|
1 /* glpssx01.c */ |
|
2 |
|
3 /*********************************************************************** |
|
4 * This code is part of GLPK (GNU Linear Programming Kit). |
|
5 * |
|
6 * Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, |
|
7 * 2009, 2010 Andrew Makhorin, Department for Applied Informatics, |
|
8 * Moscow Aviation Institute, Moscow, Russia. All rights reserved. |
|
9 * E-mail: <mao@gnu.org>. |
|
10 * |
|
11 * GLPK is free software: you can redistribute it and/or modify it |
|
12 * under the terms of the GNU General Public License as published by |
|
13 * the Free Software Foundation, either version 3 of the License, or |
|
14 * (at your option) any later version. |
|
15 * |
|
16 * GLPK is distributed in the hope that it will be useful, but WITHOUT |
|
17 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY |
|
18 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public |
|
19 * License for more details. |
|
20 * |
|
21 * You should have received a copy of the GNU General Public License |
|
22 * along with GLPK. If not, see <http://www.gnu.org/licenses/>. |
|
23 ***********************************************************************/ |
|
24 |
|
25 #include "glpenv.h" |
|
26 #include "glpssx.h" |
|
27 #define xfault xerror |
|
28 |
|
29 /*---------------------------------------------------------------------- |
|
30 // ssx_create - create simplex solver workspace. |
|
31 // |
|
32 // This routine creates the workspace used by simplex solver routines, |
|
33 // and returns a pointer to it. |
|
34 // |
|
35 // Parameters m, n, and nnz specify, respectively, the number of rows, |
|
36 // columns, and non-zero constraint coefficients. |
|
37 // |
|
38 // This routine only allocates the memory for the workspace components, |
|
39 // so the workspace needs to be saturated by data. */ |
|
40 |
|
41 SSX *ssx_create(int m, int n, int nnz) |
|
42 { SSX *ssx; |
|
43 int i, j, k; |
|
44 if (m < 1) |
|
45 xfault("ssx_create: m = %d; invalid number of rows\n", m); |
|
46 if (n < 1) |
|
47 xfault("ssx_create: n = %d; invalid number of columns\n", n); |
|
48 if (nnz < 0) |
|
49 xfault("ssx_create: nnz = %d; invalid number of non-zero const" |
|
50 "raint coefficients\n", nnz); |
|
51 ssx = xmalloc(sizeof(SSX)); |
|
52 ssx->m = m; |
|
53 ssx->n = n; |
|
54 ssx->type = xcalloc(1+m+n, sizeof(int)); |
|
55 ssx->lb = xcalloc(1+m+n, sizeof(mpq_t)); |
|
56 for (k = 1; k <= m+n; k++) mpq_init(ssx->lb[k]); |
|
57 ssx->ub = xcalloc(1+m+n, sizeof(mpq_t)); |
|
58 for (k = 1; k <= m+n; k++) mpq_init(ssx->ub[k]); |
|
59 ssx->coef = xcalloc(1+m+n, sizeof(mpq_t)); |
|
60 for (k = 0; k <= m+n; k++) mpq_init(ssx->coef[k]); |
|
61 ssx->A_ptr = xcalloc(1+n+1, sizeof(int)); |
|
62 ssx->A_ptr[n+1] = nnz+1; |
|
63 ssx->A_ind = xcalloc(1+nnz, sizeof(int)); |
|
64 ssx->A_val = xcalloc(1+nnz, sizeof(mpq_t)); |
|
65 for (k = 1; k <= nnz; k++) mpq_init(ssx->A_val[k]); |
|
66 ssx->stat = xcalloc(1+m+n, sizeof(int)); |
|
67 ssx->Q_row = xcalloc(1+m+n, sizeof(int)); |
|
68 ssx->Q_col = xcalloc(1+m+n, sizeof(int)); |
|
69 ssx->binv = bfx_create_binv(); |
|
70 ssx->bbar = xcalloc(1+m, sizeof(mpq_t)); |
|
71 for (i = 0; i <= m; i++) mpq_init(ssx->bbar[i]); |
|
72 ssx->pi = xcalloc(1+m, sizeof(mpq_t)); |
|
73 for (i = 1; i <= m; i++) mpq_init(ssx->pi[i]); |
|
74 ssx->cbar = xcalloc(1+n, sizeof(mpq_t)); |
|
75 for (j = 1; j <= n; j++) mpq_init(ssx->cbar[j]); |
|
76 ssx->rho = xcalloc(1+m, sizeof(mpq_t)); |
|
77 for (i = 1; i <= m; i++) mpq_init(ssx->rho[i]); |
|
78 ssx->ap = xcalloc(1+n, sizeof(mpq_t)); |
|
79 for (j = 1; j <= n; j++) mpq_init(ssx->ap[j]); |
|
80 ssx->aq = xcalloc(1+m, sizeof(mpq_t)); |
|
81 for (i = 1; i <= m; i++) mpq_init(ssx->aq[i]); |
|
82 mpq_init(ssx->delta); |
|
83 return ssx; |
|
84 } |
|
85 |
|
86 /*---------------------------------------------------------------------- |
|
87 // ssx_factorize - factorize the current basis matrix. |
|
88 // |
|
89 // This routine computes factorization of the current basis matrix B |
|
90 // and returns the singularity flag. If the matrix B is non-singular, |
|
91 // the flag is zero, otherwise non-zero. */ |
|
92 |
|
93 static int basis_col(void *info, int j, int ind[], mpq_t val[]) |
|
94 { /* this auxiliary routine provides row indices and numeric values |
|
95 of non-zero elements in j-th column of the matrix B */ |
|
96 SSX *ssx = info; |
|
97 int m = ssx->m; |
|
98 int n = ssx->n; |
|
99 int *A_ptr = ssx->A_ptr; |
|
100 int *A_ind = ssx->A_ind; |
|
101 mpq_t *A_val = ssx->A_val; |
|
102 int *Q_col = ssx->Q_col; |
|
103 int k, len, ptr; |
|
104 xassert(1 <= j && j <= m); |
|
105 k = Q_col[j]; /* x[k] = xB[j] */ |
|
106 xassert(1 <= k && k <= m+n); |
|
107 /* j-th column of the matrix B is k-th column of the augmented |
|
108 constraint matrix (I | -A) */ |
|
109 if (k <= m) |
|
110 { /* it is a column of the unity matrix I */ |
|
111 len = 1, ind[1] = k, mpq_set_si(val[1], 1, 1); |
|
112 } |
|
113 else |
|
114 { /* it is a column of the original constraint matrix -A */ |
|
115 len = 0; |
|
116 for (ptr = A_ptr[k-m]; ptr < A_ptr[k-m+1]; ptr++) |
|
117 { len++; |
|
118 ind[len] = A_ind[ptr]; |
|
119 mpq_neg(val[len], A_val[ptr]); |
|
120 } |
|
121 } |
|
122 return len; |
|
123 } |
|
124 |
|
125 int ssx_factorize(SSX *ssx) |
|
126 { int ret; |
|
127 ret = bfx_factorize(ssx->binv, ssx->m, basis_col, ssx); |
|
128 return ret; |
|
129 } |
|
130 |
|
131 /*---------------------------------------------------------------------- |
|
132 // ssx_get_xNj - determine value of non-basic variable. |
|
133 // |
|
134 // This routine determines the value of non-basic variable xN[j] in the |
|
135 // current basic solution defined as follows: |
|
136 // |
|
137 // 0, if xN[j] is free variable |
|
138 // lN[j], if xN[j] is on its lower bound |
|
139 // uN[j], if xN[j] is on its upper bound |
|
140 // lN[j] = uN[j], if xN[j] is fixed variable |
|
141 // |
|
142 // where lN[j] and uN[j] are lower and upper bounds of xN[j]. */ |
|
143 |
|
144 void ssx_get_xNj(SSX *ssx, int j, mpq_t x) |
|
145 { int m = ssx->m; |
|
146 int n = ssx->n; |
|
147 mpq_t *lb = ssx->lb; |
|
148 mpq_t *ub = ssx->ub; |
|
149 int *stat = ssx->stat; |
|
150 int *Q_col = ssx->Q_col; |
|
151 int k; |
|
152 xassert(1 <= j && j <= n); |
|
153 k = Q_col[m+j]; /* x[k] = xN[j] */ |
|
154 xassert(1 <= k && k <= m+n); |
|
155 switch (stat[k]) |
|
156 { case SSX_NL: |
|
157 /* xN[j] is on its lower bound */ |
|
158 mpq_set(x, lb[k]); break; |
|
159 case SSX_NU: |
|
160 /* xN[j] is on its upper bound */ |
|
161 mpq_set(x, ub[k]); break; |
|
162 case SSX_NF: |
|
163 /* xN[j] is free variable */ |
|
164 mpq_set_si(x, 0, 1); break; |
|
165 case SSX_NS: |
|
166 /* xN[j] is fixed variable */ |
|
167 mpq_set(x, lb[k]); break; |
|
168 default: |
|
169 xassert(stat != stat); |
|
170 } |
|
171 return; |
|
172 } |
|
173 |
|
174 /*---------------------------------------------------------------------- |
|
175 // ssx_eval_bbar - compute values of basic variables. |
|
176 // |
|
177 // This routine computes values of basic variables xB in the current |
|
178 // basic solution as follows: |
|
179 // |
|
180 // beta = - inv(B) * N * xN, |
|
181 // |
|
182 // where B is the basis matrix, N is the matrix of non-basic columns, |
|
183 // xN is a vector of current values of non-basic variables. */ |
|
184 |
|
185 void ssx_eval_bbar(SSX *ssx) |
|
186 { int m = ssx->m; |
|
187 int n = ssx->n; |
|
188 mpq_t *coef = ssx->coef; |
|
189 int *A_ptr = ssx->A_ptr; |
|
190 int *A_ind = ssx->A_ind; |
|
191 mpq_t *A_val = ssx->A_val; |
|
192 int *Q_col = ssx->Q_col; |
|
193 mpq_t *bbar = ssx->bbar; |
|
194 int i, j, k, ptr; |
|
195 mpq_t x, temp; |
|
196 mpq_init(x); |
|
197 mpq_init(temp); |
|
198 /* bbar := 0 */ |
|
199 for (i = 1; i <= m; i++) |
|
200 mpq_set_si(bbar[i], 0, 1); |
|
201 /* bbar := - N * xN = - N[1] * xN[1] - ... - N[n] * xN[n] */ |
|
202 for (j = 1; j <= n; j++) |
|
203 { ssx_get_xNj(ssx, j, x); |
|
204 if (mpq_sgn(x) == 0) continue; |
|
205 k = Q_col[m+j]; /* x[k] = xN[j] */ |
|
206 if (k <= m) |
|
207 { /* N[j] is a column of the unity matrix I */ |
|
208 mpq_sub(bbar[k], bbar[k], x); |
|
209 } |
|
210 else |
|
211 { /* N[j] is a column of the original constraint matrix -A */ |
|
212 for (ptr = A_ptr[k-m]; ptr < A_ptr[k-m+1]; ptr++) |
|
213 { mpq_mul(temp, A_val[ptr], x); |
|
214 mpq_add(bbar[A_ind[ptr]], bbar[A_ind[ptr]], temp); |
|
215 } |
|
216 } |
|
217 } |
|
218 /* bbar := inv(B) * bbar */ |
|
219 bfx_ftran(ssx->binv, bbar, 0); |
|
220 #if 1 |
|
221 /* compute value of the objective function */ |
|
222 /* bbar[0] := c[0] */ |
|
223 mpq_set(bbar[0], coef[0]); |
|
224 /* bbar[0] := bbar[0] + sum{i in B} cB[i] * xB[i] */ |
|
225 for (i = 1; i <= m; i++) |
|
226 { k = Q_col[i]; /* x[k] = xB[i] */ |
|
227 if (mpq_sgn(coef[k]) == 0) continue; |
|
228 mpq_mul(temp, coef[k], bbar[i]); |
|
229 mpq_add(bbar[0], bbar[0], temp); |
|
230 } |
|
231 /* bbar[0] := bbar[0] + sum{j in N} cN[j] * xN[j] */ |
|
232 for (j = 1; j <= n; j++) |
|
233 { k = Q_col[m+j]; /* x[k] = xN[j] */ |
|
234 if (mpq_sgn(coef[k]) == 0) continue; |
|
235 ssx_get_xNj(ssx, j, x); |
|
236 mpq_mul(temp, coef[k], x); |
|
237 mpq_add(bbar[0], bbar[0], temp); |
|
238 } |
|
239 #endif |
|
240 mpq_clear(x); |
|
241 mpq_clear(temp); |
|
242 return; |
|
243 } |
|
244 |
|
245 /*---------------------------------------------------------------------- |
|
246 // ssx_eval_pi - compute values of simplex multipliers. |
|
247 // |
|
248 // This routine computes values of simplex multipliers (shadow prices) |
|
249 // pi in the current basic solution as follows: |
|
250 // |
|
251 // pi = inv(B') * cB, |
|
252 // |
|
253 // where B' is a matrix transposed to the basis matrix B, cB is a vector |
|
254 // of objective coefficients at basic variables xB. */ |
|
255 |
|
256 void ssx_eval_pi(SSX *ssx) |
|
257 { int m = ssx->m; |
|
258 mpq_t *coef = ssx->coef; |
|
259 int *Q_col = ssx->Q_col; |
|
260 mpq_t *pi = ssx->pi; |
|
261 int i; |
|
262 /* pi := cB */ |
|
263 for (i = 1; i <= m; i++) mpq_set(pi[i], coef[Q_col[i]]); |
|
264 /* pi := inv(B') * cB */ |
|
265 bfx_btran(ssx->binv, pi); |
|
266 return; |
|
267 } |
|
268 |
|
269 /*---------------------------------------------------------------------- |
|
270 // ssx_eval_dj - compute reduced cost of non-basic variable. |
|
271 // |
|
272 // This routine computes reduced cost d[j] of non-basic variable xN[j] |
|
273 // in the current basic solution as follows: |
|
274 // |
|
275 // d[j] = cN[j] - N[j] * pi, |
|
276 // |
|
277 // where cN[j] is an objective coefficient at xN[j], N[j] is a column |
|
278 // of the augmented constraint matrix (I | -A) corresponding to xN[j], |
|
279 // pi is the vector of simplex multipliers (shadow prices). */ |
|
280 |
|
281 void ssx_eval_dj(SSX *ssx, int j, mpq_t dj) |
|
282 { int m = ssx->m; |
|
283 int n = ssx->n; |
|
284 mpq_t *coef = ssx->coef; |
|
285 int *A_ptr = ssx->A_ptr; |
|
286 int *A_ind = ssx->A_ind; |
|
287 mpq_t *A_val = ssx->A_val; |
|
288 int *Q_col = ssx->Q_col; |
|
289 mpq_t *pi = ssx->pi; |
|
290 int k, ptr, end; |
|
291 mpq_t temp; |
|
292 mpq_init(temp); |
|
293 xassert(1 <= j && j <= n); |
|
294 k = Q_col[m+j]; /* x[k] = xN[j] */ |
|
295 xassert(1 <= k && k <= m+n); |
|
296 /* j-th column of the matrix N is k-th column of the augmented |
|
297 constraint matrix (I | -A) */ |
|
298 if (k <= m) |
|
299 { /* it is a column of the unity matrix I */ |
|
300 mpq_sub(dj, coef[k], pi[k]); |
|
301 } |
|
302 else |
|
303 { /* it is a column of the original constraint matrix -A */ |
|
304 mpq_set(dj, coef[k]); |
|
305 for (ptr = A_ptr[k-m], end = A_ptr[k-m+1]; ptr < end; ptr++) |
|
306 { mpq_mul(temp, A_val[ptr], pi[A_ind[ptr]]); |
|
307 mpq_add(dj, dj, temp); |
|
308 } |
|
309 } |
|
310 mpq_clear(temp); |
|
311 return; |
|
312 } |
|
313 |
|
314 /*---------------------------------------------------------------------- |
|
315 // ssx_eval_cbar - compute reduced costs of all non-basic variables. |
|
316 // |
|
317 // This routine computes the vector of reduced costs pi in the current |
|
318 // basic solution for all non-basic variables, including fixed ones. */ |
|
319 |
|
320 void ssx_eval_cbar(SSX *ssx) |
|
321 { int n = ssx->n; |
|
322 mpq_t *cbar = ssx->cbar; |
|
323 int j; |
|
324 for (j = 1; j <= n; j++) |
|
325 ssx_eval_dj(ssx, j, cbar[j]); |
|
326 return; |
|
327 } |
|
328 |
|
329 /*---------------------------------------------------------------------- |
|
330 // ssx_eval_rho - compute p-th row of the inverse. |
|
331 // |
|
332 // This routine computes p-th row of the matrix inv(B), where B is the |
|
333 // current basis matrix. |
|
334 // |
|
335 // p-th row of the inverse is computed using the following formula: |
|
336 // |
|
337 // rho = inv(B') * e[p], |
|
338 // |
|
339 // where B' is a matrix transposed to B, e[p] is a unity vector, which |
|
340 // contains one in p-th position. */ |
|
341 |
|
342 void ssx_eval_rho(SSX *ssx) |
|
343 { int m = ssx->m; |
|
344 int p = ssx->p; |
|
345 mpq_t *rho = ssx->rho; |
|
346 int i; |
|
347 xassert(1 <= p && p <= m); |
|
348 /* rho := 0 */ |
|
349 for (i = 1; i <= m; i++) mpq_set_si(rho[i], 0, 1); |
|
350 /* rho := e[p] */ |
|
351 mpq_set_si(rho[p], 1, 1); |
|
352 /* rho := inv(B') * rho */ |
|
353 bfx_btran(ssx->binv, rho); |
|
354 return; |
|
355 } |
|
356 |
|
357 /*---------------------------------------------------------------------- |
|
358 // ssx_eval_row - compute pivot row of the simplex table. |
|
359 // |
|
360 // This routine computes p-th (pivot) row of the current simplex table |
|
361 // A~ = - inv(B) * N using the following formula: |
|
362 // |
|
363 // A~[p] = - N' * inv(B') * e[p] = - N' * rho[p], |
|
364 // |
|
365 // where N' is a matrix transposed to the matrix N, rho[p] is p-th row |
|
366 // of the inverse inv(B). */ |
|
367 |
|
368 void ssx_eval_row(SSX *ssx) |
|
369 { int m = ssx->m; |
|
370 int n = ssx->n; |
|
371 int *A_ptr = ssx->A_ptr; |
|
372 int *A_ind = ssx->A_ind; |
|
373 mpq_t *A_val = ssx->A_val; |
|
374 int *Q_col = ssx->Q_col; |
|
375 mpq_t *rho = ssx->rho; |
|
376 mpq_t *ap = ssx->ap; |
|
377 int j, k, ptr; |
|
378 mpq_t temp; |
|
379 mpq_init(temp); |
|
380 for (j = 1; j <= n; j++) |
|
381 { /* ap[j] := - N'[j] * rho (inner product) */ |
|
382 k = Q_col[m+j]; /* x[k] = xN[j] */ |
|
383 if (k <= m) |
|
384 mpq_neg(ap[j], rho[k]); |
|
385 else |
|
386 { mpq_set_si(ap[j], 0, 1); |
|
387 for (ptr = A_ptr[k-m]; ptr < A_ptr[k-m+1]; ptr++) |
|
388 { mpq_mul(temp, A_val[ptr], rho[A_ind[ptr]]); |
|
389 mpq_add(ap[j], ap[j], temp); |
|
390 } |
|
391 } |
|
392 } |
|
393 mpq_clear(temp); |
|
394 return; |
|
395 } |
|
396 |
|
397 /*---------------------------------------------------------------------- |
|
398 // ssx_eval_col - compute pivot column of the simplex table. |
|
399 // |
|
400 // This routine computes q-th (pivot) column of the current simplex |
|
401 // table A~ = - inv(B) * N using the following formula: |
|
402 // |
|
403 // A~[q] = - inv(B) * N[q], |
|
404 // |
|
405 // where N[q] is q-th column of the matrix N corresponding to chosen |
|
406 // non-basic variable xN[q]. */ |
|
407 |
|
408 void ssx_eval_col(SSX *ssx) |
|
409 { int m = ssx->m; |
|
410 int n = ssx->n; |
|
411 int *A_ptr = ssx->A_ptr; |
|
412 int *A_ind = ssx->A_ind; |
|
413 mpq_t *A_val = ssx->A_val; |
|
414 int *Q_col = ssx->Q_col; |
|
415 int q = ssx->q; |
|
416 mpq_t *aq = ssx->aq; |
|
417 int i, k, ptr; |
|
418 xassert(1 <= q && q <= n); |
|
419 /* aq := 0 */ |
|
420 for (i = 1; i <= m; i++) mpq_set_si(aq[i], 0, 1); |
|
421 /* aq := N[q] */ |
|
422 k = Q_col[m+q]; /* x[k] = xN[q] */ |
|
423 if (k <= m) |
|
424 { /* N[q] is a column of the unity matrix I */ |
|
425 mpq_set_si(aq[k], 1, 1); |
|
426 } |
|
427 else |
|
428 { /* N[q] is a column of the original constraint matrix -A */ |
|
429 for (ptr = A_ptr[k-m]; ptr < A_ptr[k-m+1]; ptr++) |
|
430 mpq_neg(aq[A_ind[ptr]], A_val[ptr]); |
|
431 } |
|
432 /* aq := inv(B) * aq */ |
|
433 bfx_ftran(ssx->binv, aq, 1); |
|
434 /* aq := - aq */ |
|
435 for (i = 1; i <= m; i++) mpq_neg(aq[i], aq[i]); |
|
436 return; |
|
437 } |
|
438 |
|
439 /*---------------------------------------------------------------------- |
|
440 // ssx_chuzc - choose pivot column. |
|
441 // |
|
442 // This routine chooses non-basic variable xN[q] whose reduced cost |
|
443 // indicates possible improving of the objective function to enter it |
|
444 // in the basis. |
|
445 // |
|
446 // Currently the standard (textbook) pricing is used, i.e. that |
|
447 // non-basic variable is preferred which has greatest reduced cost (in |
|
448 // magnitude). |
|
449 // |
|
450 // If xN[q] has been chosen, the routine stores its number q and also |
|
451 // sets the flag q_dir that indicates direction in which xN[q] has to |
|
452 // change (+1 means increasing, -1 means decreasing). |
|
453 // |
|
454 // If the choice cannot be made, because the current basic solution is |
|
455 // dual feasible, the routine sets the number q to 0. */ |
|
456 |
|
457 void ssx_chuzc(SSX *ssx) |
|
458 { int m = ssx->m; |
|
459 int n = ssx->n; |
|
460 int dir = (ssx->dir == SSX_MIN ? +1 : -1); |
|
461 int *Q_col = ssx->Q_col; |
|
462 int *stat = ssx->stat; |
|
463 mpq_t *cbar = ssx->cbar; |
|
464 int j, k, s, q, q_dir; |
|
465 double best, temp; |
|
466 /* nothing is chosen so far */ |
|
467 q = 0, q_dir = 0, best = 0.0; |
|
468 /* look through the list of non-basic variables */ |
|
469 for (j = 1; j <= n; j++) |
|
470 { k = Q_col[m+j]; /* x[k] = xN[j] */ |
|
471 s = dir * mpq_sgn(cbar[j]); |
|
472 if ((stat[k] == SSX_NF || stat[k] == SSX_NL) && s < 0 || |
|
473 (stat[k] == SSX_NF || stat[k] == SSX_NU) && s > 0) |
|
474 { /* reduced cost of xN[j] indicates possible improving of |
|
475 the objective function */ |
|
476 temp = fabs(mpq_get_d(cbar[j])); |
|
477 xassert(temp != 0.0); |
|
478 if (q == 0 || best < temp) |
|
479 q = j, q_dir = - s, best = temp; |
|
480 } |
|
481 } |
|
482 ssx->q = q, ssx->q_dir = q_dir; |
|
483 return; |
|
484 } |
|
485 |
|
486 /*---------------------------------------------------------------------- |
|
487 // ssx_chuzr - choose pivot row. |
|
488 // |
|
489 // This routine looks through elements of q-th column of the simplex |
|
490 // table and chooses basic variable xB[p] which should leave the basis. |
|
491 // |
|
492 // The choice is based on the standard (textbook) ratio test. |
|
493 // |
|
494 // If xB[p] has been chosen, the routine stores its number p and also |
|
495 // sets its non-basic status p_stat which should be assigned to xB[p] |
|
496 // when it has left the basis and become xN[q]. |
|
497 // |
|
498 // Special case p < 0 means that xN[q] is double-bounded variable and |
|
499 // it reaches its opposite bound before any basic variable does that, |
|
500 // so the current basis remains unchanged. |
|
501 // |
|
502 // If the choice cannot be made, because xN[q] can infinitely change in |
|
503 // the feasible direction, the routine sets the number p to 0. */ |
|
504 |
|
505 void ssx_chuzr(SSX *ssx) |
|
506 { int m = ssx->m; |
|
507 int n = ssx->n; |
|
508 int *type = ssx->type; |
|
509 mpq_t *lb = ssx->lb; |
|
510 mpq_t *ub = ssx->ub; |
|
511 int *Q_col = ssx->Q_col; |
|
512 mpq_t *bbar = ssx->bbar; |
|
513 int q = ssx->q; |
|
514 mpq_t *aq = ssx->aq; |
|
515 int q_dir = ssx->q_dir; |
|
516 int i, k, s, t, p, p_stat; |
|
517 mpq_t teta, temp; |
|
518 mpq_init(teta); |
|
519 mpq_init(temp); |
|
520 xassert(1 <= q && q <= n); |
|
521 xassert(q_dir == +1 || q_dir == -1); |
|
522 /* nothing is chosen so far */ |
|
523 p = 0, p_stat = 0; |
|
524 /* look through the list of basic variables */ |
|
525 for (i = 1; i <= m; i++) |
|
526 { s = q_dir * mpq_sgn(aq[i]); |
|
527 if (s < 0) |
|
528 { /* xB[i] decreases */ |
|
529 k = Q_col[i]; /* x[k] = xB[i] */ |
|
530 t = type[k]; |
|
531 if (t == SSX_LO || t == SSX_DB || t == SSX_FX) |
|
532 { /* xB[i] has finite lower bound */ |
|
533 mpq_sub(temp, bbar[i], lb[k]); |
|
534 mpq_div(temp, temp, aq[i]); |
|
535 mpq_abs(temp, temp); |
|
536 if (p == 0 || mpq_cmp(teta, temp) > 0) |
|
537 { p = i; |
|
538 p_stat = (t == SSX_FX ? SSX_NS : SSX_NL); |
|
539 mpq_set(teta, temp); |
|
540 } |
|
541 } |
|
542 } |
|
543 else if (s > 0) |
|
544 { /* xB[i] increases */ |
|
545 k = Q_col[i]; /* x[k] = xB[i] */ |
|
546 t = type[k]; |
|
547 if (t == SSX_UP || t == SSX_DB || t == SSX_FX) |
|
548 { /* xB[i] has finite upper bound */ |
|
549 mpq_sub(temp, bbar[i], ub[k]); |
|
550 mpq_div(temp, temp, aq[i]); |
|
551 mpq_abs(temp, temp); |
|
552 if (p == 0 || mpq_cmp(teta, temp) > 0) |
|
553 { p = i; |
|
554 p_stat = (t == SSX_FX ? SSX_NS : SSX_NU); |
|
555 mpq_set(teta, temp); |
|
556 } |
|
557 } |
|
558 } |
|
559 /* if something has been chosen and the ratio test indicates |
|
560 exact degeneracy, the search can be finished */ |
|
561 if (p != 0 && mpq_sgn(teta) == 0) break; |
|
562 } |
|
563 /* if xN[q] is double-bounded, check if it can reach its opposite |
|
564 bound before any basic variable */ |
|
565 k = Q_col[m+q]; /* x[k] = xN[q] */ |
|
566 if (type[k] == SSX_DB) |
|
567 { mpq_sub(temp, ub[k], lb[k]); |
|
568 if (p == 0 || mpq_cmp(teta, temp) > 0) |
|
569 { p = -1; |
|
570 p_stat = -1; |
|
571 mpq_set(teta, temp); |
|
572 } |
|
573 } |
|
574 ssx->p = p; |
|
575 ssx->p_stat = p_stat; |
|
576 /* if xB[p] has been chosen, determine its actual change in the |
|
577 adjacent basis (it has the same sign as q_dir) */ |
|
578 if (p != 0) |
|
579 { xassert(mpq_sgn(teta) >= 0); |
|
580 if (q_dir > 0) |
|
581 mpq_set(ssx->delta, teta); |
|
582 else |
|
583 mpq_neg(ssx->delta, teta); |
|
584 } |
|
585 mpq_clear(teta); |
|
586 mpq_clear(temp); |
|
587 return; |
|
588 } |
|
589 |
|
590 /*---------------------------------------------------------------------- |
|
591 // ssx_update_bbar - update values of basic variables. |
|
592 // |
|
593 // This routine recomputes the current values of basic variables for |
|
594 // the adjacent basis. |
|
595 // |
|
596 // The simplex table for the current basis is the following: |
|
597 // |
|
598 // xB[i] = sum{j in 1..n} alfa[i,j] * xN[q], i = 1,...,m |
|
599 // |
|
600 // therefore |
|
601 // |
|
602 // delta xB[i] = alfa[i,q] * delta xN[q], i = 1,...,m |
|
603 // |
|
604 // where delta xN[q] = xN.new[q] - xN[q] is the change of xN[q] in the |
|
605 // adjacent basis, and delta xB[i] = xB.new[i] - xB[i] is the change of |
|
606 // xB[i]. This gives formulae for recomputing values of xB[i]: |
|
607 // |
|
608 // xB.new[p] = xN[q] + delta xN[q] |
|
609 // |
|
610 // (because xN[q] becomes xB[p] in the adjacent basis), and |
|
611 // |
|
612 // xB.new[i] = xB[i] + alfa[i,q] * delta xN[q], i != p |
|
613 // |
|
614 // for other basic variables. */ |
|
615 |
|
616 void ssx_update_bbar(SSX *ssx) |
|
617 { int m = ssx->m; |
|
618 int n = ssx->n; |
|
619 mpq_t *bbar = ssx->bbar; |
|
620 mpq_t *cbar = ssx->cbar; |
|
621 int p = ssx->p; |
|
622 int q = ssx->q; |
|
623 mpq_t *aq = ssx->aq; |
|
624 int i; |
|
625 mpq_t temp; |
|
626 mpq_init(temp); |
|
627 xassert(1 <= q && q <= n); |
|
628 if (p < 0) |
|
629 { /* xN[q] is double-bounded and goes to its opposite bound */ |
|
630 /* nop */; |
|
631 } |
|
632 else |
|
633 { /* xN[q] becomes xB[p] in the adjacent basis */ |
|
634 /* xB.new[p] = xN[q] + delta xN[q] */ |
|
635 xassert(1 <= p && p <= m); |
|
636 ssx_get_xNj(ssx, q, temp); |
|
637 mpq_add(bbar[p], temp, ssx->delta); |
|
638 } |
|
639 /* update values of other basic variables depending on xN[q] */ |
|
640 for (i = 1; i <= m; i++) |
|
641 { if (i == p) continue; |
|
642 /* xB.new[i] = xB[i] + alfa[i,q] * delta xN[q] */ |
|
643 if (mpq_sgn(aq[i]) == 0) continue; |
|
644 mpq_mul(temp, aq[i], ssx->delta); |
|
645 mpq_add(bbar[i], bbar[i], temp); |
|
646 } |
|
647 #if 1 |
|
648 /* update value of the objective function */ |
|
649 /* z.new = z + d[q] * delta xN[q] */ |
|
650 mpq_mul(temp, cbar[q], ssx->delta); |
|
651 mpq_add(bbar[0], bbar[0], temp); |
|
652 #endif |
|
653 mpq_clear(temp); |
|
654 return; |
|
655 } |
|
656 |
|
657 /*---------------------------------------------------------------------- |
|
658 -- ssx_update_pi - update simplex multipliers. |
|
659 -- |
|
660 -- This routine recomputes the vector of simplex multipliers for the |
|
661 -- adjacent basis. */ |
|
662 |
|
663 void ssx_update_pi(SSX *ssx) |
|
664 { int m = ssx->m; |
|
665 int n = ssx->n; |
|
666 mpq_t *pi = ssx->pi; |
|
667 mpq_t *cbar = ssx->cbar; |
|
668 int p = ssx->p; |
|
669 int q = ssx->q; |
|
670 mpq_t *aq = ssx->aq; |
|
671 mpq_t *rho = ssx->rho; |
|
672 int i; |
|
673 mpq_t new_dq, temp; |
|
674 mpq_init(new_dq); |
|
675 mpq_init(temp); |
|
676 xassert(1 <= p && p <= m); |
|
677 xassert(1 <= q && q <= n); |
|
678 /* compute d[q] in the adjacent basis */ |
|
679 mpq_div(new_dq, cbar[q], aq[p]); |
|
680 /* update the vector of simplex multipliers */ |
|
681 for (i = 1; i <= m; i++) |
|
682 { if (mpq_sgn(rho[i]) == 0) continue; |
|
683 mpq_mul(temp, new_dq, rho[i]); |
|
684 mpq_sub(pi[i], pi[i], temp); |
|
685 } |
|
686 mpq_clear(new_dq); |
|
687 mpq_clear(temp); |
|
688 return; |
|
689 } |
|
690 |
|
691 /*---------------------------------------------------------------------- |
|
692 // ssx_update_cbar - update reduced costs of non-basic variables. |
|
693 // |
|
694 // This routine recomputes the vector of reduced costs of non-basic |
|
695 // variables for the adjacent basis. */ |
|
696 |
|
697 void ssx_update_cbar(SSX *ssx) |
|
698 { int m = ssx->m; |
|
699 int n = ssx->n; |
|
700 mpq_t *cbar = ssx->cbar; |
|
701 int p = ssx->p; |
|
702 int q = ssx->q; |
|
703 mpq_t *ap = ssx->ap; |
|
704 int j; |
|
705 mpq_t temp; |
|
706 mpq_init(temp); |
|
707 xassert(1 <= p && p <= m); |
|
708 xassert(1 <= q && q <= n); |
|
709 /* compute d[q] in the adjacent basis */ |
|
710 /* d.new[q] = d[q] / alfa[p,q] */ |
|
711 mpq_div(cbar[q], cbar[q], ap[q]); |
|
712 /* update reduced costs of other non-basic variables */ |
|
713 for (j = 1; j <= n; j++) |
|
714 { if (j == q) continue; |
|
715 /* d.new[j] = d[j] - (alfa[p,j] / alfa[p,q]) * d[q] */ |
|
716 if (mpq_sgn(ap[j]) == 0) continue; |
|
717 mpq_mul(temp, ap[j], cbar[q]); |
|
718 mpq_sub(cbar[j], cbar[j], temp); |
|
719 } |
|
720 mpq_clear(temp); |
|
721 return; |
|
722 } |
|
723 |
|
724 /*---------------------------------------------------------------------- |
|
725 // ssx_change_basis - change current basis to adjacent one. |
|
726 // |
|
727 // This routine changes the current basis to the adjacent one swapping |
|
728 // basic variable xB[p] and non-basic variable xN[q]. */ |
|
729 |
|
730 void ssx_change_basis(SSX *ssx) |
|
731 { int m = ssx->m; |
|
732 int n = ssx->n; |
|
733 int *type = ssx->type; |
|
734 int *stat = ssx->stat; |
|
735 int *Q_row = ssx->Q_row; |
|
736 int *Q_col = ssx->Q_col; |
|
737 int p = ssx->p; |
|
738 int q = ssx->q; |
|
739 int p_stat = ssx->p_stat; |
|
740 int k, kp, kq; |
|
741 if (p < 0) |
|
742 { /* special case: xN[q] goes to its opposite bound */ |
|
743 xassert(1 <= q && q <= n); |
|
744 k = Q_col[m+q]; /* x[k] = xN[q] */ |
|
745 xassert(type[k] == SSX_DB); |
|
746 switch (stat[k]) |
|
747 { case SSX_NL: |
|
748 stat[k] = SSX_NU; |
|
749 break; |
|
750 case SSX_NU: |
|
751 stat[k] = SSX_NL; |
|
752 break; |
|
753 default: |
|
754 xassert(stat != stat); |
|
755 } |
|
756 } |
|
757 else |
|
758 { /* xB[p] leaves the basis, xN[q] enters the basis */ |
|
759 xassert(1 <= p && p <= m); |
|
760 xassert(1 <= q && q <= n); |
|
761 kp = Q_col[p]; /* x[kp] = xB[p] */ |
|
762 kq = Q_col[m+q]; /* x[kq] = xN[q] */ |
|
763 /* check non-basic status of xB[p] which becomes xN[q] */ |
|
764 switch (type[kp]) |
|
765 { case SSX_FR: |
|
766 xassert(p_stat == SSX_NF); |
|
767 break; |
|
768 case SSX_LO: |
|
769 xassert(p_stat == SSX_NL); |
|
770 break; |
|
771 case SSX_UP: |
|
772 xassert(p_stat == SSX_NU); |
|
773 break; |
|
774 case SSX_DB: |
|
775 xassert(p_stat == SSX_NL || p_stat == SSX_NU); |
|
776 break; |
|
777 case SSX_FX: |
|
778 xassert(p_stat == SSX_NS); |
|
779 break; |
|
780 default: |
|
781 xassert(type != type); |
|
782 } |
|
783 /* swap xB[p] and xN[q] */ |
|
784 stat[kp] = (char)p_stat, stat[kq] = SSX_BS; |
|
785 Q_row[kp] = m+q, Q_row[kq] = p; |
|
786 Q_col[p] = kq, Q_col[m+q] = kp; |
|
787 /* update factorization of the basis matrix */ |
|
788 if (bfx_update(ssx->binv, p)) |
|
789 { if (ssx_factorize(ssx)) |
|
790 xassert(("Internal error: basis matrix is singular", 0)); |
|
791 } |
|
792 } |
|
793 return; |
|
794 } |
|
795 |
|
796 /*---------------------------------------------------------------------- |
|
797 // ssx_delete - delete simplex solver workspace. |
|
798 // |
|
799 // This routine deletes the simplex solver workspace freeing all the |
|
800 // memory allocated to this object. */ |
|
801 |
|
802 void ssx_delete(SSX *ssx) |
|
803 { int m = ssx->m; |
|
804 int n = ssx->n; |
|
805 int nnz = ssx->A_ptr[n+1]-1; |
|
806 int i, j, k; |
|
807 xfree(ssx->type); |
|
808 for (k = 1; k <= m+n; k++) mpq_clear(ssx->lb[k]); |
|
809 xfree(ssx->lb); |
|
810 for (k = 1; k <= m+n; k++) mpq_clear(ssx->ub[k]); |
|
811 xfree(ssx->ub); |
|
812 for (k = 0; k <= m+n; k++) mpq_clear(ssx->coef[k]); |
|
813 xfree(ssx->coef); |
|
814 xfree(ssx->A_ptr); |
|
815 xfree(ssx->A_ind); |
|
816 for (k = 1; k <= nnz; k++) mpq_clear(ssx->A_val[k]); |
|
817 xfree(ssx->A_val); |
|
818 xfree(ssx->stat); |
|
819 xfree(ssx->Q_row); |
|
820 xfree(ssx->Q_col); |
|
821 bfx_delete_binv(ssx->binv); |
|
822 for (i = 0; i <= m; i++) mpq_clear(ssx->bbar[i]); |
|
823 xfree(ssx->bbar); |
|
824 for (i = 1; i <= m; i++) mpq_clear(ssx->pi[i]); |
|
825 xfree(ssx->pi); |
|
826 for (j = 1; j <= n; j++) mpq_clear(ssx->cbar[j]); |
|
827 xfree(ssx->cbar); |
|
828 for (i = 1; i <= m; i++) mpq_clear(ssx->rho[i]); |
|
829 xfree(ssx->rho); |
|
830 for (j = 1; j <= n; j++) mpq_clear(ssx->ap[j]); |
|
831 xfree(ssx->ap); |
|
832 for (i = 1; i <= m; i++) mpq_clear(ssx->aq[i]); |
|
833 xfree(ssx->aq); |
|
834 mpq_clear(ssx->delta); |
|
835 xfree(ssx); |
|
836 return; |
|
837 } |
|
838 |
|
839 /* eof */ |