|
1 # PROD, a multiperiod production model |
|
2 # |
|
3 # References: |
|
4 # Robert Fourer, David M. Gay and Brian W. Kernighan, "A Modeling Language |
|
5 # for Mathematical Programming." Management Science 36 (1990) 519-554. |
|
6 |
|
7 ### PRODUCTION SETS AND PARAMETERS ### |
|
8 |
|
9 set prd 'products'; # Members of the product group |
|
10 |
|
11 param pt 'production time' {prd} > 0; |
|
12 |
|
13 # Crew-hours to produce 1000 units |
|
14 |
|
15 param pc 'production cost' {prd} > 0; |
|
16 |
|
17 # Nominal production cost per 1000, used |
|
18 # to compute inventory and shortage costs |
|
19 |
|
20 ### TIME PERIOD SETS AND PARAMETERS ### |
|
21 |
|
22 param first > 0 integer; |
|
23 # Index of first production period to be modeled |
|
24 |
|
25 param last > first integer; |
|
26 |
|
27 # Index of last production period to be modeled |
|
28 |
|
29 set time 'planning horizon' := first..last; |
|
30 |
|
31 ### EMPLOYMENT PARAMETERS ### |
|
32 |
|
33 param cs 'crew size' > 0 integer; |
|
34 |
|
35 # Workers per crew |
|
36 |
|
37 param sl 'shift length' > 0; |
|
38 |
|
39 # Regular-time hours per shift |
|
40 |
|
41 param rtr 'regular time rate' > 0; |
|
42 |
|
43 # Wage per hour for regular-time labor |
|
44 |
|
45 param otr 'overtime rate' > rtr; |
|
46 |
|
47 # Wage per hour for overtime labor |
|
48 |
|
49 param iw 'initial workforce' >= 0 integer; |
|
50 |
|
51 # Crews employed at start of first period |
|
52 |
|
53 param dpp 'days per period' {time} > 0; |
|
54 |
|
55 # Regular working days in a production period |
|
56 |
|
57 param ol 'overtime limit' {time} >= 0; |
|
58 |
|
59 # Maximum crew-hours of overtime in a period |
|
60 |
|
61 param cmin 'crew minimum' {time} >= 0; |
|
62 |
|
63 # Lower limit on average employment in a period |
|
64 |
|
65 param cmax 'crew maximum' {t in time} >= cmin[t]; |
|
66 |
|
67 # Upper limit on average employment in a period |
|
68 |
|
69 param hc 'hiring cost' {time} >= 0; |
|
70 |
|
71 # Penalty cost of hiring a crew |
|
72 |
|
73 param lc 'layoff cost' {time} >= 0; |
|
74 |
|
75 # Penalty cost of laying off a crew |
|
76 |
|
77 ### DEMAND PARAMETERS ### |
|
78 |
|
79 param dem 'demand' {prd,first..last+1} >= 0; |
|
80 |
|
81 # Requirements (in 1000s) |
|
82 # to be met from current production and inventory |
|
83 |
|
84 param pro 'promoted' {prd,first..last+1} logical; |
|
85 |
|
86 # true if product will be the subject |
|
87 # of a special promotion in the period |
|
88 |
|
89 ### INVENTORY AND SHORTAGE PARAMETERS ### |
|
90 |
|
91 param rir 'regular inventory ratio' >= 0; |
|
92 |
|
93 # Proportion of non-promoted demand |
|
94 # that must be in inventory the previous period |
|
95 |
|
96 param pir 'promotional inventory ratio' >= 0; |
|
97 |
|
98 # Proportion of promoted demand |
|
99 # that must be in inventory the previous period |
|
100 |
|
101 param life 'inventory lifetime' > 0 integer; |
|
102 |
|
103 # Upper limit on number of periods that |
|
104 # any product may sit in inventory |
|
105 |
|
106 param cri 'inventory cost ratio' {prd} > 0; |
|
107 |
|
108 # Inventory cost per 1000 units is |
|
109 # cri times nominal production cost |
|
110 |
|
111 param crs 'shortage cost ratio' {prd} > 0; |
|
112 |
|
113 # Shortage cost per 1000 units is |
|
114 # crs times nominal production cost |
|
115 |
|
116 param iinv 'initial inventory' {prd} >= 0; |
|
117 |
|
118 # Inventory at start of first period; age unknown |
|
119 |
|
120 param iil 'initial inventory left' {p in prd, t in time} |
|
121 := iinv[p] less sum {v in first..t} dem[p,v]; |
|
122 |
|
123 # Initial inventory still available for allocation |
|
124 # at end of period t |
|
125 |
|
126 param minv 'minimum inventory' {p in prd, t in time} |
|
127 := dem[p,t+1] * (if pro[p,t+1] then pir else rir); |
|
128 |
|
129 # Lower limit on inventory at end of period t |
|
130 |
|
131 ### VARIABLES ### |
|
132 |
|
133 var Crews{first-1..last} >= 0; |
|
134 |
|
135 # Average number of crews employed in each period |
|
136 |
|
137 var Hire{time} >= 0; # Crews hired from previous to current period |
|
138 |
|
139 var Layoff{time} >= 0; # Crews laid off from previous to current period |
|
140 |
|
141 var Rprd 'regular production' {prd,time} >= 0; |
|
142 |
|
143 # Production using regular-time labor, in 1000s |
|
144 |
|
145 var Oprd 'overtime production' {prd,time} >= 0; |
|
146 |
|
147 # Production using overtime labor, in 1000s |
|
148 |
|
149 var Inv 'inventory' {prd,time,1..life} >= 0; |
|
150 |
|
151 # Inv[p,t,a] is the amount of product p that is |
|
152 # a periods old -- produced in period (t+1)-a -- |
|
153 # and still in storage at the end of period t |
|
154 |
|
155 var Short 'shortage' {prd,time} >= 0; |
|
156 |
|
157 # Accumulated unsatisfied demand at the end of period t |
|
158 |
|
159 ### OBJECTIVE ### |
|
160 |
|
161 minimize cost: |
|
162 |
|
163 sum {t in time} rtr * sl * dpp[t] * cs * Crews[t] + |
|
164 sum {t in time} hc[t] * Hire[t] + |
|
165 sum {t in time} lc[t] * Layoff[t] + |
|
166 sum {t in time, p in prd} otr * cs * pt[p] * Oprd[p,t] + |
|
167 sum {t in time, p in prd, a in 1..life} cri[p] * pc[p] * Inv[p,t,a] + |
|
168 sum {t in time, p in prd} crs[p] * pc[p] * Short[p,t]; |
|
169 |
|
170 # Full regular wages for all crews employed, plus |
|
171 # penalties for hiring and layoffs, plus |
|
172 # wages for any overtime worked, plus |
|
173 # inventory and shortage costs |
|
174 |
|
175 # (All other production costs are assumed |
|
176 # to depend on initial inventory and on demands, |
|
177 # and so are not included explicitly.) |
|
178 |
|
179 ### CONSTRAINTS ### |
|
180 |
|
181 rlim 'regular-time limit' {t in time}: |
|
182 |
|
183 sum {p in prd} pt[p] * Rprd[p,t] <= sl * dpp[t] * Crews[t]; |
|
184 |
|
185 # Hours needed to accomplish all regular-time |
|
186 # production in a period must not exceed |
|
187 # hours available on all shifts |
|
188 |
|
189 olim 'overtime limit' {t in time}: |
|
190 |
|
191 sum {p in prd} pt[p] * Oprd[p,t] <= ol[t]; |
|
192 |
|
193 # Hours needed to accomplish all overtime |
|
194 # production in a period must not exceed |
|
195 # the specified overtime limit |
|
196 |
|
197 empl0 'initial crew level': Crews[first-1] = iw; |
|
198 |
|
199 # Use given initial workforce |
|
200 |
|
201 empl 'crew levels' {t in time}: Crews[t] = Crews[t-1] + Hire[t] - Layoff[t]; |
|
202 |
|
203 # Workforce changes by hiring or layoffs |
|
204 |
|
205 emplbnd 'crew limits' {t in time}: cmin[t] <= Crews[t] <= cmax[t]; |
|
206 |
|
207 # Workforce must remain within specified bounds |
|
208 |
|
209 dreq1 'first demand requirement' {p in prd}: |
|
210 |
|
211 Rprd[p,first] + Oprd[p,first] + Short[p,first] |
|
212 - Inv[p,first,1] = dem[p,first] less iinv[p]; |
|
213 |
|
214 dreq 'demand requirements' {p in prd, t in first+1..last}: |
|
215 |
|
216 Rprd[p,t] + Oprd[p,t] + Short[p,t] - Short[p,t-1] |
|
217 + sum {a in 1..life} (Inv[p,t-1,a] - Inv[p,t,a]) |
|
218 = dem[p,t] less iil[p,t-1]; |
|
219 |
|
220 # Production plus increase in shortage plus |
|
221 # decrease in inventory must equal demand |
|
222 |
|
223 ireq 'inventory requirements' {p in prd, t in time}: |
|
224 |
|
225 sum {a in 1..life} Inv[p,t,a] + iil[p,t] >= minv[p,t]; |
|
226 |
|
227 # Inventory in storage at end of period t |
|
228 # must meet specified minimum |
|
229 |
|
230 izero 'impossible inventories' {p in prd, v in 1..life-1, a in v+1..life}: |
|
231 |
|
232 Inv[p,first+v-1,a] = 0; |
|
233 |
|
234 # In the vth period (starting from first) |
|
235 # no inventory may be more than v periods old |
|
236 # (initial inventories are handled separately) |
|
237 |
|
238 ilim1 'new-inventory limits' {p in prd, t in time}: |
|
239 |
|
240 Inv[p,t,1] <= Rprd[p,t] + Oprd[p,t]; |
|
241 |
|
242 # New inventory cannot exceed |
|
243 # production in the most recent period |
|
244 |
|
245 ilim 'inventory limits' {p in prd, t in first+1..last, a in 2..life}: |
|
246 |
|
247 Inv[p,t,a] <= Inv[p,t-1,a-1]; |
|
248 |
|
249 # Inventory left from period (t+1)-p |
|
250 # can only decrease as time goes on |
|
251 |
|
252 ### DATA ### |
|
253 |
|
254 data; |
|
255 |
|
256 set prd := 18REG 24REG 24PRO ; |
|
257 |
|
258 param first := 1 ; |
|
259 param last := 13 ; |
|
260 param life := 2 ; |
|
261 |
|
262 param cs := 18 ; |
|
263 param sl := 8 ; |
|
264 param iw := 8 ; |
|
265 |
|
266 param rtr := 16.00 ; |
|
267 param otr := 43.85 ; |
|
268 param rir := 0.75 ; |
|
269 param pir := 0.80 ; |
|
270 |
|
271 param : pt pc cri crs iinv := |
|
272 |
|
273 18REG 1.194 2304. 0.015 1.100 82.0 |
|
274 24REG 1.509 2920. 0.015 1.100 792.2 |
|
275 24PRO 1.509 2910. 0.015 1.100 0.0 ; |
|
276 |
|
277 param : dpp ol cmin cmax hc lc := |
|
278 |
|
279 1 19.5 96.0 0.0 8.0 7500 7500 |
|
280 2 19.0 96.0 0.0 8.0 7500 7500 |
|
281 3 20.0 96.0 0.0 8.0 7500 7500 |
|
282 4 19.0 96.0 0.0 8.0 7500 7500 |
|
283 5 19.5 96.0 0.0 8.0 15000 15000 |
|
284 6 19.0 96.0 0.0 8.0 15000 15000 |
|
285 7 19.0 96.0 0.0 8.0 15000 15000 |
|
286 8 20.0 96.0 0.0 8.0 15000 15000 |
|
287 9 19.0 96.0 0.0 8.0 15000 15000 |
|
288 10 20.0 96.0 0.0 8.0 15000 15000 |
|
289 11 20.0 96.0 0.0 8.0 7500 7500 |
|
290 12 18.0 96.0 0.0 8.0 7500 7500 |
|
291 13 18.0 96.0 0.0 8.0 7500 7500 ; |
|
292 |
|
293 param dem (tr) : |
|
294 |
|
295 18REG 24REG 24PRO := |
|
296 |
|
297 1 63.8 1212.0 0.0 |
|
298 2 76.0 306.2 0.0 |
|
299 3 88.4 319.0 0.0 |
|
300 4 913.8 208.4 0.0 |
|
301 5 115.0 298.0 0.0 |
|
302 6 133.8 328.2 0.0 |
|
303 7 79.6 959.6 0.0 |
|
304 8 111.0 257.6 0.0 |
|
305 9 121.6 335.6 0.0 |
|
306 10 470.0 118.0 1102.0 |
|
307 11 78.4 284.8 0.0 |
|
308 12 99.4 970.0 0.0 |
|
309 13 140.4 343.8 0.0 |
|
310 14 63.8 1212.0 0.0 ; |
|
311 |
|
312 param pro (tr) : |
|
313 |
|
314 18REG 24REG 24PRO := |
|
315 |
|
316 1 0 1 0 |
|
317 2 0 0 0 |
|
318 3 0 0 0 |
|
319 4 1 0 0 |
|
320 5 0 0 0 |
|
321 6 0 0 0 |
|
322 7 0 1 0 |
|
323 8 0 0 0 |
|
324 9 0 0 0 |
|
325 10 1 0 1 |
|
326 11 0 0 0 |
|
327 12 0 0 0 |
|
328 13 0 1 0 |
|
329 14 0 1 0 ; |
|
330 |
|
331 end; |