <= u[k] Variable with upper bound |
|
79 // l[k] <= x[k] <= u[k] Double-bounded variable |
|
80 // l[k] = x[k] = u[k] Fixed variable |
|
81 // |
|
82 // Using vector-matrix notations the LP problem (1)-(3) can be written |
|
83 // as follows: |
|
84 // |
|
85 // minimize (or maximize) |
|
86 // |
|
87 // z = c * x + c[0] (4) |
|
88 // |
|
89 // subject to equality constraints |
|
90 // |
|
91 // xR - A * xS = 0 (5) |
|
92 // |
|
93 // and bounds of variables |
|
94 // |
|
95 // l <= x <= u (6) |
|
96 // |
|
97 // where: |
|
98 // xR - vector of auxiliary variables; |
|
99 // xS - vector of structural variables; |
|
100 // x = (xR, xS) - vector of all variables; |
|
101 // z - objective function; |
|
102 // c - vector of objective coefficients; |
|
103 // c[0] - constant term of the objective function; |
|
104 // A - matrix of constraint coefficients (has m rows |
|
105 // and n columns); |
|
106 // l - vector of lower bounds of variables; |
|
107 // u - vector of upper bounds of variables. |
|
108 // |
|
109 // The simplex method makes no difference between auxiliary and |
|
110 // structural variables, so it is convenient to think the system of |
|
111 // equality constraints (5) written in a homogeneous form: |
|
112 // |
|
113 // (I | -A) * x = 0, (7) |
|
114 // |
|
115 // where (I | -A) is an augmented (m+n)xm constraint matrix, I is mxm |
|
116 // unity matrix whose columns correspond to auxiliary variables, and A |
|
117 // is the original mxn constraint matrix whose columns correspond to |
|
118 // structural variables. Note that only the matrix A is stored. |
|
119 ----------------------------------------------------------------------*/ |
|
120 int m; |
|
121 /* number of rows (auxiliary variables), m > 0 */ |
|
122 int n; |
|
123 /* number of columns (structural variables), n > 0 */ |
|
124 int *type; /* int type[1+m+n]; */ |
|
125 /* type[0] is not used; |
|
126 type[k], 1 <= k <= m+n, is the type of variable x[k]: */ |
|
127 #define SSX_FR 0 /* free (unbounded) variable */ |
|
128 #define SSX_LO 1 /* variable with lower bound */ |
|
129 #define SSX_UP 2 /* variable with upper bound */ |
|
130 #define SSX_DB 3 /* double-bounded variable */ |
|
131 #define SSX_FX 4 /* fixed variable */ |
|
132 mpq_t *lb; /* mpq_t lb[1+m+n]; alias: l */ |
|
133 /* lb[0] is not used; |
|
134 lb[k], 1 <= k <= m+n, is an lower bound of variable x[k]; |
|
135 if x[k] has no lower bound, lb[k] is zero */ |
|
136 mpq_t *ub; /* mpq_t ub[1+m+n]; alias: u */ |
|
137 /* ub[0] is not used; |
|
138 ub[k], 1 <= k <= m+n, is an upper bound of variable x[k]; |
|
139 if x[k] has no upper bound, ub[k] is zero; |
|
140 if x[k] is of fixed type, ub[k] is equal to lb[k] */ |
|
141 int dir; |
|
142 /* optimization direction (sense of the objective function): */ |
|
143 #define SSX_MIN 0 /* minimization */ |
|
144 #define SSX_MAX 1 /* maximization */ |
|
145 mpq_t *coef; /* mpq_t coef[1+m+n]; alias: c */ |
|
146 /* coef[0] is a constant term of the objective function; |
|
147 coef[k], 1 <= k <= m+n, is a coefficient of the objective |
|
148 function at variable x[k]; |
|
149 note that auxiliary variables also may have non-zero objective |
|
150 coefficients */ |
|
151 int *A_ptr; /* int A_ptr[1+n+1]; */ |
|
152 int *A_ind; /* int A_ind[A_ptr[n+1]]; */ |
|
153 mpq_t *A_val; /* mpq_t A_val[A_ptr[n+1]]; */ |
|
154 /* constraint matrix A (see (5)) in storage-by-columns format */ |
|
155 /*---------------------------------------------------------------------- |
|
156 // LP BASIS AND CURRENT BASIC SOLUTION |
|
157 // |
|
158 // The LP basis is defined by the following partition of the augmented |
|
159 // constraint matrix (7): |
|
160 // |
|
161 // (B | N) = (I | -A) * Q, (8) |
|
162 // |
|
163 // where B is a mxm non-singular basis matrix whose columns correspond |
|
164 // to basic variables xB, N is a mxn matrix whose columns correspond to |
|
165 // non-basic variables xN, and Q is a permutation (m+n)x(m+n) matrix. |
|
166 // |
|
167 // From (7) and (8) it follows that |
|
168 // |
|
169 // (I | -A) * x = (I | -A) * Q * Q' * x = (B | N) * (xB, xN), |
|
170 // |
|
171 // therefore |
|
172 // |
|
173 // (xB, xN) = Q' * x, (9) |
|
174 // |
|
175 // where x is the vector of all variables in the original order, xB is |
|
176 // a vector of basic variables, xN is a vector of non-basic variables, |
|
177 // Q' = inv(Q) is a matrix transposed to Q. |
|
178 // |
|
179 // Current values of non-basic variables xN[j], j = 1, ..., n, are not |
|
180 // stored; they are defined implicitly by their statuses as follows: |
|
181 // |
|
182 // 0, if xN[j] is free variable |
|
183 // lN[j], if xN[j] is on its lower bound (10) |
|
184 // uN[j], if xN[j] is on its upper bound |
|
185 // lN[j] = uN[j], if xN[j] is fixed variable |
|
186 // |
|
187 // where lN[j] and uN[j] are lower and upper bounds of xN[j]. |
|
188 // |
|
189 // Current values of basic variables xB[i], i = 1, ..., m, are computed |
|
190 // as follows: |
|
191 // |
|
192 // beta = - inv(B) * N * xN, (11) |
|
193 // |
|
194 // where current values of xN are defined by (10). |
|
195 // |
|
196 // Current values of simplex multipliers pi[i], i = 1, ..., m (which |
|
197 // are values of Lagrange multipliers for equality constraints (7) also |
|
198 // called shadow prices) are computed as follows: |
|
199 // |
|
200 // pi = inv(B') * cB, (12) |
|
201 // |
|
202 // where B' is a matrix transposed to B, cB is a vector of objective |
|
203 // coefficients at basic variables xB. |
|
204 // |
|
205 // Current values of reduced costs d[j], j = 1, ..., n, (which are |
|
206 // values of Langrange multipliers for active inequality constraints |
|
207 // corresponding to non-basic variables) are computed as follows: |
|
208 // |
|
209 // d = cN - N' * pi, (13) |
|
210 // |
|
211 // where N' is a matrix transposed to N, cN is a vector of objective |
|
212 // coefficients at non-basic variables xN. |
|
213 ----------------------------------------------------------------------*/ |
|
214 int *stat; /* int stat[1+m+n]; */ |
|
215 /* stat[0] is not used; |
|
216 stat[k], 1 <= k <= m+n, is the status of variable x[k]: */ |
|
217 #define SSX_BS 0 /* basic variable */ |
|
218 #define SSX_NL 1 /* non-basic variable on lower bound */ |
|
219 #define SSX_NU 2 /* non-basic variable on upper bound */ |
|
220 #define SSX_NF 3 /* non-basic free variable */ |
|
221 #define SSX_NS 4 /* non-basic fixed variable */ |
|
222 int *Q_row; /* int Q_row[1+m+n]; */ |
|
223 /* matrix Q in row-like format; |
|
224 Q_row[0] is not used; |
|
225 Q_row[i] = j means that q[i,j] = 1 */ |
|
226 int *Q_col; /* int Q_col[1+m+n]; */ |
|
227 /* matrix Q in column-like format; |
|
228 Q_col[0] is not used; |
|
229 Q_col[j] = i means that q[i,j] = 1 */ |
|
230 /* if k-th column of the matrix (I | A) is k'-th column of the |
|
231 matrix (B | N), then Q_row[k] = k' and Q_col[k'] = k; |
|
232 if x[k] is xB[i], then Q_row[k] = i and Q_col[i] = k; |
|
233 if x[k] is xN[j], then Q_row[k] = m+j and Q_col[m+j] = k */ |
|
234 BFX *binv; |
|
235 /* invertable form of the basis matrix B */ |
|
236 mpq_t *bbar; /* mpq_t bbar[1+m]; alias: beta */ |
|
237 /* bbar[0] is a value of the objective function; |
|
238 bbar[i], 1 <= i <= m, is a value of basic variable xB[i] */ |
|
239 mpq_t *pi; /* mpq_t pi[1+m]; */ |
|
240 /* pi[0] is not used; |
|
241 pi[i], 1 <= i <= m, is a simplex multiplier corresponding to |
|
242 i-th row (equality constraint) */ |
|
243 mpq_t *cbar; /* mpq_t cbar[1+n]; alias: d */ |
|
244 /* cbar[0] is not used; |
|
245 cbar[j], 1 <= j <= n, is a reduced cost of non-basic variable |
|
246 xN[j] */ |
|
247 /*---------------------------------------------------------------------- |
|
248 // SIMPLEX TABLE |
|
249 // |
|
250 // Due to (8) and (9) the system of equality constraints (7) for the |
|
251 // current basis can be written as follows: |
|
252 // |
|
253 // xB = A~ * xN, (14) |
|
254 // |
|
255 // where |
|
256 // |
|
257 // A~ = - inv(B) * N (15) |
|
258 // |
|
259 // is a mxn matrix called the simplex table. |
|
260 // |
|
261 // The revised simplex method uses only two components of A~, namely, |
|
262 // pivot column corresponding to non-basic variable xN[q] chosen to |
|
263 // enter the basis, and pivot row corresponding to basic variable xB[p] |
|
264 // chosen to leave the basis. |
|
265 // |
|
266 // Pivot column alfa_q is q-th column of A~, so |
|
267 // |
|
268 // alfa_q = A~ * e[q] = - inv(B) * N * e[q] = - inv(B) * N[q], (16) |
|
269 // |
|
270 // where N[q] is q-th column of the matrix N. |
|
271 // |
|
272 // Pivot row alfa_p is p-th row of A~ or, equivalently, p-th column of |
|
273 // A~', a matrix transposed to A~, so |
|
274 // |
|
275 // alfa_p = A~' * e[p] = - N' * inv(B') * e[p] = - N' * rho_p, (17) |
|
276 // |
|
277 // where (*)' means transposition, and |
|
278 // |
|
279 // rho_p = inv(B') * e[p], (18) |
|
280 // |
|
281 // is p-th column of inv(B') or, that is the same, p-th row of inv(B). |
|
282 ----------------------------------------------------------------------*/ |
|
283 int p; |
|
284 /* number of basic variable xB[p], 1 <= p <= m, chosen to leave |
|
285 the basis */ |
|
286 mpq_t *rho; /* mpq_t rho[1+m]; */ |
|
287 /* p-th row of the inverse inv(B); see (18) */ |
|
288 mpq_t *ap; /* mpq_t ap[1+n]; */ |
|
289 /* p-th row of the simplex table; see (17) */ |
|
290 int q; |
|
291 /* number of non-basic variable xN[q], 1 <= q <= n, chosen to |
|
292 enter the basis */ |
|
293 mpq_t *aq; /* mpq_t aq[1+m]; */ |
|
294 /* q-th column of the simplex table; see (16) */ |
|
295 /*--------------------------------------------------------------------*/ |
|
296 int q_dir; |
|
297 /* direction in which non-basic variable xN[q] should change on |
|
298 moving to the adjacent vertex of the polyhedron: |
|
299 +1 means that xN[q] increases |
|
300 -1 means that xN[q] decreases */ |
|
301 int p_stat; |
|
302 /* non-basic status which should be assigned to basic variable |
|
303 xB[p] when it has left the basis and become xN[q] */ |
|
304 mpq_t delta; |
|
305 /* actual change of xN[q] in the adjacent basis (it has the same |
|
306 sign as q_dir) */ |
|
307 /*--------------------------------------------------------------------*/ |
|
308 int it_lim; |
|
309 /* simplex iterations limit; if this value is positive, it is |
|
310 decreased by one each time when one simplex iteration has been |
|
311 performed, and reaching zero value signals the solver to stop |
|
312 the search; negative value means no iterations limit */ |
|
313 int it_cnt; |
|
314 /* simplex iterations count; this count is increased by one each |
|
315 time when one simplex iteration has been performed */ |
|
316 double tm_lim; |
|
317 /* searching time limit, in seconds; if this value is positive, |
|
318 it is decreased each time when one simplex iteration has been |
|
319 performed by the amount of time spent for the iteration, and |
|
320 reaching zero value signals the solver to stop the search; |
|
321 negative value means no time limit */ |
|
322 double out_frq; |
|
323 /* output frequency, in seconds; this parameter specifies how |
|
324 frequently the solver sends information about the progress of |
|
325 the search to the standard output */ |
|
326 glp_long tm_beg; |
|
327 /* starting time of the search, in seconds; the total time of the |
|
328 search is the difference between xtime() and tm_beg */ |
|
329 glp_long tm_lag; |
|
330 /* the most recent time, in seconds, at which the progress of the |
|
331 the search was displayed */ |
|
332 }; |
|
333 |
|
334 #define ssx_create _glp_ssx_create |
|
335 #define ssx_factorize _glp_ssx_factorize |
|
336 #define ssx_get_xNj _glp_ssx_get_xNj |
|
337 #define ssx_eval_bbar _glp_ssx_eval_bbar |
|
338 #define ssx_eval_pi _glp_ssx_eval_pi |
|
339 #define ssx_eval_dj _glp_ssx_eval_dj |
|
340 #define ssx_eval_cbar _glp_ssx_eval_cbar |
|
341 #define ssx_eval_rho _glp_ssx_eval_rho |
|
342 #define ssx_eval_row _glp_ssx_eval_row |
|
343 #define ssx_eval_col _glp_ssx_eval_col |
|
344 #define ssx_chuzc _glp_ssx_chuzc |
|
345 #define ssx_chuzr _glp_ssx_chuzr |
|
346 #define ssx_update_bbar _glp_ssx_update_bbar |
|
347 #define ssx_update_pi _glp_ssx_update_pi |
|
348 #define ssx_update_cbar _glp_ssx_update_cbar |
|
349 #define ssx_change_basis _glp_ssx_change_basis |
|
350 #define ssx_delete _glp_ssx_delete |
|
351 |
|
352 #define ssx_phase_I _glp_ssx_phase_I |
|
353 #define ssx_phase_II _glp_ssx_phase_II |
|
354 #define ssx_driver _glp_ssx_driver |
|
355 |
|
356 SSX *ssx_create(int m, int n, int nnz); |
|
357 /* create simplex solver workspace */ |
|
358 |
|
359 int ssx_factorize(SSX *ssx); |
|
360 /* factorize the current basis matrix */ |
|
361 |
|
362 void ssx_get_xNj(SSX *ssx, int j, mpq_t x); |
|
363 /* determine value of non-basic variable */ |
|
364 |
|
365 void ssx_eval_bbar(SSX *ssx); |
|
366 /* compute values of basic variables */ |
|
367 |
|
368 void ssx_eval_pi(SSX *ssx); |
|
369 /* compute values of simplex multipliers */ |
|
370 |
|
371 void ssx_eval_dj(SSX *ssx, int j, mpq_t dj); |
|
372 /* compute reduced cost of non-basic variable */ |
|
373 |
|
374 void ssx_eval_cbar(SSX *ssx); |
|
375 /* compute reduced costs of all non-basic variables */ |
|
376 |
|
377 void ssx_eval_rho(SSX *ssx); |
|
378 /* compute p-th row of the inverse */ |
|
379 |
|
380 void ssx_eval_row(SSX *ssx); |
|
381 /* compute pivot row of the simplex table */ |
|
382 |
|
383 void ssx_eval_col(SSX *ssx); |
|
384 /* compute pivot column of the simplex table */ |
|
385 |
|
386 void ssx_chuzc(SSX *ssx); |
|
387 /* choose pivot column */ |
|
388 |
|
389 void ssx_chuzr(SSX *ssx); |
|
390 /* choose pivot row */ |
|
391 |
|
392 void ssx_update_bbar(SSX *ssx); |
|
393 /* update values of basic variables */ |
|
394 |
|
395 void ssx_update_pi(SSX *ssx); |
|
396 /* update simplex multipliers */ |
|
397 |
|
398 void ssx_update_cbar(SSX *ssx); |
|
399 /* update reduced costs of non-basic variables */ |
|
400 |
|
401 void ssx_change_basis(SSX *ssx); |
|
402 /* change current basis to adjacent one */ |
|
403 |
|
404 void ssx_delete(SSX *ssx); |
|
405 /* delete simplex solver workspace */ |
|
406 |
|
407 int ssx_phase_I(SSX *ssx); |
|
408 /* find primal feasible solution */ |
|
409 |
|
410 int ssx_phase_II(SSX *ssx); |
|
411 /* find optimal solution */ |
|
412 |
|
413 int ssx_driver(SSX *ssx); |
|
414 /* base driver to exact simplex method */ |
|
415 |
|
416 #endif |
|
417 |
|
418 /* eof */ |