|
1 # DIST, a product distribution model |
|
2 # |
|
3 # References: |
|
4 # Robert Fourer, David M. Gay and Brian W. Kernighan, "A Modeling Language |
|
5 # for Mathematical Programming." Management Science 36 (1990) 519-554. |
|
6 |
|
7 ### SHIPPING SETS AND PARAMETERS ### |
|
8 |
|
9 set whse 'warehouses'; # Locations from which demand is satisfied |
|
10 |
|
11 set dctr 'distribution centers' within whse; |
|
12 |
|
13 # Locations from which product may be shipped |
|
14 |
|
15 param sc 'shipping cost' {dctr,whse} >= 0; |
|
16 |
|
17 # Shipping costs, to whse from dctr, in $ / 100 lb |
|
18 |
|
19 param huge 'largest shipping cost' > 0; |
|
20 |
|
21 # Largest cost allowed for a usable shipping route |
|
22 |
|
23 param msr 'minimum size restriction' {dctr,whse} logical; |
|
24 |
|
25 # True indicates a minimum-size restriction on |
|
26 # direct shipments using this dctr --> whse route |
|
27 |
|
28 param dsr 'direct shipment requirement' {dctr} >= 0; |
|
29 |
|
30 # Minimum total demand, in pallets, needed to |
|
31 # allow shipment on routes subject to the |
|
32 # minimum size restriction |
|
33 |
|
34 ### PLANT SETS AND PARAMETERS ### |
|
35 |
|
36 set fact 'factories' within dctr; |
|
37 |
|
38 # Locations where product is manufactured |
|
39 |
|
40 param rtmin 'regular-time total minimum' >= 0; |
|
41 |
|
42 # Lower limit on (average) total regular-time |
|
43 # crews employed at all factories |
|
44 |
|
45 param rtmax 'regular-time total maximum' >= rtmin; |
|
46 |
|
47 # Upper limit on (average) total regular-time |
|
48 # crews employed at all factories |
|
49 |
|
50 param otmin 'overtime total minimum' >= 0; |
|
51 |
|
52 # Lower limit on total overtime hours at all factories |
|
53 |
|
54 param otmax 'overtime total maximum' >= otmin; |
|
55 |
|
56 # Upper limit on total overtime hours at all factories |
|
57 |
|
58 param rmin 'regular-time minimums' {fact} >= 0; |
|
59 |
|
60 # Lower limits on (average) regular-time crews |
|
61 |
|
62 param rmax 'regular-time maximums' {f in fact} >= rmin[f]; |
|
63 |
|
64 # Upper limits on (average) regular-time crews |
|
65 |
|
66 param omin 'overtime minimums' {fact} >= 0; |
|
67 |
|
68 # Lower limits on overtime hours |
|
69 |
|
70 param omax 'overtime maximums' {f in fact} >= omin[f]; |
|
71 |
|
72 # Upper limits on overtime hours |
|
73 |
|
74 param hd 'hours per day' {fact} >= 0; |
|
75 |
|
76 # Regular-time hours per working day |
|
77 |
|
78 param dp 'days in period' {fact} > 0; |
|
79 |
|
80 # Working days in the current planning period |
|
81 |
|
82 ### PRODUCT SETS AND PARAMETERS ### |
|
83 |
|
84 set prd 'products'; # Elements of the product group |
|
85 |
|
86 param wt 'weight' {prd} > 0; |
|
87 |
|
88 # Weight in 100 lb / 1000 cases |
|
89 |
|
90 param cpp 'cases per pallet' {prd} > 0; |
|
91 |
|
92 # Cases of product per shipping pallet |
|
93 |
|
94 param tc 'transshipment cost' {prd} >= 0; |
|
95 |
|
96 # Transshipment cost in $ / 1000 cases |
|
97 |
|
98 param pt 'production time' {prd,fact} >= 0; |
|
99 |
|
100 # Crew-hours to produce 1000 cases |
|
101 |
|
102 param rpc 'regular-time production cost' {prd,fact} >= 0; |
|
103 |
|
104 # Cost of production on regular time, |
|
105 # in $ / 1000 cases |
|
106 |
|
107 param opc 'overtime production cost' {prd,fact} >= 0; |
|
108 |
|
109 # Cost of production on overtime, in $ / 1000 cases |
|
110 |
|
111 ### DEMAND SETS AND PARAMETERS ### |
|
112 |
|
113 param dt 'total demand' {prd} >= 0; |
|
114 |
|
115 # Total demands for products, in 1000s |
|
116 |
|
117 param ds 'demand shares' {prd,whse} >= 0.0, <= 1.0; |
|
118 |
|
119 # Historical demand data, from which each |
|
120 # warehouse's share of total demand is deduced |
|
121 |
|
122 param dstot {p in prd} := sum {w in whse} ds[p,w]; |
|
123 |
|
124 # Total of demand shares; should be 1, but often isn't |
|
125 |
|
126 param dem 'demand' {p in prd, w in whse} := dt[p] * ds[p,w] / dstot[p]; |
|
127 |
|
128 # Projected demands to be satisfied, in 1000s |
|
129 |
|
130 set rt 'shipping routes available' := |
|
131 |
|
132 {d in dctr, w in whse: |
|
133 d <> w and sc[d,w] < huge and |
|
134 (w in dctr or sum {p in prd} dem[p,w] > 0) and |
|
135 not (msr[d,w] and sum {p in prd} 1000*dem[p,w]/cpp[p] < dsr[d]) }; |
|
136 |
|
137 # List of ordered pairs that represent routes |
|
138 # on which shipments are allowed |
|
139 |
|
140 ### VARIABLES ### |
|
141 |
|
142 var Rprd 'regular-time production' {prd,fact} >= 0; |
|
143 |
|
144 # Regular-time production of each product |
|
145 # at each factory, in 1000s of cases |
|
146 |
|
147 var Oprd 'overtime production' {prd,fact} >= 0; |
|
148 |
|
149 # Overtime production of each product |
|
150 # at each factory, in 1000s of cases |
|
151 |
|
152 var Ship 'shipments' {prd,rt} >= 0; |
|
153 |
|
154 # Shipments of each product on each allowed route, |
|
155 # in 1000s of cases |
|
156 |
|
157 var Trans 'transshipments' {prd,dctr} >= 0; |
|
158 |
|
159 # Transshipments of each product at each |
|
160 # distribution center, in 1000s of cases |
|
161 |
|
162 ### OBJECTIVE ### |
|
163 |
|
164 minimize cost: sum {p in prd, f in fact} rpc[p,f] * Rprd[p,f] + |
|
165 sum {p in prd, f in fact} opc[p,f] * Oprd[p,f] + |
|
166 sum {p in prd, (d,w) in rt} sc[d,w] * wt[p] * Ship[p,d,w] + |
|
167 sum {p in prd, d in dctr} tc[p] * Trans[p,d]; |
|
168 |
|
169 # Total cost: regular production, overtime |
|
170 # production, shipping, and transshipment |
|
171 |
|
172 ### CONSTRAINTS ### |
|
173 |
|
174 rtlim 'regular-time total limits': |
|
175 |
|
176 rtmin <= sum {p in prd, f in fact} |
|
177 (pt[p,f] * Rprd[p,f]) / (dp[f] * hd[f]) <= rtmax; |
|
178 |
|
179 # Total crews must lie between limits |
|
180 |
|
181 otlim 'overtime total limits': |
|
182 |
|
183 otmin <= sum {p in prd, f in fact} pt[p,f] * Oprd[p,f] <= otmax; |
|
184 |
|
185 # Total overtime must lie between limits |
|
186 |
|
187 rlim 'regular-time limits' {f in fact}: |
|
188 |
|
189 rmin[f] <= sum {p in prd} |
|
190 (pt[p,f] * Rprd[p,f]) / (dp[f] * hd[f]) <= rmax[f]; |
|
191 |
|
192 # Crews at each factory must lie between limits |
|
193 |
|
194 olim 'overtime limits' {f in fact}: |
|
195 |
|
196 omin[f] <= sum {p in prd} pt[p,f] * Oprd[p,f] <= omax[f]; |
|
197 |
|
198 # Overtime at each factory must lie between limits |
|
199 |
|
200 noRprd 'no regular production' {p in prd, f in fact: rpc[p,f] = 0}: |
|
201 |
|
202 Rprd[p,f] = 0; |
|
203 |
|
204 noOprd 'no overtime production' {p in prd, f in fact: opc[p,f] = 0}: |
|
205 |
|
206 Oprd[p,f] = 0; # Do not produce where specified cost is zero |
|
207 |
|
208 bal 'material balance' {p in prd, w in whse}: |
|
209 |
|
210 sum {(v,w) in rt} |
|
211 Ship [p,v,w] + (if w in fact then Rprd[p,w] + Oprd[p,w]) = |
|
212 |
|
213 dem[p,w] + (if w in dctr then sum {(w,v) in rt} Ship[p,w,v]); |
|
214 |
|
215 # Demand is satisfied by shipment into warehouse |
|
216 # plus production (if it is a factory) |
|
217 # minus shipment out (if it is a distn. center) |
|
218 |
|
219 trdef 'transshipment definition' {p in prd, d in dctr}: |
|
220 |
|
221 Trans[p,d] >= sum {(d,w) in rt} Ship [p,d,w] - |
|
222 (if d in fact then Rprd[p,d] + Oprd[p,d]); |
|
223 |
|
224 # Transshipment at a distribution center is |
|
225 # shipments out less production (if any) |
|
226 |
|
227 ### DATA -- 3 PRODUCTS ### |
|
228 |
|
229 data; |
|
230 |
|
231 set prd := 18REG 24REG 24PRO ; |
|
232 |
|
233 set whse := w01 w02 w03 w04 w05 w06 w08 w09 w12 w14 w15 w17 |
|
234 w18 w19 w20 w21 w24 w25 w26 w27 w28 w29 w30 w31 |
|
235 w32 w33 w34 w35 w36 w37 w38 w39 w40 w41 w42 w43 |
|
236 w44 w45 w46 w47 w48 w49 w50 w51 w53 w54 w55 w56 |
|
237 w57 w59 w60 w61 w62 w63 w64 w65 w66 w68 w69 w71 |
|
238 w72 w73 w74 w75 w76 w77 w78 w79 w80 w81 w82 w83 |
|
239 w84 w85 w86 w87 w89 w90 w91 w92 w93 w94 w95 w96 |
|
240 w98 x22 x23 ; |
|
241 |
|
242 set dctr := w01 w02 w03 w04 w05 w62 w76 w96 ; |
|
243 |
|
244 set fact := w01 w05 w96 ; |
|
245 |
|
246 param huge := 99. ; |
|
247 |
|
248 param rtmin := 0.0 ; |
|
249 param rtmax := 8.0 ; |
|
250 |
|
251 param otmin := 0.0 ; |
|
252 param otmax := 96.0 ; |
|
253 |
|
254 param rmin := w01 0.00 w05 0.00 w96 0.00 ; |
|
255 param rmax := w01 3.00 w05 2.00 w96 3.00 ; |
|
256 |
|
257 param omin := w01 0.0 w05 0.0 w96 0.0 ; |
|
258 param omax := w01 48.0 w05 0.0 w96 48.0 ; |
|
259 |
|
260 param hd := w01 8.0 w05 8.0 w96 8.0 ; |
|
261 |
|
262 param dp := w01 19.0 w05 19.0 w96 19.0 ; |
|
263 |
|
264 param wt := 18REG 47.3 24REG 63.0 24PRO 63.0 ; |
|
265 |
|
266 param tc := 18REG 40.00 24REG 45.00 24PRO 45.00 ; |
|
267 |
|
268 param dt := 18REG 376.0 24REG 172.4 24PRO 316.3 ; |
|
269 |
|
270 param cpp := 18REG 102. 24REG 91. 24PRO 91. ; |
|
271 |
|
272 param dsr := w01 96. w02 96. w03 96. w04 96. w05 96. |
|
273 w62 96. w76 96. w96 96. ; |
|
274 |
|
275 param pt (tr) : |
|
276 |
|
277 18REG 24REG 24PRO := |
|
278 |
|
279 w01 1.194 1.429 1.429 |
|
280 w05 1.194 1.509 1.509 |
|
281 w96 0.000 1.600 1.600 ; |
|
282 |
|
283 param rpc (tr) : |
|
284 |
|
285 18REG 24REG 24PRO := |
|
286 |
|
287 w01 2119. 2653. 2617. |
|
288 w05 2489. 3182. 3176. |
|
289 w96 0. 2925. 2918. ; |
|
290 |
|
291 param opc (tr) : |
|
292 |
|
293 18REG 24REG 24PRO := |
|
294 |
|
295 w01 2903. 3585. 3579. |
|
296 w05 0. 0. 0. |
|
297 w96 0. 3629. 3622. ; |
|
298 |
|
299 param sc default 99.99 (tr) : |
|
300 |
|
301 w01 w02 w03 w04 w05 w62 w76 w96 := |
|
302 |
|
303 w01 . 2.97 1.14 2.08 2.37 1.26 2.42 1.43 |
|
304 w02 4.74 . 4.17 6.12 7.41 3.78 7.04 5.21 |
|
305 w03 2.45 4.74 . 3.67 2.84 0.90 2.41 2.55 |
|
306 w04 1.74 5.03 2.43 . 3.19 2.45 2.69 0.58 |
|
307 w05 2.70 5.16 2.84 2.85 . 3.26 3.34 2.71 |
|
308 w06 1.99 4.17 2.13 2.19 2.52 2.06 2.00 1.51 |
|
309 w08 0.21 2.92 1.24 2.07 2.29 1.25 2.32 1.55 |
|
310 w09 0.66 3.76 1.41 2.47 1.82 1.66 . 1.87 |
|
311 w12 1.38 3.83 1.68 2.53 2.39 . 1.96 1.94 |
|
312 w14 2.47 1.58 2.40 3.59 3.85 2.25 . 3.05 |
|
313 w15 1.06 4.95 2.48 1.39 3.41 1.96 . 1.02 |
|
314 w17 0.88 3.39 1.46 2.00 2.67 1.45 . 1.46 |
|
315 w18 7.90 6.57 7.79 9.59 10.81 . . 6.70 |
|
316 w19 1.42 4.12 1.96 1.99 3.52 1.88 . 1.26 |
|
317 w20 3.03 1.59 2.34 4.76 3.98 1.88 . 3.73 |
|
318 w24 1.58 2.80 2.27 2.87 3.19 1.31 . 2.05 |
|
319 w25 1.51 5.05 2.74 0.57 2.98 . 2.95 0.27 |
|
320 w26 1.75 3.61 2.70 1.54 4.07 3.52 . 1.03 |
|
321 w27 2.48 6.87 3.17 1.59 2.08 3.45 . 0.99 |
|
322 w28 2.05 6.83 2.97 1.13 2.91 . . 1.26 |
|
323 w29 4.03 3.68 4.46 3.20 5.50 . . 3.20 |
|
324 w30 2.48 5.78 2.99 2.24 1.79 3.10 . 1.39 |
|
325 w31 2.34 5.41 2.87 1.67 1.66 . . 1.39 |
|
326 w32 14.36 . . . . . . . |
|
327 w33 3.87 4.27 5.11 3.48 5.66 4.03 . 3.05 |
|
328 w34 3.26 4.80 3.21 2.70 4.14 . . 1.77 |
|
329 w35 2.34 2.84 2.89 3.35 3.78 2.68 . 2.52 |
|
330 w36 2.43 5.69 2.96 2.95 1.02 2.61 1.07 2.54 |
|
331 w37 2.23 4.64 2.41 1.99 4.30 2.61 . 1.44 |
|
332 w38 4.66 4.36 5.23 3.04 4.46 . . 3.82 |
|
333 w39 1.11 3.51 1.10 2.53 3.07 1.12 . 2.23 |
|
334 w40 2.99 4.78 4.23 1.57 3.92 . . 1.80 |
|
335 w41 4.93 4.00 5.43 4.45 6.31 . . 3.81 |
|
336 w42 3.86 6.55 5.03 2.11 4.41 . . 2.63 |
|
337 w43 4.61 4.45 3.77 1.22 4.31 . . 2.35 |
|
338 w44 2.05 4.48 1.06 3.70 3.46 1.10 . 3.21 |
|
339 w45 0.92 3.42 1.58 3.04 1.82 1.94 . 2.52 |
|
340 w46 1.36 2.44 0.95 3.08 2.78 0.39 2.16 2.37 |
|
341 w47 1.30 3.39 1.60 2.49 4.29 2.04 . 1.68 |
|
342 w48 1.65 3.78 1.03 2.97 2.21 1.31 . 2.74 |
|
343 w49 1.96 3.00 1.50 3.24 3.68 1.00 . 2.99 |
|
344 w50 0.90 4.14 1.60 1.95 3.61 1.61 . 1.52 |
|
345 w51 1.59 3.95 0.25 2.96 2.58 1.00 2.41 2.71 |
|
346 w53 1.59 3.79 1.28 3.12 3.10 0.89 . 2.98 |
|
347 w54 1.72 4.36 1.61 2.92 2.34 1.91 1.97 3.05 |
|
348 w55 2.45 2.73 2.21 4.47 4.30 2.57 . 4.48 |
|
349 w56 1.10 3.73 1.59 2.74 2.33 1.45 . 2.44 |
|
350 w57 0.95 3.39 1.37 2.30 2.47 1.15 . 1.95 |
|
351 w59 3.29 5.35 3.32 3.81 1.52 3.38 1.34 4.08 |
|
352 w60 2.41 6.12 2.46 3.65 2.35 . 1.37 4.06 |
|
353 w61 3.32 5.50 3.41 3.38 1.23 . 0.99 4.28 |
|
354 w62 1.12 3.00 0.82 3.22 2.95 . 3.33 2.53 |
|
355 w63 3.59 6.36 3.25 4.12 1.84 3.59 1.46 4.03 |
|
356 w64 1.85 4.45 2.17 3.43 2.13 2.03 . 4.02 |
|
357 w65 2.78 4.79 2.81 2.94 1.54 2.90 1.07 2.94 |
|
358 w66 3.90 5.79 3.05 3.65 1.36 3.39 1.22 3.57 |
|
359 w68 2.61 5.20 2.90 2.34 1.68 3.19 1.48 2.31 |
|
360 w69 2.94 5.21 2.78 3.43 0.21 3.26 0.68 2.54 |
|
361 w71 2.06 4.98 2.38 2.44 1.59 2.97 1.05 2.55 |
|
362 w72 2.61 5.50 2.83 3.12 1.35 3.23 0.88 2.99 |
|
363 w73 8.52 6.16 8.03 8.83 10.44 7.38 10.26 . |
|
364 w74 6.11 5.46 9.07 9.38 10.80 . . 8.25 |
|
365 w75 2.66 4.94 2.87 3.69 1.52 3.15 1.24 4.00 |
|
366 w76 1.99 5.26 2.23 3.36 0.58 3.17 . 2.50 |
|
367 w77 4.32 3.07 5.05 3.88 6.04 . . 4.15 |
|
368 w78 5.60 2.59 5.78 5.56 7.10 . . 5.60 |
|
369 w79 4.25 2.32 4.93 4.57 6.04 . . 4.58 |
|
370 w80 5.94 4.00 5.60 7.02 9.46 . . 7.51 |
|
371 w81 5.39 2.21 5.10 6.22 6.46 . . 6.58 |
|
372 w82 8.80 5.69 9.29 9.88 11.69 8.63 11.52 . |
|
373 w83 4.40 . 5.24 5.21 5.81 3.91 7.04 5.33 |
|
374 w84 5.87 5.43 6.17 5.70 7.63 . . 5.70 |
|
375 w85 3.90 3.65 3.38 4.57 5.64 3.05 . 5.04 |
|
376 w86 5.48 2.10 5.70 6.37 7.33 . . 6.19 |
|
377 w87 8.88 5.54 9.50 9.71 11.64 8.85 11.68 . |
|
378 w89 4.62 4.01 4.03 6.30 6.30 3.81 . 7.77 |
|
379 w90 4.35 2.72 4.61 4.01 5.60 . . 3.20 |
|
380 w91 7.61 4.42 7.83 6.85 8.79 . . 7.66 |
|
381 w92 7.15 2.69 6.91 7.20 . . . 7.06 |
|
382 w93 3.17 3.95 4.37 3.74 5.05 . . 2.40 |
|
383 w94 1.21 3.07 0.90 2.74 3.17 . 2.63 2.39 |
|
384 w95 5.82 3.29 6.55 7.06 11.47 . . 7.83 |
|
385 w96 1.77 5.20 2.72 0.59 3.47 2.48 . . |
|
386 w98 3.04 1.92 3.64 3.70 4.90 3.05 . 3.88 |
|
387 x22 4.08 6.25 4.15 4.30 1.77 . 1.77 . |
|
388 x23 3.39 5.74 3.55 4.08 1.69 . 1.47 . ; |
|
389 |
|
390 param msr (tr) : |
|
391 |
|
392 w01 w02 w03 w04 w05 w62 w76 w96 := |
|
393 |
|
394 w01 0 0 0 0 0 0 1 0 |
|
395 w02 0 0 0 0 0 0 1 0 |
|
396 w03 0 0 0 0 0 0 1 0 |
|
397 w04 0 0 0 0 0 0 1 0 |
|
398 w05 0 0 0 0 0 0 0 0 |
|
399 w06 0 1 1 1 1 1 1 1 |
|
400 w08 0 1 1 1 1 1 1 1 |
|
401 w09 0 1 1 1 1 1 0 1 |
|
402 w12 0 1 1 1 1 0 1 1 |
|
403 w14 1 1 1 1 1 0 0 1 |
|
404 w15 0 1 1 1 1 1 0 1 |
|
405 w17 0 1 1 1 1 1 0 1 |
|
406 w18 0 1 1 1 1 0 0 1 |
|
407 w19 0 1 1 1 1 0 0 1 |
|
408 w20 1 1 1 1 1 0 0 1 |
|
409 w24 0 1 1 1 1 0 0 1 |
|
410 w25 0 1 1 1 1 0 1 0 |
|
411 w26 1 1 1 0 1 1 0 1 |
|
412 w27 1 1 1 0 1 1 0 1 |
|
413 w28 1 1 1 0 1 0 0 1 |
|
414 w29 0 1 1 1 1 0 0 1 |
|
415 w30 1 1 1 0 1 1 0 1 |
|
416 w31 1 1 1 0 1 0 0 1 |
|
417 w32 0 0 0 0 0 0 0 0 |
|
418 w33 1 0 1 1 1 1 0 1 |
|
419 w34 1 1 1 0 1 0 0 1 |
|
420 w35 1 1 1 1 1 0 0 1 |
|
421 w36 0 1 1 1 0 1 1 1 |
|
422 w37 1 1 1 0 1 1 0 1 |
|
423 w38 1 1 1 0 1 0 0 1 |
|
424 w39 0 1 1 1 1 1 0 1 |
|
425 w40 1 1 1 0 1 0 0 1 |
|
426 w41 1 0 1 1 1 0 0 1 |
|
427 w42 1 1 1 0 1 0 0 1 |
|
428 w43 1 1 1 0 1 0 0 1 |
|
429 w44 1 1 1 1 1 0 0 1 |
|
430 w45 0 1 1 1 1 1 0 1 |
|
431 w46 0 1 1 1 1 0 1 1 |
|
432 w47 0 1 1 1 1 1 0 1 |
|
433 w48 0 1 1 1 1 0 0 1 |
|
434 w49 1 1 1 1 1 0 0 1 |
|
435 w50 0 1 1 1 1 1 0 1 |
|
436 w51 0 1 1 1 1 0 1 1 |
|
437 w53 1 1 1 1 1 0 0 1 |
|
438 w54 0 1 1 1 1 1 1 1 |
|
439 w55 0 1 1 1 1 0 0 1 |
|
440 w56 0 1 1 1 1 1 0 1 |
|
441 w57 0 1 1 1 1 1 0 1 |
|
442 w59 0 1 1 1 0 1 1 1 |
|
443 w60 0 1 1 1 1 0 1 1 |
|
444 w61 0 1 1 1 0 0 1 1 |
|
445 w62 0 0 0 0 0 0 1 0 |
|
446 w63 0 1 1 1 0 1 1 1 |
|
447 w64 0 1 1 1 1 1 0 1 |
|
448 w65 0 1 1 1 0 1 1 1 |
|
449 w66 0 1 1 1 0 1 1 1 |
|
450 w68 0 1 1 1 0 1 1 1 |
|
451 w69 0 1 1 1 0 1 1 1 |
|
452 w71 0 1 1 1 0 1 1 1 |
|
453 w72 0 1 1 1 0 1 1 1 |
|
454 w73 0 1 1 1 0 1 1 0 |
|
455 w74 0 1 1 1 0 0 0 1 |
|
456 w75 0 1 1 1 0 1 1 1 |
|
457 w76 0 0 0 0 0 0 0 0 |
|
458 w77 1 0 1 1 1 0 0 1 |
|
459 w78 1 0 1 1 1 0 0 1 |
|
460 w79 1 0 1 1 1 0 0 1 |
|
461 w80 1 0 1 1 1 0 0 1 |
|
462 w81 1 0 1 1 1 0 0 1 |
|
463 w82 1 0 1 1 1 1 1 0 |
|
464 w83 1 0 1 1 1 0 1 1 |
|
465 w84 1 0 1 1 1 0 0 1 |
|
466 w85 1 1 1 1 1 0 0 1 |
|
467 w86 1 0 1 1 1 0 0 1 |
|
468 w87 1 0 1 1 1 1 1 0 |
|
469 w89 1 0 1 1 1 1 0 1 |
|
470 w90 0 1 1 1 1 0 0 1 |
|
471 w91 1 0 1 1 1 0 0 1 |
|
472 w92 1 0 1 1 1 0 0 1 |
|
473 w93 1 1 1 0 1 0 0 1 |
|
474 w94 0 0 1 1 1 0 1 1 |
|
475 w95 1 0 1 1 1 0 0 1 |
|
476 w96 0 0 0 0 0 0 0 0 |
|
477 w98 1 0 1 1 1 1 0 1 |
|
478 x22 1 1 1 1 0 0 1 0 |
|
479 x23 1 1 1 1 0 0 1 0 ; |
|
480 |
|
481 param ds default 0.000 (tr) : |
|
482 |
|
483 18REG 24REG 24PRO := |
|
484 |
|
485 w01 0.000 0.000 0.008 |
|
486 w02 0.004 0.000 0.000 |
|
487 w03 0.000 0.000 0.000 |
|
488 w04 0.010 0.002 0.000 |
|
489 w05 0.000 0.000 0.000 |
|
490 w06 0.010 0.008 0.008 |
|
491 w08 0.030 0.024 0.024 |
|
492 w09 0.014 0.018 0.020 |
|
493 w12 0.014 0.012 0.010 |
|
494 w14 0.007 0.007 0.012 |
|
495 w15 0.010 0.019 0.018 |
|
496 w17 0.013 0.010 0.011 |
|
497 w19 0.015 0.012 0.009 |
|
498 w20 0.012 0.021 0.022 |
|
499 w21 0.000 0.000 0.000 |
|
500 w24 0.012 0.022 0.018 |
|
501 w25 0.019 0.025 0.020 |
|
502 w26 0.006 0.015 0.021 |
|
503 w27 0.008 0.010 0.015 |
|
504 w28 0.011 0.016 0.019 |
|
505 w29 0.008 0.020 0.013 |
|
506 w30 0.011 0.013 0.015 |
|
507 w31 0.011 0.013 0.017 |
|
508 w32 0.006 0.000 0.000 |
|
509 w33 0.000 0.015 0.014 |
|
510 w34 0.008 0.007 0.005 |
|
511 w35 0.002 0.006 0.014 |
|
512 w36 0.015 0.013 0.005 |
|
513 w37 0.017 0.016 0.015 |
|
514 w38 0.015 0.009 0.012 |
|
515 w39 0.007 0.017 0.022 |
|
516 w40 0.009 0.014 0.020 |
|
517 w41 0.003 0.014 0.011 |
|
518 w42 0.017 0.011 0.012 |
|
519 w43 0.009 0.013 0.011 |
|
520 w44 0.002 0.012 0.012 |
|
521 w45 0.016 0.025 0.028 |
|
522 w46 0.038 0.062 0.040 |
|
523 w47 0.007 0.010 0.010 |
|
524 w48 0.003 0.015 0.016 |
|
525 w49 0.005 0.016 0.017 |
|
526 w50 0.011 0.008 0.007 |
|
527 w51 0.010 0.022 0.021 |
|
528 w53 0.004 0.026 0.020 |
|
529 w54 0.020 0.017 0.025 |
|
530 w55 0.004 0.019 0.028 |
|
531 w56 0.004 0.010 0.008 |
|
532 w57 0.014 0.020 0.018 |
|
533 w59 0.012 0.006 0.007 |
|
534 w60 0.019 0.010 0.009 |
|
535 w61 0.028 0.010 0.012 |
|
536 w62 0.000 0.000 0.000 |
|
537 w63 0.070 0.027 0.037 |
|
538 w64 0.009 0.004 0.005 |
|
539 w65 0.022 0.015 0.016 |
|
540 w66 0.046 0.017 0.020 |
|
541 w68 0.005 0.012 0.016 |
|
542 w69 0.085 0.036 0.039 |
|
543 w71 0.011 0.013 0.010 |
|
544 w72 0.089 0.031 0.034 |
|
545 w75 0.026 0.012 0.010 |
|
546 w77 0.001 0.004 0.002 |
|
547 w78 0.002 0.004 0.002 |
|
548 w79 0.001 0.004 0.002 |
|
549 w80 0.001 0.001 0.002 |
|
550 w81 0.001 0.003 0.002 |
|
551 w83 0.009 0.010 0.008 |
|
552 w84 0.001 0.002 0.002 |
|
553 w85 0.001 0.004 0.005 |
|
554 w86 0.001 0.002 0.002 |
|
555 w87 0.002 0.003 0.000 |
|
556 w89 0.001 0.001 0.002 |
|
557 w90 0.006 0.017 0.013 |
|
558 w91 0.002 0.010 0.013 |
|
559 w92 0.000 0.003 0.002 |
|
560 w93 0.002 0.006 0.007 |
|
561 w95 0.001 0.007 0.007 |
|
562 w96 0.000 0.000 0.000 |
|
563 w98 0.006 0.005 0.002 ; |
|
564 |
|
565 end; |