|
1 /* glpapi12.c (basis factorization and simplex tableau routines) */ |
|
2 |
|
3 /*********************************************************************** |
|
4 * This code is part of GLPK (GNU Linear Programming Kit). |
|
5 * |
|
6 * Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, |
|
7 * 2009, 2010 Andrew Makhorin, Department for Applied Informatics, |
|
8 * Moscow Aviation Institute, Moscow, Russia. All rights reserved. |
|
9 * E-mail: <mao@gnu.org>. |
|
10 * |
|
11 * GLPK is free software: you can redistribute it and/or modify it |
|
12 * under the terms of the GNU General Public License as published by |
|
13 * the Free Software Foundation, either version 3 of the License, or |
|
14 * (at your option) any later version. |
|
15 * |
|
16 * GLPK is distributed in the hope that it will be useful, but WITHOUT |
|
17 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY |
|
18 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public |
|
19 * License for more details. |
|
20 * |
|
21 * You should have received a copy of the GNU General Public License |
|
22 * along with GLPK. If not, see <http://www.gnu.org/licenses/>. |
|
23 ***********************************************************************/ |
|
24 |
|
25 #include "glpapi.h" |
|
26 |
|
27 /*********************************************************************** |
|
28 * NAME |
|
29 * |
|
30 * glp_bf_exists - check if the basis factorization exists |
|
31 * |
|
32 * SYNOPSIS |
|
33 * |
|
34 * int glp_bf_exists(glp_prob *lp); |
|
35 * |
|
36 * RETURNS |
|
37 * |
|
38 * If the basis factorization for the current basis associated with |
|
39 * the specified problem object exists and therefore is available for |
|
40 * computations, the routine glp_bf_exists returns non-zero. Otherwise |
|
41 * the routine returns zero. */ |
|
42 |
|
43 int glp_bf_exists(glp_prob *lp) |
|
44 { int ret; |
|
45 ret = (lp->m == 0 || lp->valid); |
|
46 return ret; |
|
47 } |
|
48 |
|
49 /*********************************************************************** |
|
50 * NAME |
|
51 * |
|
52 * glp_factorize - compute the basis factorization |
|
53 * |
|
54 * SYNOPSIS |
|
55 * |
|
56 * int glp_factorize(glp_prob *lp); |
|
57 * |
|
58 * DESCRIPTION |
|
59 * |
|
60 * The routine glp_factorize computes the basis factorization for the |
|
61 * current basis associated with the specified problem object. |
|
62 * |
|
63 * RETURNS |
|
64 * |
|
65 * 0 The basis factorization has been successfully computed. |
|
66 * |
|
67 * GLP_EBADB |
|
68 * The basis matrix is invalid, i.e. the number of basic (auxiliary |
|
69 * and structural) variables differs from the number of rows in the |
|
70 * problem object. |
|
71 * |
|
72 * GLP_ESING |
|
73 * The basis matrix is singular within the working precision. |
|
74 * |
|
75 * GLP_ECOND |
|
76 * The basis matrix is ill-conditioned. */ |
|
77 |
|
78 static int b_col(void *info, int j, int ind[], double val[]) |
|
79 { glp_prob *lp = info; |
|
80 int m = lp->m; |
|
81 GLPAIJ *aij; |
|
82 int k, len; |
|
83 xassert(1 <= j && j <= m); |
|
84 /* determine the ordinal number of basic auxiliary or structural |
|
85 variable x[k] corresponding to basic variable xB[j] */ |
|
86 k = lp->head[j]; |
|
87 /* build j-th column of the basic matrix, which is k-th column of |
|
88 the scaled augmented matrix (I | -R*A*S) */ |
|
89 if (k <= m) |
|
90 { /* x[k] is auxiliary variable */ |
|
91 len = 1; |
|
92 ind[1] = k; |
|
93 val[1] = 1.0; |
|
94 } |
|
95 else |
|
96 { /* x[k] is structural variable */ |
|
97 len = 0; |
|
98 for (aij = lp->col[k-m]->ptr; aij != NULL; aij = aij->c_next) |
|
99 { len++; |
|
100 ind[len] = aij->row->i; |
|
101 val[len] = - aij->row->rii * aij->val * aij->col->sjj; |
|
102 } |
|
103 } |
|
104 return len; |
|
105 } |
|
106 |
|
107 static void copy_bfcp(glp_prob *lp); |
|
108 |
|
109 int glp_factorize(glp_prob *lp) |
|
110 { int m = lp->m; |
|
111 int n = lp->n; |
|
112 GLPROW **row = lp->row; |
|
113 GLPCOL **col = lp->col; |
|
114 int *head = lp->head; |
|
115 int j, k, stat, ret; |
|
116 /* invalidate the basis factorization */ |
|
117 lp->valid = 0; |
|
118 /* build the basis header */ |
|
119 j = 0; |
|
120 for (k = 1; k <= m+n; k++) |
|
121 { if (k <= m) |
|
122 { stat = row[k]->stat; |
|
123 row[k]->bind = 0; |
|
124 } |
|
125 else |
|
126 { stat = col[k-m]->stat; |
|
127 col[k-m]->bind = 0; |
|
128 } |
|
129 if (stat == GLP_BS) |
|
130 { j++; |
|
131 if (j > m) |
|
132 { /* too many basic variables */ |
|
133 ret = GLP_EBADB; |
|
134 goto fini; |
|
135 } |
|
136 head[j] = k; |
|
137 if (k <= m) |
|
138 row[k]->bind = j; |
|
139 else |
|
140 col[k-m]->bind = j; |
|
141 } |
|
142 } |
|
143 if (j < m) |
|
144 { /* too few basic variables */ |
|
145 ret = GLP_EBADB; |
|
146 goto fini; |
|
147 } |
|
148 /* try to factorize the basis matrix */ |
|
149 if (m > 0) |
|
150 { if (lp->bfd == NULL) |
|
151 { lp->bfd = bfd_create_it(); |
|
152 copy_bfcp(lp); |
|
153 } |
|
154 switch (bfd_factorize(lp->bfd, m, lp->head, b_col, lp)) |
|
155 { case 0: |
|
156 /* ok */ |
|
157 break; |
|
158 case BFD_ESING: |
|
159 /* singular matrix */ |
|
160 ret = GLP_ESING; |
|
161 goto fini; |
|
162 case BFD_ECOND: |
|
163 /* ill-conditioned matrix */ |
|
164 ret = GLP_ECOND; |
|
165 goto fini; |
|
166 default: |
|
167 xassert(lp != lp); |
|
168 } |
|
169 lp->valid = 1; |
|
170 } |
|
171 /* factorization successful */ |
|
172 ret = 0; |
|
173 fini: /* bring the return code to the calling program */ |
|
174 return ret; |
|
175 } |
|
176 |
|
177 /*********************************************************************** |
|
178 * NAME |
|
179 * |
|
180 * glp_bf_updated - check if the basis factorization has been updated |
|
181 * |
|
182 * SYNOPSIS |
|
183 * |
|
184 * int glp_bf_updated(glp_prob *lp); |
|
185 * |
|
186 * RETURNS |
|
187 * |
|
188 * If the basis factorization has been just computed from scratch, the |
|
189 * routine glp_bf_updated returns zero. Otherwise, if the factorization |
|
190 * has been updated one or more times, the routine returns non-zero. */ |
|
191 |
|
192 int glp_bf_updated(glp_prob *lp) |
|
193 { int cnt; |
|
194 if (!(lp->m == 0 || lp->valid)) |
|
195 xerror("glp_bf_update: basis factorization does not exist\n"); |
|
196 #if 0 /* 15/XI-2009 */ |
|
197 cnt = (lp->m == 0 ? 0 : lp->bfd->upd_cnt); |
|
198 #else |
|
199 cnt = (lp->m == 0 ? 0 : bfd_get_count(lp->bfd)); |
|
200 #endif |
|
201 return cnt; |
|
202 } |
|
203 |
|
204 /*********************************************************************** |
|
205 * NAME |
|
206 * |
|
207 * glp_get_bfcp - retrieve basis factorization control parameters |
|
208 * |
|
209 * SYNOPSIS |
|
210 * |
|
211 * void glp_get_bfcp(glp_prob *lp, glp_bfcp *parm); |
|
212 * |
|
213 * DESCRIPTION |
|
214 * |
|
215 * The routine glp_get_bfcp retrieves control parameters, which are |
|
216 * used on computing and updating the basis factorization associated |
|
217 * with the specified problem object. |
|
218 * |
|
219 * Current values of control parameters are stored by the routine in |
|
220 * a glp_bfcp structure, which the parameter parm points to. */ |
|
221 |
|
222 void glp_get_bfcp(glp_prob *lp, glp_bfcp *parm) |
|
223 { glp_bfcp *bfcp = lp->bfcp; |
|
224 if (bfcp == NULL) |
|
225 { parm->type = GLP_BF_FT; |
|
226 parm->lu_size = 0; |
|
227 parm->piv_tol = 0.10; |
|
228 parm->piv_lim = 4; |
|
229 parm->suhl = GLP_ON; |
|
230 parm->eps_tol = 1e-15; |
|
231 parm->max_gro = 1e+10; |
|
232 parm->nfs_max = 100; |
|
233 parm->upd_tol = 1e-6; |
|
234 parm->nrs_max = 100; |
|
235 parm->rs_size = 0; |
|
236 } |
|
237 else |
|
238 memcpy(parm, bfcp, sizeof(glp_bfcp)); |
|
239 return; |
|
240 } |
|
241 |
|
242 /*********************************************************************** |
|
243 * NAME |
|
244 * |
|
245 * glp_set_bfcp - change basis factorization control parameters |
|
246 * |
|
247 * SYNOPSIS |
|
248 * |
|
249 * void glp_set_bfcp(glp_prob *lp, const glp_bfcp *parm); |
|
250 * |
|
251 * DESCRIPTION |
|
252 * |
|
253 * The routine glp_set_bfcp changes control parameters, which are used |
|
254 * by internal GLPK routines in computing and updating the basis |
|
255 * factorization associated with the specified problem object. |
|
256 * |
|
257 * New values of the control parameters should be passed in a structure |
|
258 * glp_bfcp, which the parameter parm points to. |
|
259 * |
|
260 * The parameter parm can be specified as NULL, in which case all |
|
261 * control parameters are reset to their default values. */ |
|
262 |
|
263 #if 0 /* 15/XI-2009 */ |
|
264 static void copy_bfcp(glp_prob *lp) |
|
265 { glp_bfcp _parm, *parm = &_parm; |
|
266 BFD *bfd = lp->bfd; |
|
267 glp_get_bfcp(lp, parm); |
|
268 xassert(bfd != NULL); |
|
269 bfd->type = parm->type; |
|
270 bfd->lu_size = parm->lu_size; |
|
271 bfd->piv_tol = parm->piv_tol; |
|
272 bfd->piv_lim = parm->piv_lim; |
|
273 bfd->suhl = parm->suhl; |
|
274 bfd->eps_tol = parm->eps_tol; |
|
275 bfd->max_gro = parm->max_gro; |
|
276 bfd->nfs_max = parm->nfs_max; |
|
277 bfd->upd_tol = parm->upd_tol; |
|
278 bfd->nrs_max = parm->nrs_max; |
|
279 bfd->rs_size = parm->rs_size; |
|
280 return; |
|
281 } |
|
282 #else |
|
283 static void copy_bfcp(glp_prob *lp) |
|
284 { glp_bfcp _parm, *parm = &_parm; |
|
285 glp_get_bfcp(lp, parm); |
|
286 bfd_set_parm(lp->bfd, parm); |
|
287 return; |
|
288 } |
|
289 #endif |
|
290 |
|
291 void glp_set_bfcp(glp_prob *lp, const glp_bfcp *parm) |
|
292 { glp_bfcp *bfcp = lp->bfcp; |
|
293 if (parm == NULL) |
|
294 { /* reset to default values */ |
|
295 if (bfcp != NULL) |
|
296 xfree(bfcp), lp->bfcp = NULL; |
|
297 } |
|
298 else |
|
299 { /* set to specified values */ |
|
300 if (bfcp == NULL) |
|
301 bfcp = lp->bfcp = xmalloc(sizeof(glp_bfcp)); |
|
302 memcpy(bfcp, parm, sizeof(glp_bfcp)); |
|
303 if (!(bfcp->type == GLP_BF_FT || bfcp->type == GLP_BF_BG || |
|
304 bfcp->type == GLP_BF_GR)) |
|
305 xerror("glp_set_bfcp: type = %d; invalid parameter\n", |
|
306 bfcp->type); |
|
307 if (bfcp->lu_size < 0) |
|
308 xerror("glp_set_bfcp: lu_size = %d; invalid parameter\n", |
|
309 bfcp->lu_size); |
|
310 if (!(0.0 < bfcp->piv_tol && bfcp->piv_tol < 1.0)) |
|
311 xerror("glp_set_bfcp: piv_tol = %g; invalid parameter\n", |
|
312 bfcp->piv_tol); |
|
313 if (bfcp->piv_lim < 1) |
|
314 xerror("glp_set_bfcp: piv_lim = %d; invalid parameter\n", |
|
315 bfcp->piv_lim); |
|
316 if (!(bfcp->suhl == GLP_ON || bfcp->suhl == GLP_OFF)) |
|
317 xerror("glp_set_bfcp: suhl = %d; invalid parameter\n", |
|
318 bfcp->suhl); |
|
319 if (!(0.0 <= bfcp->eps_tol && bfcp->eps_tol <= 1e-6)) |
|
320 xerror("glp_set_bfcp: eps_tol = %g; invalid parameter\n", |
|
321 bfcp->eps_tol); |
|
322 if (bfcp->max_gro < 1.0) |
|
323 xerror("glp_set_bfcp: max_gro = %g; invalid parameter\n", |
|
324 bfcp->max_gro); |
|
325 if (!(1 <= bfcp->nfs_max && bfcp->nfs_max <= 32767)) |
|
326 xerror("glp_set_bfcp: nfs_max = %d; invalid parameter\n", |
|
327 bfcp->nfs_max); |
|
328 if (!(0.0 < bfcp->upd_tol && bfcp->upd_tol < 1.0)) |
|
329 xerror("glp_set_bfcp: upd_tol = %g; invalid parameter\n", |
|
330 bfcp->upd_tol); |
|
331 if (!(1 <= bfcp->nrs_max && bfcp->nrs_max <= 32767)) |
|
332 xerror("glp_set_bfcp: nrs_max = %d; invalid parameter\n", |
|
333 bfcp->nrs_max); |
|
334 if (bfcp->rs_size < 0) |
|
335 xerror("glp_set_bfcp: rs_size = %d; invalid parameter\n", |
|
336 bfcp->nrs_max); |
|
337 if (bfcp->rs_size == 0) |
|
338 bfcp->rs_size = 20 * bfcp->nrs_max; |
|
339 } |
|
340 if (lp->bfd != NULL) copy_bfcp(lp); |
|
341 return; |
|
342 } |
|
343 |
|
344 /*********************************************************************** |
|
345 * NAME |
|
346 * |
|
347 * glp_get_bhead - retrieve the basis header information |
|
348 * |
|
349 * SYNOPSIS |
|
350 * |
|
351 * int glp_get_bhead(glp_prob *lp, int k); |
|
352 * |
|
353 * DESCRIPTION |
|
354 * |
|
355 * The routine glp_get_bhead returns the basis header information for |
|
356 * the current basis associated with the specified problem object. |
|
357 * |
|
358 * RETURNS |
|
359 * |
|
360 * If xB[k], 1 <= k <= m, is i-th auxiliary variable (1 <= i <= m), the |
|
361 * routine returns i. Otherwise, if xB[k] is j-th structural variable |
|
362 * (1 <= j <= n), the routine returns m+j. Here m is the number of rows |
|
363 * and n is the number of columns in the problem object. */ |
|
364 |
|
365 int glp_get_bhead(glp_prob *lp, int k) |
|
366 { if (!(lp->m == 0 || lp->valid)) |
|
367 xerror("glp_get_bhead: basis factorization does not exist\n"); |
|
368 if (!(1 <= k && k <= lp->m)) |
|
369 xerror("glp_get_bhead: k = %d; index out of range\n", k); |
|
370 return lp->head[k]; |
|
371 } |
|
372 |
|
373 /*********************************************************************** |
|
374 * NAME |
|
375 * |
|
376 * glp_get_row_bind - retrieve row index in the basis header |
|
377 * |
|
378 * SYNOPSIS |
|
379 * |
|
380 * int glp_get_row_bind(glp_prob *lp, int i); |
|
381 * |
|
382 * RETURNS |
|
383 * |
|
384 * The routine glp_get_row_bind returns the index k of basic variable |
|
385 * xB[k], 1 <= k <= m, which is i-th auxiliary variable, 1 <= i <= m, |
|
386 * in the current basis associated with the specified problem object, |
|
387 * where m is the number of rows. However, if i-th auxiliary variable |
|
388 * is non-basic, the routine returns zero. */ |
|
389 |
|
390 int glp_get_row_bind(glp_prob *lp, int i) |
|
391 { if (!(lp->m == 0 || lp->valid)) |
|
392 xerror("glp_get_row_bind: basis factorization does not exist\n" |
|
393 ); |
|
394 if (!(1 <= i && i <= lp->m)) |
|
395 xerror("glp_get_row_bind: i = %d; row number out of range\n", |
|
396 i); |
|
397 return lp->row[i]->bind; |
|
398 } |
|
399 |
|
400 /*********************************************************************** |
|
401 * NAME |
|
402 * |
|
403 * glp_get_col_bind - retrieve column index in the basis header |
|
404 * |
|
405 * SYNOPSIS |
|
406 * |
|
407 * int glp_get_col_bind(glp_prob *lp, int j); |
|
408 * |
|
409 * RETURNS |
|
410 * |
|
411 * The routine glp_get_col_bind returns the index k of basic variable |
|
412 * xB[k], 1 <= k <= m, which is j-th structural variable, 1 <= j <= n, |
|
413 * in the current basis associated with the specified problem object, |
|
414 * where m is the number of rows, n is the number of columns. However, |
|
415 * if j-th structural variable is non-basic, the routine returns zero.*/ |
|
416 |
|
417 int glp_get_col_bind(glp_prob *lp, int j) |
|
418 { if (!(lp->m == 0 || lp->valid)) |
|
419 xerror("glp_get_col_bind: basis factorization does not exist\n" |
|
420 ); |
|
421 if (!(1 <= j && j <= lp->n)) |
|
422 xerror("glp_get_col_bind: j = %d; column number out of range\n" |
|
423 , j); |
|
424 return lp->col[j]->bind; |
|
425 } |
|
426 |
|
427 /*********************************************************************** |
|
428 * NAME |
|
429 * |
|
430 * glp_ftran - perform forward transformation (solve system B*x = b) |
|
431 * |
|
432 * SYNOPSIS |
|
433 * |
|
434 * void glp_ftran(glp_prob *lp, double x[]); |
|
435 * |
|
436 * DESCRIPTION |
|
437 * |
|
438 * The routine glp_ftran performs forward transformation, i.e. solves |
|
439 * the system B*x = b, where B is the basis matrix corresponding to the |
|
440 * current basis for the specified problem object, x is the vector of |
|
441 * unknowns to be computed, b is the vector of right-hand sides. |
|
442 * |
|
443 * On entry elements of the vector b should be stored in dense format |
|
444 * in locations x[1], ..., x[m], where m is the number of rows. On exit |
|
445 * the routine stores elements of the vector x in the same locations. |
|
446 * |
|
447 * SCALING/UNSCALING |
|
448 * |
|
449 * Let A~ = (I | -A) is the augmented constraint matrix of the original |
|
450 * (unscaled) problem. In the scaled LP problem instead the matrix A the |
|
451 * scaled matrix A" = R*A*S is actually used, so |
|
452 * |
|
453 * A~" = (I | A") = (I | R*A*S) = (R*I*inv(R) | R*A*S) = |
|
454 * (1) |
|
455 * = R*(I | A)*S~ = R*A~*S~, |
|
456 * |
|
457 * is the scaled augmented constraint matrix, where R and S are diagonal |
|
458 * scaling matrices used to scale rows and columns of the matrix A, and |
|
459 * |
|
460 * S~ = diag(inv(R) | S) (2) |
|
461 * |
|
462 * is an augmented diagonal scaling matrix. |
|
463 * |
|
464 * By definition: |
|
465 * |
|
466 * A~ = (B | N), (3) |
|
467 * |
|
468 * where B is the basic matrix, which consists of basic columns of the |
|
469 * augmented constraint matrix A~, and N is a matrix, which consists of |
|
470 * non-basic columns of A~. From (1) it follows that: |
|
471 * |
|
472 * A~" = (B" | N") = (R*B*SB | R*N*SN), (4) |
|
473 * |
|
474 * where SB and SN are parts of the augmented scaling matrix S~, which |
|
475 * correspond to basic and non-basic variables, respectively. Therefore |
|
476 * |
|
477 * B" = R*B*SB, (5) |
|
478 * |
|
479 * which is the scaled basis matrix. */ |
|
480 |
|
481 void glp_ftran(glp_prob *lp, double x[]) |
|
482 { int m = lp->m; |
|
483 GLPROW **row = lp->row; |
|
484 GLPCOL **col = lp->col; |
|
485 int i, k; |
|
486 /* B*x = b ===> (R*B*SB)*(inv(SB)*x) = R*b ===> |
|
487 B"*x" = b", where b" = R*b, x = SB*x" */ |
|
488 if (!(m == 0 || lp->valid)) |
|
489 xerror("glp_ftran: basis factorization does not exist\n"); |
|
490 /* b" := R*b */ |
|
491 for (i = 1; i <= m; i++) |
|
492 x[i] *= row[i]->rii; |
|
493 /* x" := inv(B")*b" */ |
|
494 if (m > 0) bfd_ftran(lp->bfd, x); |
|
495 /* x := SB*x" */ |
|
496 for (i = 1; i <= m; i++) |
|
497 { k = lp->head[i]; |
|
498 if (k <= m) |
|
499 x[i] /= row[k]->rii; |
|
500 else |
|
501 x[i] *= col[k-m]->sjj; |
|
502 } |
|
503 return; |
|
504 } |
|
505 |
|
506 /*********************************************************************** |
|
507 * NAME |
|
508 * |
|
509 * glp_btran - perform backward transformation (solve system B'*x = b) |
|
510 * |
|
511 * SYNOPSIS |
|
512 * |
|
513 * void glp_btran(glp_prob *lp, double x[]); |
|
514 * |
|
515 * DESCRIPTION |
|
516 * |
|
517 * The routine glp_btran performs backward transformation, i.e. solves |
|
518 * the system B'*x = b, where B' is a matrix transposed to the basis |
|
519 * matrix corresponding to the current basis for the specified problem |
|
520 * problem object, x is the vector of unknowns to be computed, b is the |
|
521 * vector of right-hand sides. |
|
522 * |
|
523 * On entry elements of the vector b should be stored in dense format |
|
524 * in locations x[1], ..., x[m], where m is the number of rows. On exit |
|
525 * the routine stores elements of the vector x in the same locations. |
|
526 * |
|
527 * SCALING/UNSCALING |
|
528 * |
|
529 * See comments to the routine glp_ftran. */ |
|
530 |
|
531 void glp_btran(glp_prob *lp, double x[]) |
|
532 { int m = lp->m; |
|
533 GLPROW **row = lp->row; |
|
534 GLPCOL **col = lp->col; |
|
535 int i, k; |
|
536 /* B'*x = b ===> (SB*B'*R)*(inv(R)*x) = SB*b ===> |
|
537 (B")'*x" = b", where b" = SB*b, x = R*x" */ |
|
538 if (!(m == 0 || lp->valid)) |
|
539 xerror("glp_btran: basis factorization does not exist\n"); |
|
540 /* b" := SB*b */ |
|
541 for (i = 1; i <= m; i++) |
|
542 { k = lp->head[i]; |
|
543 if (k <= m) |
|
544 x[i] /= row[k]->rii; |
|
545 else |
|
546 x[i] *= col[k-m]->sjj; |
|
547 } |
|
548 /* x" := inv[(B")']*b" */ |
|
549 if (m > 0) bfd_btran(lp->bfd, x); |
|
550 /* x := R*x" */ |
|
551 for (i = 1; i <= m; i++) |
|
552 x[i] *= row[i]->rii; |
|
553 return; |
|
554 } |
|
555 |
|
556 /*********************************************************************** |
|
557 * NAME |
|
558 * |
|
559 * glp_warm_up - "warm up" LP basis |
|
560 * |
|
561 * SYNOPSIS |
|
562 * |
|
563 * int glp_warm_up(glp_prob *P); |
|
564 * |
|
565 * DESCRIPTION |
|
566 * |
|
567 * The routine glp_warm_up "warms up" the LP basis for the specified |
|
568 * problem object using current statuses assigned to rows and columns |
|
569 * (that is, to auxiliary and structural variables). |
|
570 * |
|
571 * This operation includes computing factorization of the basis matrix |
|
572 * (if it does not exist), computing primal and dual components of basic |
|
573 * solution, and determining the solution status. |
|
574 * |
|
575 * RETURNS |
|
576 * |
|
577 * 0 The operation has been successfully performed. |
|
578 * |
|
579 * GLP_EBADB |
|
580 * The basis matrix is invalid, i.e. the number of basic (auxiliary |
|
581 * and structural) variables differs from the number of rows in the |
|
582 * problem object. |
|
583 * |
|
584 * GLP_ESING |
|
585 * The basis matrix is singular within the working precision. |
|
586 * |
|
587 * GLP_ECOND |
|
588 * The basis matrix is ill-conditioned. */ |
|
589 |
|
590 int glp_warm_up(glp_prob *P) |
|
591 { GLPROW *row; |
|
592 GLPCOL *col; |
|
593 GLPAIJ *aij; |
|
594 int i, j, type, ret; |
|
595 double eps, temp, *work; |
|
596 /* invalidate basic solution */ |
|
597 P->pbs_stat = P->dbs_stat = GLP_UNDEF; |
|
598 P->obj_val = 0.0; |
|
599 P->some = 0; |
|
600 for (i = 1; i <= P->m; i++) |
|
601 { row = P->row[i]; |
|
602 row->prim = row->dual = 0.0; |
|
603 } |
|
604 for (j = 1; j <= P->n; j++) |
|
605 { col = P->col[j]; |
|
606 col->prim = col->dual = 0.0; |
|
607 } |
|
608 /* compute the basis factorization, if necessary */ |
|
609 if (!glp_bf_exists(P)) |
|
610 { ret = glp_factorize(P); |
|
611 if (ret != 0) goto done; |
|
612 } |
|
613 /* allocate working array */ |
|
614 work = xcalloc(1+P->m, sizeof(double)); |
|
615 /* determine and store values of non-basic variables, compute |
|
616 vector (- N * xN) */ |
|
617 for (i = 1; i <= P->m; i++) |
|
618 work[i] = 0.0; |
|
619 for (i = 1; i <= P->m; i++) |
|
620 { row = P->row[i]; |
|
621 if (row->stat == GLP_BS) |
|
622 continue; |
|
623 else if (row->stat == GLP_NL) |
|
624 row->prim = row->lb; |
|
625 else if (row->stat == GLP_NU) |
|
626 row->prim = row->ub; |
|
627 else if (row->stat == GLP_NF) |
|
628 row->prim = 0.0; |
|
629 else if (row->stat == GLP_NS) |
|
630 row->prim = row->lb; |
|
631 else |
|
632 xassert(row != row); |
|
633 /* N[j] is i-th column of matrix (I|-A) */ |
|
634 work[i] -= row->prim; |
|
635 } |
|
636 for (j = 1; j <= P->n; j++) |
|
637 { col = P->col[j]; |
|
638 if (col->stat == GLP_BS) |
|
639 continue; |
|
640 else if (col->stat == GLP_NL) |
|
641 col->prim = col->lb; |
|
642 else if (col->stat == GLP_NU) |
|
643 col->prim = col->ub; |
|
644 else if (col->stat == GLP_NF) |
|
645 col->prim = 0.0; |
|
646 else if (col->stat == GLP_NS) |
|
647 col->prim = col->lb; |
|
648 else |
|
649 xassert(col != col); |
|
650 /* N[j] is (m+j)-th column of matrix (I|-A) */ |
|
651 if (col->prim != 0.0) |
|
652 { for (aij = col->ptr; aij != NULL; aij = aij->c_next) |
|
653 work[aij->row->i] += aij->val * col->prim; |
|
654 } |
|
655 } |
|
656 /* compute vector of basic variables xB = - inv(B) * N * xN */ |
|
657 glp_ftran(P, work); |
|
658 /* store values of basic variables, check primal feasibility */ |
|
659 P->pbs_stat = GLP_FEAS; |
|
660 for (i = 1; i <= P->m; i++) |
|
661 { row = P->row[i]; |
|
662 if (row->stat != GLP_BS) |
|
663 continue; |
|
664 row->prim = work[row->bind]; |
|
665 type = row->type; |
|
666 if (type == GLP_LO || type == GLP_DB || type == GLP_FX) |
|
667 { eps = 1e-6 + 1e-9 * fabs(row->lb); |
|
668 if (row->prim < row->lb - eps) |
|
669 P->pbs_stat = GLP_INFEAS; |
|
670 } |
|
671 if (type == GLP_UP || type == GLP_DB || type == GLP_FX) |
|
672 { eps = 1e-6 + 1e-9 * fabs(row->ub); |
|
673 if (row->prim > row->ub + eps) |
|
674 P->pbs_stat = GLP_INFEAS; |
|
675 } |
|
676 } |
|
677 for (j = 1; j <= P->n; j++) |
|
678 { col = P->col[j]; |
|
679 if (col->stat != GLP_BS) |
|
680 continue; |
|
681 col->prim = work[col->bind]; |
|
682 type = col->type; |
|
683 if (type == GLP_LO || type == GLP_DB || type == GLP_FX) |
|
684 { eps = 1e-6 + 1e-9 * fabs(col->lb); |
|
685 if (col->prim < col->lb - eps) |
|
686 P->pbs_stat = GLP_INFEAS; |
|
687 } |
|
688 if (type == GLP_UP || type == GLP_DB || type == GLP_FX) |
|
689 { eps = 1e-6 + 1e-9 * fabs(col->ub); |
|
690 if (col->prim > col->ub + eps) |
|
691 P->pbs_stat = GLP_INFEAS; |
|
692 } |
|
693 } |
|
694 /* compute value of the objective function */ |
|
695 P->obj_val = P->c0; |
|
696 for (j = 1; j <= P->n; j++) |
|
697 { col = P->col[j]; |
|
698 P->obj_val += col->coef * col->prim; |
|
699 } |
|
700 /* build vector cB of objective coefficients at basic variables */ |
|
701 for (i = 1; i <= P->m; i++) |
|
702 work[i] = 0.0; |
|
703 for (j = 1; j <= P->n; j++) |
|
704 { col = P->col[j]; |
|
705 if (col->stat == GLP_BS) |
|
706 work[col->bind] = col->coef; |
|
707 } |
|
708 /* compute vector of simplex multipliers pi = inv(B') * cB */ |
|
709 glp_btran(P, work); |
|
710 /* compute and store reduced costs of non-basic variables d[j] = |
|
711 c[j] - N'[j] * pi, check dual feasibility */ |
|
712 P->dbs_stat = GLP_FEAS; |
|
713 for (i = 1; i <= P->m; i++) |
|
714 { row = P->row[i]; |
|
715 if (row->stat == GLP_BS) |
|
716 { row->dual = 0.0; |
|
717 continue; |
|
718 } |
|
719 /* N[j] is i-th column of matrix (I|-A) */ |
|
720 row->dual = - work[i]; |
|
721 type = row->type; |
|
722 temp = (P->dir == GLP_MIN ? + row->dual : - row->dual); |
|
723 if ((type == GLP_FR || type == GLP_LO) && temp < -1e-5 || |
|
724 (type == GLP_FR || type == GLP_UP) && temp > +1e-5) |
|
725 P->dbs_stat = GLP_INFEAS; |
|
726 } |
|
727 for (j = 1; j <= P->n; j++) |
|
728 { col = P->col[j]; |
|
729 if (col->stat == GLP_BS) |
|
730 { col->dual = 0.0; |
|
731 continue; |
|
732 } |
|
733 /* N[j] is (m+j)-th column of matrix (I|-A) */ |
|
734 col->dual = col->coef; |
|
735 for (aij = col->ptr; aij != NULL; aij = aij->c_next) |
|
736 col->dual += aij->val * work[aij->row->i]; |
|
737 type = col->type; |
|
738 temp = (P->dir == GLP_MIN ? + col->dual : - col->dual); |
|
739 if ((type == GLP_FR || type == GLP_LO) && temp < -1e-5 || |
|
740 (type == GLP_FR || type == GLP_UP) && temp > +1e-5) |
|
741 P->dbs_stat = GLP_INFEAS; |
|
742 } |
|
743 /* free working array */ |
|
744 xfree(work); |
|
745 ret = 0; |
|
746 done: return ret; |
|
747 } |
|
748 |
|
749 /*********************************************************************** |
|
750 * NAME |
|
751 * |
|
752 * glp_eval_tab_row - compute row of the simplex tableau |
|
753 * |
|
754 * SYNOPSIS |
|
755 * |
|
756 * int glp_eval_tab_row(glp_prob *lp, int k, int ind[], double val[]); |
|
757 * |
|
758 * DESCRIPTION |
|
759 * |
|
760 * The routine glp_eval_tab_row computes a row of the current simplex |
|
761 * tableau for the basic variable, which is specified by the number k: |
|
762 * if 1 <= k <= m, x[k] is k-th auxiliary variable; if m+1 <= k <= m+n, |
|
763 * x[k] is (k-m)-th structural variable, where m is number of rows, and |
|
764 * n is number of columns. The current basis must be available. |
|
765 * |
|
766 * The routine stores column indices and numerical values of non-zero |
|
767 * elements of the computed row using sparse format to the locations |
|
768 * ind[1], ..., ind[len] and val[1], ..., val[len], respectively, where |
|
769 * 0 <= len <= n is number of non-zeros returned on exit. |
|
770 * |
|
771 * Element indices stored in the array ind have the same sense as the |
|
772 * index k, i.e. indices 1 to m denote auxiliary variables and indices |
|
773 * m+1 to m+n denote structural ones (all these variables are obviously |
|
774 * non-basic by definition). |
|
775 * |
|
776 * The computed row shows how the specified basic variable x[k] = xB[i] |
|
777 * depends on non-basic variables: |
|
778 * |
|
779 * xB[i] = alfa[i,1]*xN[1] + alfa[i,2]*xN[2] + ... + alfa[i,n]*xN[n], |
|
780 * |
|
781 * where alfa[i,j] are elements of the simplex table row, xN[j] are |
|
782 * non-basic (auxiliary and structural) variables. |
|
783 * |
|
784 * RETURNS |
|
785 * |
|
786 * The routine returns number of non-zero elements in the simplex table |
|
787 * row stored in the arrays ind and val. |
|
788 * |
|
789 * BACKGROUND |
|
790 * |
|
791 * The system of equality constraints of the LP problem is: |
|
792 * |
|
793 * xR = A * xS, (1) |
|
794 * |
|
795 * where xR is the vector of auxliary variables, xS is the vector of |
|
796 * structural variables, A is the matrix of constraint coefficients. |
|
797 * |
|
798 * The system (1) can be written in homogenous form as follows: |
|
799 * |
|
800 * A~ * x = 0, (2) |
|
801 * |
|
802 * where A~ = (I | -A) is the augmented constraint matrix (has m rows |
|
803 * and m+n columns), x = (xR | xS) is the vector of all (auxiliary and |
|
804 * structural) variables. |
|
805 * |
|
806 * By definition for the current basis we have: |
|
807 * |
|
808 * A~ = (B | N), (3) |
|
809 * |
|
810 * where B is the basis matrix. Thus, the system (2) can be written as: |
|
811 * |
|
812 * B * xB + N * xN = 0. (4) |
|
813 * |
|
814 * From (4) it follows that: |
|
815 * |
|
816 * xB = A^ * xN, (5) |
|
817 * |
|
818 * where the matrix |
|
819 * |
|
820 * A^ = - inv(B) * N (6) |
|
821 * |
|
822 * is called the simplex table. |
|
823 * |
|
824 * It is understood that i-th row of the simplex table is: |
|
825 * |
|
826 * e * A^ = - e * inv(B) * N, (7) |
|
827 * |
|
828 * where e is a unity vector with e[i] = 1. |
|
829 * |
|
830 * To compute i-th row of the simplex table the routine first computes |
|
831 * i-th row of the inverse: |
|
832 * |
|
833 * rho = inv(B') * e, (8) |
|
834 * |
|
835 * where B' is a matrix transposed to B, and then computes elements of |
|
836 * i-th row of the simplex table as scalar products: |
|
837 * |
|
838 * alfa[i,j] = - rho * N[j] for all j, (9) |
|
839 * |
|
840 * where N[j] is a column of the augmented constraint matrix A~, which |
|
841 * corresponds to some non-basic auxiliary or structural variable. */ |
|
842 |
|
843 int glp_eval_tab_row(glp_prob *lp, int k, int ind[], double val[]) |
|
844 { int m = lp->m; |
|
845 int n = lp->n; |
|
846 int i, t, len, lll, *iii; |
|
847 double alfa, *rho, *vvv; |
|
848 if (!(m == 0 || lp->valid)) |
|
849 xerror("glp_eval_tab_row: basis factorization does not exist\n" |
|
850 ); |
|
851 if (!(1 <= k && k <= m+n)) |
|
852 xerror("glp_eval_tab_row: k = %d; variable number out of range" |
|
853 , k); |
|
854 /* determine xB[i] which corresponds to x[k] */ |
|
855 if (k <= m) |
|
856 i = glp_get_row_bind(lp, k); |
|
857 else |
|
858 i = glp_get_col_bind(lp, k-m); |
|
859 if (i == 0) |
|
860 xerror("glp_eval_tab_row: k = %d; variable must be basic", k); |
|
861 xassert(1 <= i && i <= m); |
|
862 /* allocate working arrays */ |
|
863 rho = xcalloc(1+m, sizeof(double)); |
|
864 iii = xcalloc(1+m, sizeof(int)); |
|
865 vvv = xcalloc(1+m, sizeof(double)); |
|
866 /* compute i-th row of the inverse; see (8) */ |
|
867 for (t = 1; t <= m; t++) rho[t] = 0.0; |
|
868 rho[i] = 1.0; |
|
869 glp_btran(lp, rho); |
|
870 /* compute i-th row of the simplex table */ |
|
871 len = 0; |
|
872 for (k = 1; k <= m+n; k++) |
|
873 { if (k <= m) |
|
874 { /* x[k] is auxiliary variable, so N[k] is a unity column */ |
|
875 if (glp_get_row_stat(lp, k) == GLP_BS) continue; |
|
876 /* compute alfa[i,j]; see (9) */ |
|
877 alfa = - rho[k]; |
|
878 } |
|
879 else |
|
880 { /* x[k] is structural variable, so N[k] is a column of the |
|
881 original constraint matrix A with negative sign */ |
|
882 if (glp_get_col_stat(lp, k-m) == GLP_BS) continue; |
|
883 /* compute alfa[i,j]; see (9) */ |
|
884 lll = glp_get_mat_col(lp, k-m, iii, vvv); |
|
885 alfa = 0.0; |
|
886 for (t = 1; t <= lll; t++) alfa += rho[iii[t]] * vvv[t]; |
|
887 } |
|
888 /* store alfa[i,j] */ |
|
889 if (alfa != 0.0) len++, ind[len] = k, val[len] = alfa; |
|
890 } |
|
891 xassert(len <= n); |
|
892 /* free working arrays */ |
|
893 xfree(rho); |
|
894 xfree(iii); |
|
895 xfree(vvv); |
|
896 /* return to the calling program */ |
|
897 return len; |
|
898 } |
|
899 |
|
900 /*********************************************************************** |
|
901 * NAME |
|
902 * |
|
903 * glp_eval_tab_col - compute column of the simplex tableau |
|
904 * |
|
905 * SYNOPSIS |
|
906 * |
|
907 * int glp_eval_tab_col(glp_prob *lp, int k, int ind[], double val[]); |
|
908 * |
|
909 * DESCRIPTION |
|
910 * |
|
911 * The routine glp_eval_tab_col computes a column of the current simplex |
|
912 * table for the non-basic variable, which is specified by the number k: |
|
913 * if 1 <= k <= m, x[k] is k-th auxiliary variable; if m+1 <= k <= m+n, |
|
914 * x[k] is (k-m)-th structural variable, where m is number of rows, and |
|
915 * n is number of columns. The current basis must be available. |
|
916 * |
|
917 * The routine stores row indices and numerical values of non-zero |
|
918 * elements of the computed column using sparse format to the locations |
|
919 * ind[1], ..., ind[len] and val[1], ..., val[len] respectively, where |
|
920 * 0 <= len <= m is number of non-zeros returned on exit. |
|
921 * |
|
922 * Element indices stored in the array ind have the same sense as the |
|
923 * index k, i.e. indices 1 to m denote auxiliary variables and indices |
|
924 * m+1 to m+n denote structural ones (all these variables are obviously |
|
925 * basic by the definition). |
|
926 * |
|
927 * The computed column shows how basic variables depend on the specified |
|
928 * non-basic variable x[k] = xN[j]: |
|
929 * |
|
930 * xB[1] = ... + alfa[1,j]*xN[j] + ... |
|
931 * xB[2] = ... + alfa[2,j]*xN[j] + ... |
|
932 * . . . . . . |
|
933 * xB[m] = ... + alfa[m,j]*xN[j] + ... |
|
934 * |
|
935 * where alfa[i,j] are elements of the simplex table column, xB[i] are |
|
936 * basic (auxiliary and structural) variables. |
|
937 * |
|
938 * RETURNS |
|
939 * |
|
940 * The routine returns number of non-zero elements in the simplex table |
|
941 * column stored in the arrays ind and val. |
|
942 * |
|
943 * BACKGROUND |
|
944 * |
|
945 * As it was explained in comments to the routine glp_eval_tab_row (see |
|
946 * above) the simplex table is the following matrix: |
|
947 * |
|
948 * A^ = - inv(B) * N. (1) |
|
949 * |
|
950 * Therefore j-th column of the simplex table is: |
|
951 * |
|
952 * A^ * e = - inv(B) * N * e = - inv(B) * N[j], (2) |
|
953 * |
|
954 * where e is a unity vector with e[j] = 1, B is the basis matrix, N[j] |
|
955 * is a column of the augmented constraint matrix A~, which corresponds |
|
956 * to the given non-basic auxiliary or structural variable. */ |
|
957 |
|
958 int glp_eval_tab_col(glp_prob *lp, int k, int ind[], double val[]) |
|
959 { int m = lp->m; |
|
960 int n = lp->n; |
|
961 int t, len, stat; |
|
962 double *col; |
|
963 if (!(m == 0 || lp->valid)) |
|
964 xerror("glp_eval_tab_col: basis factorization does not exist\n" |
|
965 ); |
|
966 if (!(1 <= k && k <= m+n)) |
|
967 xerror("glp_eval_tab_col: k = %d; variable number out of range" |
|
968 , k); |
|
969 if (k <= m) |
|
970 stat = glp_get_row_stat(lp, k); |
|
971 else |
|
972 stat = glp_get_col_stat(lp, k-m); |
|
973 if (stat == GLP_BS) |
|
974 xerror("glp_eval_tab_col: k = %d; variable must be non-basic", |
|
975 k); |
|
976 /* obtain column N[k] with negative sign */ |
|
977 col = xcalloc(1+m, sizeof(double)); |
|
978 for (t = 1; t <= m; t++) col[t] = 0.0; |
|
979 if (k <= m) |
|
980 { /* x[k] is auxiliary variable, so N[k] is a unity column */ |
|
981 col[k] = -1.0; |
|
982 } |
|
983 else |
|
984 { /* x[k] is structural variable, so N[k] is a column of the |
|
985 original constraint matrix A with negative sign */ |
|
986 len = glp_get_mat_col(lp, k-m, ind, val); |
|
987 for (t = 1; t <= len; t++) col[ind[t]] = val[t]; |
|
988 } |
|
989 /* compute column of the simplex table, which corresponds to the |
|
990 specified non-basic variable x[k] */ |
|
991 glp_ftran(lp, col); |
|
992 len = 0; |
|
993 for (t = 1; t <= m; t++) |
|
994 { if (col[t] != 0.0) |
|
995 { len++; |
|
996 ind[len] = glp_get_bhead(lp, t); |
|
997 val[len] = col[t]; |
|
998 } |
|
999 } |
|
1000 xfree(col); |
|
1001 /* return to the calling program */ |
|
1002 return len; |
|
1003 } |
|
1004 |
|
1005 /*********************************************************************** |
|
1006 * NAME |
|
1007 * |
|
1008 * glp_transform_row - transform explicitly specified row |
|
1009 * |
|
1010 * SYNOPSIS |
|
1011 * |
|
1012 * int glp_transform_row(glp_prob *P, int len, int ind[], double val[]); |
|
1013 * |
|
1014 * DESCRIPTION |
|
1015 * |
|
1016 * The routine glp_transform_row performs the same operation as the |
|
1017 * routine glp_eval_tab_row with exception that the row to be |
|
1018 * transformed is specified explicitly as a sparse vector. |
|
1019 * |
|
1020 * The explicitly specified row may be thought as a linear form: |
|
1021 * |
|
1022 * x = a[1]*x[m+1] + a[2]*x[m+2] + ... + a[n]*x[m+n], (1) |
|
1023 * |
|
1024 * where x is an auxiliary variable for this row, a[j] are coefficients |
|
1025 * of the linear form, x[m+j] are structural variables. |
|
1026 * |
|
1027 * On entry column indices and numerical values of non-zero elements of |
|
1028 * the row should be stored in locations ind[1], ..., ind[len] and |
|
1029 * val[1], ..., val[len], where len is the number of non-zero elements. |
|
1030 * |
|
1031 * This routine uses the system of equality constraints and the current |
|
1032 * basis in order to express the auxiliary variable x in (1) through the |
|
1033 * current non-basic variables (as if the transformed row were added to |
|
1034 * the problem object and its auxiliary variable were basic), i.e. the |
|
1035 * resultant row has the form: |
|
1036 * |
|
1037 * x = alfa[1]*xN[1] + alfa[2]*xN[2] + ... + alfa[n]*xN[n], (2) |
|
1038 * |
|
1039 * where xN[j] are non-basic (auxiliary or structural) variables, n is |
|
1040 * the number of columns in the LP problem object. |
|
1041 * |
|
1042 * On exit the routine stores indices and numerical values of non-zero |
|
1043 * elements of the resultant row (2) in locations ind[1], ..., ind[len'] |
|
1044 * and val[1], ..., val[len'], where 0 <= len' <= n is the number of |
|
1045 * non-zero elements in the resultant row returned by the routine. Note |
|
1046 * that indices (numbers) of non-basic variables stored in the array ind |
|
1047 * correspond to original ordinal numbers of variables: indices 1 to m |
|
1048 * mean auxiliary variables and indices m+1 to m+n mean structural ones. |
|
1049 * |
|
1050 * RETURNS |
|
1051 * |
|
1052 * The routine returns len', which is the number of non-zero elements in |
|
1053 * the resultant row stored in the arrays ind and val. |
|
1054 * |
|
1055 * BACKGROUND |
|
1056 * |
|
1057 * The explicitly specified row (1) is transformed in the same way as it |
|
1058 * were the objective function row. |
|
1059 * |
|
1060 * From (1) it follows that: |
|
1061 * |
|
1062 * x = aB * xB + aN * xN, (3) |
|
1063 * |
|
1064 * where xB is the vector of basic variables, xN is the vector of |
|
1065 * non-basic variables. |
|
1066 * |
|
1067 * The simplex table, which corresponds to the current basis, is: |
|
1068 * |
|
1069 * xB = [-inv(B) * N] * xN. (4) |
|
1070 * |
|
1071 * Therefore substituting xB from (4) to (3) we have: |
|
1072 * |
|
1073 * x = aB * [-inv(B) * N] * xN + aN * xN = |
|
1074 * (5) |
|
1075 * = rho * (-N) * xN + aN * xN = alfa * xN, |
|
1076 * |
|
1077 * where: |
|
1078 * |
|
1079 * rho = inv(B') * aB, (6) |
|
1080 * |
|
1081 * and |
|
1082 * |
|
1083 * alfa = aN + rho * (-N) (7) |
|
1084 * |
|
1085 * is the resultant row computed by the routine. */ |
|
1086 |
|
1087 int glp_transform_row(glp_prob *P, int len, int ind[], double val[]) |
|
1088 { int i, j, k, m, n, t, lll, *iii; |
|
1089 double alfa, *a, *aB, *rho, *vvv; |
|
1090 if (!glp_bf_exists(P)) |
|
1091 xerror("glp_transform_row: basis factorization does not exist " |
|
1092 "\n"); |
|
1093 m = glp_get_num_rows(P); |
|
1094 n = glp_get_num_cols(P); |
|
1095 /* unpack the row to be transformed to the array a */ |
|
1096 a = xcalloc(1+n, sizeof(double)); |
|
1097 for (j = 1; j <= n; j++) a[j] = 0.0; |
|
1098 if (!(0 <= len && len <= n)) |
|
1099 xerror("glp_transform_row: len = %d; invalid row length\n", |
|
1100 len); |
|
1101 for (t = 1; t <= len; t++) |
|
1102 { j = ind[t]; |
|
1103 if (!(1 <= j && j <= n)) |
|
1104 xerror("glp_transform_row: ind[%d] = %d; column index out o" |
|
1105 "f range\n", t, j); |
|
1106 if (val[t] == 0.0) |
|
1107 xerror("glp_transform_row: val[%d] = 0; zero coefficient no" |
|
1108 "t allowed\n", t); |
|
1109 if (a[j] != 0.0) |
|
1110 xerror("glp_transform_row: ind[%d] = %d; duplicate column i" |
|
1111 "ndices not allowed\n", t, j); |
|
1112 a[j] = val[t]; |
|
1113 } |
|
1114 /* construct the vector aB */ |
|
1115 aB = xcalloc(1+m, sizeof(double)); |
|
1116 for (i = 1; i <= m; i++) |
|
1117 { k = glp_get_bhead(P, i); |
|
1118 /* xB[i] is k-th original variable */ |
|
1119 xassert(1 <= k && k <= m+n); |
|
1120 aB[i] = (k <= m ? 0.0 : a[k-m]); |
|
1121 } |
|
1122 /* solve the system B'*rho = aB to compute the vector rho */ |
|
1123 rho = aB, glp_btran(P, rho); |
|
1124 /* compute coefficients at non-basic auxiliary variables */ |
|
1125 len = 0; |
|
1126 for (i = 1; i <= m; i++) |
|
1127 { if (glp_get_row_stat(P, i) != GLP_BS) |
|
1128 { alfa = - rho[i]; |
|
1129 if (alfa != 0.0) |
|
1130 { len++; |
|
1131 ind[len] = i; |
|
1132 val[len] = alfa; |
|
1133 } |
|
1134 } |
|
1135 } |
|
1136 /* compute coefficients at non-basic structural variables */ |
|
1137 iii = xcalloc(1+m, sizeof(int)); |
|
1138 vvv = xcalloc(1+m, sizeof(double)); |
|
1139 for (j = 1; j <= n; j++) |
|
1140 { if (glp_get_col_stat(P, j) != GLP_BS) |
|
1141 { alfa = a[j]; |
|
1142 lll = glp_get_mat_col(P, j, iii, vvv); |
|
1143 for (t = 1; t <= lll; t++) alfa += vvv[t] * rho[iii[t]]; |
|
1144 if (alfa != 0.0) |
|
1145 { len++; |
|
1146 ind[len] = m+j; |
|
1147 val[len] = alfa; |
|
1148 } |
|
1149 } |
|
1150 } |
|
1151 xassert(len <= n); |
|
1152 xfree(iii); |
|
1153 xfree(vvv); |
|
1154 xfree(aB); |
|
1155 xfree(a); |
|
1156 return len; |
|
1157 } |
|
1158 |
|
1159 /*********************************************************************** |
|
1160 * NAME |
|
1161 * |
|
1162 * glp_transform_col - transform explicitly specified column |
|
1163 * |
|
1164 * SYNOPSIS |
|
1165 * |
|
1166 * int glp_transform_col(glp_prob *P, int len, int ind[], double val[]); |
|
1167 * |
|
1168 * DESCRIPTION |
|
1169 * |
|
1170 * The routine glp_transform_col performs the same operation as the |
|
1171 * routine glp_eval_tab_col with exception that the column to be |
|
1172 * transformed is specified explicitly as a sparse vector. |
|
1173 * |
|
1174 * The explicitly specified column may be thought as if it were added |
|
1175 * to the original system of equality constraints: |
|
1176 * |
|
1177 * x[1] = a[1,1]*x[m+1] + ... + a[1,n]*x[m+n] + a[1]*x |
|
1178 * x[2] = a[2,1]*x[m+1] + ... + a[2,n]*x[m+n] + a[2]*x (1) |
|
1179 * . . . . . . . . . . . . . . . |
|
1180 * x[m] = a[m,1]*x[m+1] + ... + a[m,n]*x[m+n] + a[m]*x |
|
1181 * |
|
1182 * where x[i] are auxiliary variables, x[m+j] are structural variables, |
|
1183 * x is a structural variable for the explicitly specified column, a[i] |
|
1184 * are constraint coefficients for x. |
|
1185 * |
|
1186 * On entry row indices and numerical values of non-zero elements of |
|
1187 * the column should be stored in locations ind[1], ..., ind[len] and |
|
1188 * val[1], ..., val[len], where len is the number of non-zero elements. |
|
1189 * |
|
1190 * This routine uses the system of equality constraints and the current |
|
1191 * basis in order to express the current basic variables through the |
|
1192 * structural variable x in (1) (as if the transformed column were added |
|
1193 * to the problem object and the variable x were non-basic), i.e. the |
|
1194 * resultant column has the form: |
|
1195 * |
|
1196 * xB[1] = ... + alfa[1]*x |
|
1197 * xB[2] = ... + alfa[2]*x (2) |
|
1198 * . . . . . . |
|
1199 * xB[m] = ... + alfa[m]*x |
|
1200 * |
|
1201 * where xB are basic (auxiliary and structural) variables, m is the |
|
1202 * number of rows in the problem object. |
|
1203 * |
|
1204 * On exit the routine stores indices and numerical values of non-zero |
|
1205 * elements of the resultant column (2) in locations ind[1], ..., |
|
1206 * ind[len'] and val[1], ..., val[len'], where 0 <= len' <= m is the |
|
1207 * number of non-zero element in the resultant column returned by the |
|
1208 * routine. Note that indices (numbers) of basic variables stored in |
|
1209 * the array ind correspond to original ordinal numbers of variables: |
|
1210 * indices 1 to m mean auxiliary variables and indices m+1 to m+n mean |
|
1211 * structural ones. |
|
1212 * |
|
1213 * RETURNS |
|
1214 * |
|
1215 * The routine returns len', which is the number of non-zero elements |
|
1216 * in the resultant column stored in the arrays ind and val. |
|
1217 * |
|
1218 * BACKGROUND |
|
1219 * |
|
1220 * The explicitly specified column (1) is transformed in the same way |
|
1221 * as any other column of the constraint matrix using the formula: |
|
1222 * |
|
1223 * alfa = inv(B) * a, (3) |
|
1224 * |
|
1225 * where alfa is the resultant column computed by the routine. */ |
|
1226 |
|
1227 int glp_transform_col(glp_prob *P, int len, int ind[], double val[]) |
|
1228 { int i, m, t; |
|
1229 double *a, *alfa; |
|
1230 if (!glp_bf_exists(P)) |
|
1231 xerror("glp_transform_col: basis factorization does not exist " |
|
1232 "\n"); |
|
1233 m = glp_get_num_rows(P); |
|
1234 /* unpack the column to be transformed to the array a */ |
|
1235 a = xcalloc(1+m, sizeof(double)); |
|
1236 for (i = 1; i <= m; i++) a[i] = 0.0; |
|
1237 if (!(0 <= len && len <= m)) |
|
1238 xerror("glp_transform_col: len = %d; invalid column length\n", |
|
1239 len); |
|
1240 for (t = 1; t <= len; t++) |
|
1241 { i = ind[t]; |
|
1242 if (!(1 <= i && i <= m)) |
|
1243 xerror("glp_transform_col: ind[%d] = %d; row index out of r" |
|
1244 "ange\n", t, i); |
|
1245 if (val[t] == 0.0) |
|
1246 xerror("glp_transform_col: val[%d] = 0; zero coefficient no" |
|
1247 "t allowed\n", t); |
|
1248 if (a[i] != 0.0) |
|
1249 xerror("glp_transform_col: ind[%d] = %d; duplicate row indi" |
|
1250 "ces not allowed\n", t, i); |
|
1251 a[i] = val[t]; |
|
1252 } |
|
1253 /* solve the system B*a = alfa to compute the vector alfa */ |
|
1254 alfa = a, glp_ftran(P, alfa); |
|
1255 /* store resultant coefficients */ |
|
1256 len = 0; |
|
1257 for (i = 1; i <= m; i++) |
|
1258 { if (alfa[i] != 0.0) |
|
1259 { len++; |
|
1260 ind[len] = glp_get_bhead(P, i); |
|
1261 val[len] = alfa[i]; |
|
1262 } |
|
1263 } |
|
1264 xfree(a); |
|
1265 return len; |
|
1266 } |
|
1267 |
|
1268 /*********************************************************************** |
|
1269 * NAME |
|
1270 * |
|
1271 * glp_prim_rtest - perform primal ratio test |
|
1272 * |
|
1273 * SYNOPSIS |
|
1274 * |
|
1275 * int glp_prim_rtest(glp_prob *P, int len, const int ind[], |
|
1276 * const double val[], int dir, double eps); |
|
1277 * |
|
1278 * DESCRIPTION |
|
1279 * |
|
1280 * The routine glp_prim_rtest performs the primal ratio test using an |
|
1281 * explicitly specified column of the simplex table. |
|
1282 * |
|
1283 * The current basic solution associated with the LP problem object |
|
1284 * must be primal feasible. |
|
1285 * |
|
1286 * The explicitly specified column of the simplex table shows how the |
|
1287 * basic variables xB depend on some non-basic variable x (which is not |
|
1288 * necessarily presented in the problem object): |
|
1289 * |
|
1290 * xB[1] = ... + alfa[1] * x + ... |
|
1291 * xB[2] = ... + alfa[2] * x + ... (*) |
|
1292 * . . . . . . . . |
|
1293 * xB[m] = ... + alfa[m] * x + ... |
|
1294 * |
|
1295 * The column (*) is specifed on entry to the routine using the sparse |
|
1296 * format. Ordinal numbers of basic variables xB[i] should be placed in |
|
1297 * locations ind[1], ..., ind[len], where ordinal number 1 to m denote |
|
1298 * auxiliary variables, and ordinal numbers m+1 to m+n denote structural |
|
1299 * variables. The corresponding non-zero coefficients alfa[i] should be |
|
1300 * placed in locations val[1], ..., val[len]. The arrays ind and val are |
|
1301 * not changed on exit. |
|
1302 * |
|
1303 * The parameter dir specifies direction in which the variable x changes |
|
1304 * on entering the basis: +1 means increasing, -1 means decreasing. |
|
1305 * |
|
1306 * The parameter eps is an absolute tolerance (small positive number) |
|
1307 * used by the routine to skip small alfa[j] of the row (*). |
|
1308 * |
|
1309 * The routine determines which basic variable (among specified in |
|
1310 * ind[1], ..., ind[len]) should leave the basis in order to keep primal |
|
1311 * feasibility. |
|
1312 * |
|
1313 * RETURNS |
|
1314 * |
|
1315 * The routine glp_prim_rtest returns the index piv in the arrays ind |
|
1316 * and val corresponding to the pivot element chosen, 1 <= piv <= len. |
|
1317 * If the adjacent basic solution is primal unbounded and therefore the |
|
1318 * choice cannot be made, the routine returns zero. |
|
1319 * |
|
1320 * COMMENTS |
|
1321 * |
|
1322 * If the non-basic variable x is presented in the LP problem object, |
|
1323 * the column (*) can be computed with the routine glp_eval_tab_col; |
|
1324 * otherwise it can be computed with the routine glp_transform_col. */ |
|
1325 |
|
1326 int glp_prim_rtest(glp_prob *P, int len, const int ind[], |
|
1327 const double val[], int dir, double eps) |
|
1328 { int k, m, n, piv, t, type, stat; |
|
1329 double alfa, big, beta, lb, ub, temp, teta; |
|
1330 if (glp_get_prim_stat(P) != GLP_FEAS) |
|
1331 xerror("glp_prim_rtest: basic solution is not primal feasible " |
|
1332 "\n"); |
|
1333 if (!(dir == +1 || dir == -1)) |
|
1334 xerror("glp_prim_rtest: dir = %d; invalid parameter\n", dir); |
|
1335 if (!(0.0 < eps && eps < 1.0)) |
|
1336 xerror("glp_prim_rtest: eps = %g; invalid parameter\n", eps); |
|
1337 m = glp_get_num_rows(P); |
|
1338 n = glp_get_num_cols(P); |
|
1339 /* initial settings */ |
|
1340 piv = 0, teta = DBL_MAX, big = 0.0; |
|
1341 /* walk through the entries of the specified column */ |
|
1342 for (t = 1; t <= len; t++) |
|
1343 { /* get the ordinal number of basic variable */ |
|
1344 k = ind[t]; |
|
1345 if (!(1 <= k && k <= m+n)) |
|
1346 xerror("glp_prim_rtest: ind[%d] = %d; variable number out o" |
|
1347 "f range\n", t, k); |
|
1348 /* determine type, bounds, status and primal value of basic |
|
1349 variable xB[i] = x[k] in the current basic solution */ |
|
1350 if (k <= m) |
|
1351 { type = glp_get_row_type(P, k); |
|
1352 lb = glp_get_row_lb(P, k); |
|
1353 ub = glp_get_row_ub(P, k); |
|
1354 stat = glp_get_row_stat(P, k); |
|
1355 beta = glp_get_row_prim(P, k); |
|
1356 } |
|
1357 else |
|
1358 { type = glp_get_col_type(P, k-m); |
|
1359 lb = glp_get_col_lb(P, k-m); |
|
1360 ub = glp_get_col_ub(P, k-m); |
|
1361 stat = glp_get_col_stat(P, k-m); |
|
1362 beta = glp_get_col_prim(P, k-m); |
|
1363 } |
|
1364 if (stat != GLP_BS) |
|
1365 xerror("glp_prim_rtest: ind[%d] = %d; non-basic variable no" |
|
1366 "t allowed\n", t, k); |
|
1367 /* determine influence coefficient at basic variable xB[i] |
|
1368 in the explicitly specified column and turn to the case of |
|
1369 increasing the variable x in order to simplify the program |
|
1370 logic */ |
|
1371 alfa = (dir > 0 ? + val[t] : - val[t]); |
|
1372 /* analyze main cases */ |
|
1373 if (type == GLP_FR) |
|
1374 { /* xB[i] is free variable */ |
|
1375 continue; |
|
1376 } |
|
1377 else if (type == GLP_LO) |
|
1378 lo: { /* xB[i] has an lower bound */ |
|
1379 if (alfa > - eps) continue; |
|
1380 temp = (lb - beta) / alfa; |
|
1381 } |
|
1382 else if (type == GLP_UP) |
|
1383 up: { /* xB[i] has an upper bound */ |
|
1384 if (alfa < + eps) continue; |
|
1385 temp = (ub - beta) / alfa; |
|
1386 } |
|
1387 else if (type == GLP_DB) |
|
1388 { /* xB[i] has both lower and upper bounds */ |
|
1389 if (alfa < 0.0) goto lo; else goto up; |
|
1390 } |
|
1391 else if (type == GLP_FX) |
|
1392 { /* xB[i] is fixed variable */ |
|
1393 if (- eps < alfa && alfa < + eps) continue; |
|
1394 temp = 0.0; |
|
1395 } |
|
1396 else |
|
1397 xassert(type != type); |
|
1398 /* if the value of the variable xB[i] violates its lower or |
|
1399 upper bound (slightly, because the current basis is assumed |
|
1400 to be primal feasible), temp is negative; we can think this |
|
1401 happens due to round-off errors and the value is exactly on |
|
1402 the bound; this allows replacing temp by zero */ |
|
1403 if (temp < 0.0) temp = 0.0; |
|
1404 /* apply the minimal ratio test */ |
|
1405 if (teta > temp || teta == temp && big < fabs(alfa)) |
|
1406 piv = t, teta = temp, big = fabs(alfa); |
|
1407 } |
|
1408 /* return index of the pivot element chosen */ |
|
1409 return piv; |
|
1410 } |
|
1411 |
|
1412 /*********************************************************************** |
|
1413 * NAME |
|
1414 * |
|
1415 * glp_dual_rtest - perform dual ratio test |
|
1416 * |
|
1417 * SYNOPSIS |
|
1418 * |
|
1419 * int glp_dual_rtest(glp_prob *P, int len, const int ind[], |
|
1420 * const double val[], int dir, double eps); |
|
1421 * |
|
1422 * DESCRIPTION |
|
1423 * |
|
1424 * The routine glp_dual_rtest performs the dual ratio test using an |
|
1425 * explicitly specified row of the simplex table. |
|
1426 * |
|
1427 * The current basic solution associated with the LP problem object |
|
1428 * must be dual feasible. |
|
1429 * |
|
1430 * The explicitly specified row of the simplex table is a linear form |
|
1431 * that shows how some basic variable x (which is not necessarily |
|
1432 * presented in the problem object) depends on non-basic variables xN: |
|
1433 * |
|
1434 * x = alfa[1] * xN[1] + alfa[2] * xN[2] + ... + alfa[n] * xN[n]. (*) |
|
1435 * |
|
1436 * The row (*) is specified on entry to the routine using the sparse |
|
1437 * format. Ordinal numbers of non-basic variables xN[j] should be placed |
|
1438 * in locations ind[1], ..., ind[len], where ordinal numbers 1 to m |
|
1439 * denote auxiliary variables, and ordinal numbers m+1 to m+n denote |
|
1440 * structural variables. The corresponding non-zero coefficients alfa[j] |
|
1441 * should be placed in locations val[1], ..., val[len]. The arrays ind |
|
1442 * and val are not changed on exit. |
|
1443 * |
|
1444 * The parameter dir specifies direction in which the variable x changes |
|
1445 * on leaving the basis: +1 means that x goes to its lower bound, and -1 |
|
1446 * means that x goes to its upper bound. |
|
1447 * |
|
1448 * The parameter eps is an absolute tolerance (small positive number) |
|
1449 * used by the routine to skip small alfa[j] of the row (*). |
|
1450 * |
|
1451 * The routine determines which non-basic variable (among specified in |
|
1452 * ind[1], ..., ind[len]) should enter the basis in order to keep dual |
|
1453 * feasibility. |
|
1454 * |
|
1455 * RETURNS |
|
1456 * |
|
1457 * The routine glp_dual_rtest returns the index piv in the arrays ind |
|
1458 * and val corresponding to the pivot element chosen, 1 <= piv <= len. |
|
1459 * If the adjacent basic solution is dual unbounded and therefore the |
|
1460 * choice cannot be made, the routine returns zero. |
|
1461 * |
|
1462 * COMMENTS |
|
1463 * |
|
1464 * If the basic variable x is presented in the LP problem object, the |
|
1465 * row (*) can be computed with the routine glp_eval_tab_row; otherwise |
|
1466 * it can be computed with the routine glp_transform_row. */ |
|
1467 |
|
1468 int glp_dual_rtest(glp_prob *P, int len, const int ind[], |
|
1469 const double val[], int dir, double eps) |
|
1470 { int k, m, n, piv, t, stat; |
|
1471 double alfa, big, cost, obj, temp, teta; |
|
1472 if (glp_get_dual_stat(P) != GLP_FEAS) |
|
1473 xerror("glp_dual_rtest: basic solution is not dual feasible\n") |
|
1474 ; |
|
1475 if (!(dir == +1 || dir == -1)) |
|
1476 xerror("glp_dual_rtest: dir = %d; invalid parameter\n", dir); |
|
1477 if (!(0.0 < eps && eps < 1.0)) |
|
1478 xerror("glp_dual_rtest: eps = %g; invalid parameter\n", eps); |
|
1479 m = glp_get_num_rows(P); |
|
1480 n = glp_get_num_cols(P); |
|
1481 /* take into account optimization direction */ |
|
1482 obj = (glp_get_obj_dir(P) == GLP_MIN ? +1.0 : -1.0); |
|
1483 /* initial settings */ |
|
1484 piv = 0, teta = DBL_MAX, big = 0.0; |
|
1485 /* walk through the entries of the specified row */ |
|
1486 for (t = 1; t <= len; t++) |
|
1487 { /* get ordinal number of non-basic variable */ |
|
1488 k = ind[t]; |
|
1489 if (!(1 <= k && k <= m+n)) |
|
1490 xerror("glp_dual_rtest: ind[%d] = %d; variable number out o" |
|
1491 "f range\n", t, k); |
|
1492 /* determine status and reduced cost of non-basic variable |
|
1493 x[k] = xN[j] in the current basic solution */ |
|
1494 if (k <= m) |
|
1495 { stat = glp_get_row_stat(P, k); |
|
1496 cost = glp_get_row_dual(P, k); |
|
1497 } |
|
1498 else |
|
1499 { stat = glp_get_col_stat(P, k-m); |
|
1500 cost = glp_get_col_dual(P, k-m); |
|
1501 } |
|
1502 if (stat == GLP_BS) |
|
1503 xerror("glp_dual_rtest: ind[%d] = %d; basic variable not al" |
|
1504 "lowed\n", t, k); |
|
1505 /* determine influence coefficient at non-basic variable xN[j] |
|
1506 in the explicitly specified row and turn to the case of |
|
1507 increasing the variable x in order to simplify the program |
|
1508 logic */ |
|
1509 alfa = (dir > 0 ? + val[t] : - val[t]); |
|
1510 /* analyze main cases */ |
|
1511 if (stat == GLP_NL) |
|
1512 { /* xN[j] is on its lower bound */ |
|
1513 if (alfa < + eps) continue; |
|
1514 temp = (obj * cost) / alfa; |
|
1515 } |
|
1516 else if (stat == GLP_NU) |
|
1517 { /* xN[j] is on its upper bound */ |
|
1518 if (alfa > - eps) continue; |
|
1519 temp = (obj * cost) / alfa; |
|
1520 } |
|
1521 else if (stat == GLP_NF) |
|
1522 { /* xN[j] is non-basic free variable */ |
|
1523 if (- eps < alfa && alfa < + eps) continue; |
|
1524 temp = 0.0; |
|
1525 } |
|
1526 else if (stat == GLP_NS) |
|
1527 { /* xN[j] is non-basic fixed variable */ |
|
1528 continue; |
|
1529 } |
|
1530 else |
|
1531 xassert(stat != stat); |
|
1532 /* if the reduced cost of the variable xN[j] violates its zero |
|
1533 bound (slightly, because the current basis is assumed to be |
|
1534 dual feasible), temp is negative; we can think this happens |
|
1535 due to round-off errors and the reduced cost is exact zero; |
|
1536 this allows replacing temp by zero */ |
|
1537 if (temp < 0.0) temp = 0.0; |
|
1538 /* apply the minimal ratio test */ |
|
1539 if (teta > temp || teta == temp && big < fabs(alfa)) |
|
1540 piv = t, teta = temp, big = fabs(alfa); |
|
1541 } |
|
1542 /* return index of the pivot element chosen */ |
|
1543 return piv; |
|
1544 } |
|
1545 |
|
1546 /*********************************************************************** |
|
1547 * NAME |
|
1548 * |
|
1549 * glp_analyze_row - simulate one iteration of dual simplex method |
|
1550 * |
|
1551 * SYNOPSIS |
|
1552 * |
|
1553 * int glp_analyze_row(glp_prob *P, int len, const int ind[], |
|
1554 * const double val[], int type, double rhs, double eps, int *piv, |
|
1555 * double *x, double *dx, double *y, double *dy, double *dz); |
|
1556 * |
|
1557 * DESCRIPTION |
|
1558 * |
|
1559 * Let the current basis be optimal or dual feasible, and there be |
|
1560 * specified a row (constraint), which is violated by the current basic |
|
1561 * solution. The routine glp_analyze_row simulates one iteration of the |
|
1562 * dual simplex method to determine some information on the adjacent |
|
1563 * basis (see below), where the specified row becomes active constraint |
|
1564 * (i.e. its auxiliary variable becomes non-basic). |
|
1565 * |
|
1566 * The current basic solution associated with the problem object passed |
|
1567 * to the routine must be dual feasible, and its primal components must |
|
1568 * be defined. |
|
1569 * |
|
1570 * The row to be analyzed must be previously transformed either with |
|
1571 * the routine glp_eval_tab_row (if the row is in the problem object) |
|
1572 * or with the routine glp_transform_row (if the row is external, i.e. |
|
1573 * not in the problem object). This is needed to express the row only |
|
1574 * through (auxiliary and structural) variables, which are non-basic in |
|
1575 * the current basis: |
|
1576 * |
|
1577 * y = alfa[1] * xN[1] + alfa[2] * xN[2] + ... + alfa[n] * xN[n], |
|
1578 * |
|
1579 * where y is an auxiliary variable of the row, alfa[j] is an influence |
|
1580 * coefficient, xN[j] is a non-basic variable. |
|
1581 * |
|
1582 * The row is passed to the routine in sparse format. Ordinal numbers |
|
1583 * of non-basic variables are stored in locations ind[1], ..., ind[len], |
|
1584 * where numbers 1 to m denote auxiliary variables while numbers m+1 to |
|
1585 * m+n denote structural variables. Corresponding non-zero coefficients |
|
1586 * alfa[j] are stored in locations val[1], ..., val[len]. The arrays |
|
1587 * ind and val are ot changed on exit. |
|
1588 * |
|
1589 * The parameters type and rhs specify the row type and its right-hand |
|
1590 * side as follows: |
|
1591 * |
|
1592 * type = GLP_LO: y = sum alfa[j] * xN[j] >= rhs |
|
1593 * |
|
1594 * type = GLP_UP: y = sum alfa[j] * xN[j] <= rhs |
|
1595 * |
|
1596 * The parameter eps is an absolute tolerance (small positive number) |
|
1597 * used by the routine to skip small coefficients alfa[j] on performing |
|
1598 * the dual ratio test. |
|
1599 * |
|
1600 * If the operation was successful, the routine stores the following |
|
1601 * information to corresponding location (if some parameter is NULL, |
|
1602 * its value is not stored): |
|
1603 * |
|
1604 * piv index in the array ind and val, 1 <= piv <= len, determining |
|
1605 * the non-basic variable, which would enter the adjacent basis; |
|
1606 * |
|
1607 * x value of the non-basic variable in the current basis; |
|
1608 * |
|
1609 * dx difference between values of the non-basic variable in the |
|
1610 * adjacent and current bases, dx = x.new - x.old; |
|
1611 * |
|
1612 * y value of the row (i.e. of its auxiliary variable) in the |
|
1613 * current basis; |
|
1614 * |
|
1615 * dy difference between values of the row in the adjacent and |
|
1616 * current bases, dy = y.new - y.old; |
|
1617 * |
|
1618 * dz difference between values of the objective function in the |
|
1619 * adjacent and current bases, dz = z.new - z.old. Note that in |
|
1620 * case of minimization dz >= 0, and in case of maximization |
|
1621 * dz <= 0, i.e. in the adjacent basis the objective function |
|
1622 * always gets worse (degrades). */ |
|
1623 |
|
1624 int _glp_analyze_row(glp_prob *P, int len, const int ind[], |
|
1625 const double val[], int type, double rhs, double eps, int *_piv, |
|
1626 double *_x, double *_dx, double *_y, double *_dy, double *_dz) |
|
1627 { int t, k, dir, piv, ret = 0; |
|
1628 double x, dx, y, dy, dz; |
|
1629 if (P->pbs_stat == GLP_UNDEF) |
|
1630 xerror("glp_analyze_row: primal basic solution components are " |
|
1631 "undefined\n"); |
|
1632 if (P->dbs_stat != GLP_FEAS) |
|
1633 xerror("glp_analyze_row: basic solution is not dual feasible\n" |
|
1634 ); |
|
1635 /* compute the row value y = sum alfa[j] * xN[j] in the current |
|
1636 basis */ |
|
1637 if (!(0 <= len && len <= P->n)) |
|
1638 xerror("glp_analyze_row: len = %d; invalid row length\n", len); |
|
1639 y = 0.0; |
|
1640 for (t = 1; t <= len; t++) |
|
1641 { /* determine value of x[k] = xN[j] in the current basis */ |
|
1642 k = ind[t]; |
|
1643 if (!(1 <= k && k <= P->m+P->n)) |
|
1644 xerror("glp_analyze_row: ind[%d] = %d; row/column index out" |
|
1645 " of range\n", t, k); |
|
1646 if (k <= P->m) |
|
1647 { /* x[k] is auxiliary variable */ |
|
1648 if (P->row[k]->stat == GLP_BS) |
|
1649 xerror("glp_analyze_row: ind[%d] = %d; basic auxiliary v" |
|
1650 "ariable is not allowed\n", t, k); |
|
1651 x = P->row[k]->prim; |
|
1652 } |
|
1653 else |
|
1654 { /* x[k] is structural variable */ |
|
1655 if (P->col[k-P->m]->stat == GLP_BS) |
|
1656 xerror("glp_analyze_row: ind[%d] = %d; basic structural " |
|
1657 "variable is not allowed\n", t, k); |
|
1658 x = P->col[k-P->m]->prim; |
|
1659 } |
|
1660 y += val[t] * x; |
|
1661 } |
|
1662 /* check if the row is primal infeasible in the current basis, |
|
1663 i.e. the constraint is violated at the current point */ |
|
1664 if (type == GLP_LO) |
|
1665 { if (y >= rhs) |
|
1666 { /* the constraint is not violated */ |
|
1667 ret = 1; |
|
1668 goto done; |
|
1669 } |
|
1670 /* in the adjacent basis y goes to its lower bound */ |
|
1671 dir = +1; |
|
1672 } |
|
1673 else if (type == GLP_UP) |
|
1674 { if (y <= rhs) |
|
1675 { /* the constraint is not violated */ |
|
1676 ret = 1; |
|
1677 goto done; |
|
1678 } |
|
1679 /* in the adjacent basis y goes to its upper bound */ |
|
1680 dir = -1; |
|
1681 } |
|
1682 else |
|
1683 xerror("glp_analyze_row: type = %d; invalid parameter\n", |
|
1684 type); |
|
1685 /* compute dy = y.new - y.old */ |
|
1686 dy = rhs - y; |
|
1687 /* perform dual ratio test to determine which non-basic variable |
|
1688 should enter the adjacent basis to keep it dual feasible */ |
|
1689 piv = glp_dual_rtest(P, len, ind, val, dir, eps); |
|
1690 if (piv == 0) |
|
1691 { /* no dual feasible adjacent basis exists */ |
|
1692 ret = 2; |
|
1693 goto done; |
|
1694 } |
|
1695 /* non-basic variable x[k] = xN[j] should enter the basis */ |
|
1696 k = ind[piv]; |
|
1697 xassert(1 <= k && k <= P->m+P->n); |
|
1698 /* determine its value in the current basis */ |
|
1699 if (k <= P->m) |
|
1700 x = P->row[k]->prim; |
|
1701 else |
|
1702 x = P->col[k-P->m]->prim; |
|
1703 /* compute dx = x.new - x.old = dy / alfa[j] */ |
|
1704 xassert(val[piv] != 0.0); |
|
1705 dx = dy / val[piv]; |
|
1706 /* compute dz = z.new - z.old = d[j] * dx, where d[j] is reduced |
|
1707 cost of xN[j] in the current basis */ |
|
1708 if (k <= P->m) |
|
1709 dz = P->row[k]->dual * dx; |
|
1710 else |
|
1711 dz = P->col[k-P->m]->dual * dx; |
|
1712 /* store the analysis results */ |
|
1713 if (_piv != NULL) *_piv = piv; |
|
1714 if (_x != NULL) *_x = x; |
|
1715 if (_dx != NULL) *_dx = dx; |
|
1716 if (_y != NULL) *_y = y; |
|
1717 if (_dy != NULL) *_dy = dy; |
|
1718 if (_dz != NULL) *_dz = dz; |
|
1719 done: return ret; |
|
1720 } |
|
1721 |
|
1722 #if 0 |
|
1723 int main(void) |
|
1724 { /* example program for the routine glp_analyze_row */ |
|
1725 glp_prob *P; |
|
1726 glp_smcp parm; |
|
1727 int i, k, len, piv, ret, ind[1+100]; |
|
1728 double rhs, x, dx, y, dy, dz, val[1+100]; |
|
1729 P = glp_create_prob(); |
|
1730 /* read plan.mps (see glpk/examples) */ |
|
1731 ret = glp_read_mps(P, GLP_MPS_DECK, NULL, "plan.mps"); |
|
1732 glp_assert(ret == 0); |
|
1733 /* and solve it to optimality */ |
|
1734 ret = glp_simplex(P, NULL); |
|
1735 glp_assert(ret == 0); |
|
1736 glp_assert(glp_get_status(P) == GLP_OPT); |
|
1737 /* the optimal objective value is 296.217 */ |
|
1738 /* we would like to know what happens if we would add a new row |
|
1739 (constraint) to plan.mps: |
|
1740 .01 * bin1 + .01 * bin2 + .02 * bin4 + .02 * bin5 <= 12 */ |
|
1741 /* first, we specify this new row */ |
|
1742 glp_create_index(P); |
|
1743 len = 0; |
|
1744 ind[++len] = glp_find_col(P, "BIN1"), val[len] = .01; |
|
1745 ind[++len] = glp_find_col(P, "BIN2"), val[len] = .01; |
|
1746 ind[++len] = glp_find_col(P, "BIN4"), val[len] = .02; |
|
1747 ind[++len] = glp_find_col(P, "BIN5"), val[len] = .02; |
|
1748 rhs = 12; |
|
1749 /* then we can compute value of the row (i.e. of its auxiliary |
|
1750 variable) in the current basis to see if the constraint is |
|
1751 violated */ |
|
1752 y = 0.0; |
|
1753 for (k = 1; k <= len; k++) |
|
1754 y += val[k] * glp_get_col_prim(P, ind[k]); |
|
1755 glp_printf("y = %g\n", y); |
|
1756 /* this prints y = 15.1372, so the constraint is violated, since |
|
1757 we require that y <= rhs = 12 */ |
|
1758 /* now we transform the row to express it only through non-basic |
|
1759 (auxiliary and artificial) variables */ |
|
1760 len = glp_transform_row(P, len, ind, val); |
|
1761 /* finally, we simulate one step of the dual simplex method to |
|
1762 obtain necessary information for the adjacent basis */ |
|
1763 ret = _glp_analyze_row(P, len, ind, val, GLP_UP, rhs, 1e-9, &piv, |
|
1764 &x, &dx, &y, &dy, &dz); |
|
1765 glp_assert(ret == 0); |
|
1766 glp_printf("k = %d, x = %g; dx = %g; y = %g; dy = %g; dz = %g\n", |
|
1767 ind[piv], x, dx, y, dy, dz); |
|
1768 /* this prints dz = 5.64418 and means that in the adjacent basis |
|
1769 the objective function would be 296.217 + 5.64418 = 301.861 */ |
|
1770 /* now we actually include the row into the problem object; note |
|
1771 that the arrays ind and val are clobbered, so we need to build |
|
1772 them once again */ |
|
1773 len = 0; |
|
1774 ind[++len] = glp_find_col(P, "BIN1"), val[len] = .01; |
|
1775 ind[++len] = glp_find_col(P, "BIN2"), val[len] = .01; |
|
1776 ind[++len] = glp_find_col(P, "BIN4"), val[len] = .02; |
|
1777 ind[++len] = glp_find_col(P, "BIN5"), val[len] = .02; |
|
1778 rhs = 12; |
|
1779 i = glp_add_rows(P, 1); |
|
1780 glp_set_row_bnds(P, i, GLP_UP, 0, rhs); |
|
1781 glp_set_mat_row(P, i, len, ind, val); |
|
1782 /* and perform one dual simplex iteration */ |
|
1783 glp_init_smcp(&parm); |
|
1784 parm.meth = GLP_DUAL; |
|
1785 parm.it_lim = 1; |
|
1786 glp_simplex(P, &parm); |
|
1787 /* the current objective value is 301.861 */ |
|
1788 return 0; |
|
1789 } |
|
1790 #endif |
|
1791 |
|
1792 /*********************************************************************** |
|
1793 * NAME |
|
1794 * |
|
1795 * glp_analyze_bound - analyze active bound of non-basic variable |
|
1796 * |
|
1797 * SYNOPSIS |
|
1798 * |
|
1799 * void glp_analyze_bound(glp_prob *P, int k, double *limit1, int *var1, |
|
1800 * double *limit2, int *var2); |
|
1801 * |
|
1802 * DESCRIPTION |
|
1803 * |
|
1804 * The routine glp_analyze_bound analyzes the effect of varying the |
|
1805 * active bound of specified non-basic variable. |
|
1806 * |
|
1807 * The non-basic variable is specified by the parameter k, where |
|
1808 * 1 <= k <= m means auxiliary variable of corresponding row while |
|
1809 * m+1 <= k <= m+n means structural variable (column). |
|
1810 * |
|
1811 * Note that the current basic solution must be optimal, and the basis |
|
1812 * factorization must exist. |
|
1813 * |
|
1814 * Results of the analysis have the following meaning. |
|
1815 * |
|
1816 * value1 is the minimal value of the active bound, at which the basis |
|
1817 * still remains primal feasible and thus optimal. -DBL_MAX means that |
|
1818 * the active bound has no lower limit. |
|
1819 * |
|
1820 * var1 is the ordinal number of an auxiliary (1 to m) or structural |
|
1821 * (m+1 to n) basic variable, which reaches its bound first and thereby |
|
1822 * limits further decreasing the active bound being analyzed. |
|
1823 * if value1 = -DBL_MAX, var1 is set to 0. |
|
1824 * |
|
1825 * value2 is the maximal value of the active bound, at which the basis |
|
1826 * still remains primal feasible and thus optimal. +DBL_MAX means that |
|
1827 * the active bound has no upper limit. |
|
1828 * |
|
1829 * var2 is the ordinal number of an auxiliary (1 to m) or structural |
|
1830 * (m+1 to n) basic variable, which reaches its bound first and thereby |
|
1831 * limits further increasing the active bound being analyzed. |
|
1832 * if value2 = +DBL_MAX, var2 is set to 0. */ |
|
1833 |
|
1834 void glp_analyze_bound(glp_prob *P, int k, double *value1, int *var1, |
|
1835 double *value2, int *var2) |
|
1836 { GLPROW *row; |
|
1837 GLPCOL *col; |
|
1838 int m, n, stat, kase, p, len, piv, *ind; |
|
1839 double x, new_x, ll, uu, xx, delta, *val; |
|
1840 /* sanity checks */ |
|
1841 if (P == NULL || P->magic != GLP_PROB_MAGIC) |
|
1842 xerror("glp_analyze_bound: P = %p; invalid problem object\n", |
|
1843 P); |
|
1844 m = P->m, n = P->n; |
|
1845 if (!(P->pbs_stat == GLP_FEAS && P->dbs_stat == GLP_FEAS)) |
|
1846 xerror("glp_analyze_bound: optimal basic solution required\n"); |
|
1847 if (!(m == 0 || P->valid)) |
|
1848 xerror("glp_analyze_bound: basis factorization required\n"); |
|
1849 if (!(1 <= k && k <= m+n)) |
|
1850 xerror("glp_analyze_bound: k = %d; variable number out of rang" |
|
1851 "e\n", k); |
|
1852 /* retrieve information about the specified non-basic variable |
|
1853 x[k] whose active bound is to be analyzed */ |
|
1854 if (k <= m) |
|
1855 { row = P->row[k]; |
|
1856 stat = row->stat; |
|
1857 x = row->prim; |
|
1858 } |
|
1859 else |
|
1860 { col = P->col[k-m]; |
|
1861 stat = col->stat; |
|
1862 x = col->prim; |
|
1863 } |
|
1864 if (stat == GLP_BS) |
|
1865 xerror("glp_analyze_bound: k = %d; basic variable not allowed " |
|
1866 "\n", k); |
|
1867 /* allocate working arrays */ |
|
1868 ind = xcalloc(1+m, sizeof(int)); |
|
1869 val = xcalloc(1+m, sizeof(double)); |
|
1870 /* compute column of the simplex table corresponding to the |
|
1871 non-basic variable x[k] */ |
|
1872 len = glp_eval_tab_col(P, k, ind, val); |
|
1873 xassert(0 <= len && len <= m); |
|
1874 /* perform analysis */ |
|
1875 for (kase = -1; kase <= +1; kase += 2) |
|
1876 { /* kase < 0 means active bound of x[k] is decreasing; |
|
1877 kase > 0 means active bound of x[k] is increasing */ |
|
1878 /* use the primal ratio test to determine some basic variable |
|
1879 x[p] which reaches its bound first */ |
|
1880 piv = glp_prim_rtest(P, len, ind, val, kase, 1e-9); |
|
1881 if (piv == 0) |
|
1882 { /* nothing limits changing the active bound of x[k] */ |
|
1883 p = 0; |
|
1884 new_x = (kase < 0 ? -DBL_MAX : +DBL_MAX); |
|
1885 goto store; |
|
1886 } |
|
1887 /* basic variable x[p] limits changing the active bound of |
|
1888 x[k]; determine its value in the current basis */ |
|
1889 xassert(1 <= piv && piv <= len); |
|
1890 p = ind[piv]; |
|
1891 if (p <= m) |
|
1892 { row = P->row[p]; |
|
1893 ll = glp_get_row_lb(P, row->i); |
|
1894 uu = glp_get_row_ub(P, row->i); |
|
1895 stat = row->stat; |
|
1896 xx = row->prim; |
|
1897 } |
|
1898 else |
|
1899 { col = P->col[p-m]; |
|
1900 ll = glp_get_col_lb(P, col->j); |
|
1901 uu = glp_get_col_ub(P, col->j); |
|
1902 stat = col->stat; |
|
1903 xx = col->prim; |
|
1904 } |
|
1905 xassert(stat == GLP_BS); |
|
1906 /* determine delta x[p] = bound of x[p] - value of x[p] */ |
|
1907 if (kase < 0 && val[piv] > 0.0 || |
|
1908 kase > 0 && val[piv] < 0.0) |
|
1909 { /* delta x[p] < 0, so x[p] goes toward its lower bound */ |
|
1910 xassert(ll != -DBL_MAX); |
|
1911 delta = ll - xx; |
|
1912 } |
|
1913 else |
|
1914 { /* delta x[p] > 0, so x[p] goes toward its upper bound */ |
|
1915 xassert(uu != +DBL_MAX); |
|
1916 delta = uu - xx; |
|
1917 } |
|
1918 /* delta x[p] = alfa[p,k] * delta x[k], so new x[k] = x[k] + |
|
1919 delta x[k] = x[k] + delta x[p] / alfa[p,k] is the value of |
|
1920 x[k] in the adjacent basis */ |
|
1921 xassert(val[piv] != 0.0); |
|
1922 new_x = x + delta / val[piv]; |
|
1923 store: /* store analysis results */ |
|
1924 if (kase < 0) |
|
1925 { if (value1 != NULL) *value1 = new_x; |
|
1926 if (var1 != NULL) *var1 = p; |
|
1927 } |
|
1928 else |
|
1929 { if (value2 != NULL) *value2 = new_x; |
|
1930 if (var2 != NULL) *var2 = p; |
|
1931 } |
|
1932 } |
|
1933 /* free working arrays */ |
|
1934 xfree(ind); |
|
1935 xfree(val); |
|
1936 return; |
|
1937 } |
|
1938 |
|
1939 /*********************************************************************** |
|
1940 * NAME |
|
1941 * |
|
1942 * glp_analyze_coef - analyze objective coefficient at basic variable |
|
1943 * |
|
1944 * SYNOPSIS |
|
1945 * |
|
1946 * void glp_analyze_coef(glp_prob *P, int k, double *coef1, int *var1, |
|
1947 * double *value1, double *coef2, int *var2, double *value2); |
|
1948 * |
|
1949 * DESCRIPTION |
|
1950 * |
|
1951 * The routine glp_analyze_coef analyzes the effect of varying the |
|
1952 * objective coefficient at specified basic variable. |
|
1953 * |
|
1954 * The basic variable is specified by the parameter k, where |
|
1955 * 1 <= k <= m means auxiliary variable of corresponding row while |
|
1956 * m+1 <= k <= m+n means structural variable (column). |
|
1957 * |
|
1958 * Note that the current basic solution must be optimal, and the basis |
|
1959 * factorization must exist. |
|
1960 * |
|
1961 * Results of the analysis have the following meaning. |
|
1962 * |
|
1963 * coef1 is the minimal value of the objective coefficient, at which |
|
1964 * the basis still remains dual feasible and thus optimal. -DBL_MAX |
|
1965 * means that the objective coefficient has no lower limit. |
|
1966 * |
|
1967 * var1 is the ordinal number of an auxiliary (1 to m) or structural |
|
1968 * (m+1 to n) non-basic variable, whose reduced cost reaches its zero |
|
1969 * bound first and thereby limits further decreasing the objective |
|
1970 * coefficient being analyzed. If coef1 = -DBL_MAX, var1 is set to 0. |
|
1971 * |
|
1972 * value1 is value of the basic variable being analyzed in an adjacent |
|
1973 * basis, which is defined as follows. Let the objective coefficient |
|
1974 * reaches its minimal value (coef1) and continues decreasing. Then the |
|
1975 * reduced cost of the limiting non-basic variable (var1) becomes dual |
|
1976 * infeasible and the current basis becomes non-optimal that forces the |
|
1977 * limiting non-basic variable to enter the basis replacing there some |
|
1978 * basic variable that leaves the basis to keep primal feasibility. |
|
1979 * Should note that on determining the adjacent basis current bounds |
|
1980 * of the basic variable being analyzed are ignored as if it were free |
|
1981 * (unbounded) variable, so it cannot leave the basis. It may happen |
|
1982 * that no dual feasible adjacent basis exists, in which case value1 is |
|
1983 * set to -DBL_MAX or +DBL_MAX. |
|
1984 * |
|
1985 * coef2 is the maximal value of the objective coefficient, at which |
|
1986 * the basis still remains dual feasible and thus optimal. +DBL_MAX |
|
1987 * means that the objective coefficient has no upper limit. |
|
1988 * |
|
1989 * var2 is the ordinal number of an auxiliary (1 to m) or structural |
|
1990 * (m+1 to n) non-basic variable, whose reduced cost reaches its zero |
|
1991 * bound first and thereby limits further increasing the objective |
|
1992 * coefficient being analyzed. If coef2 = +DBL_MAX, var2 is set to 0. |
|
1993 * |
|
1994 * value2 is value of the basic variable being analyzed in an adjacent |
|
1995 * basis, which is defined exactly in the same way as value1 above with |
|
1996 * exception that now the objective coefficient is increasing. */ |
|
1997 |
|
1998 void glp_analyze_coef(glp_prob *P, int k, double *coef1, int *var1, |
|
1999 double *value1, double *coef2, int *var2, double *value2) |
|
2000 { GLPROW *row; GLPCOL *col; |
|
2001 int m, n, type, stat, kase, p, q, dir, clen, cpiv, rlen, rpiv, |
|
2002 *cind, *rind; |
|
2003 double lb, ub, coef, x, lim_coef, new_x, d, delta, ll, uu, xx, |
|
2004 *rval, *cval; |
|
2005 /* sanity checks */ |
|
2006 if (P == NULL || P->magic != GLP_PROB_MAGIC) |
|
2007 xerror("glp_analyze_coef: P = %p; invalid problem object\n", |
|
2008 P); |
|
2009 m = P->m, n = P->n; |
|
2010 if (!(P->pbs_stat == GLP_FEAS && P->dbs_stat == GLP_FEAS)) |
|
2011 xerror("glp_analyze_coef: optimal basic solution required\n"); |
|
2012 if (!(m == 0 || P->valid)) |
|
2013 xerror("glp_analyze_coef: basis factorization required\n"); |
|
2014 if (!(1 <= k && k <= m+n)) |
|
2015 xerror("glp_analyze_coef: k = %d; variable number out of range" |
|
2016 "\n", k); |
|
2017 /* retrieve information about the specified basic variable x[k] |
|
2018 whose objective coefficient c[k] is to be analyzed */ |
|
2019 if (k <= m) |
|
2020 { row = P->row[k]; |
|
2021 type = row->type; |
|
2022 lb = row->lb; |
|
2023 ub = row->ub; |
|
2024 coef = 0.0; |
|
2025 stat = row->stat; |
|
2026 x = row->prim; |
|
2027 } |
|
2028 else |
|
2029 { col = P->col[k-m]; |
|
2030 type = col->type; |
|
2031 lb = col->lb; |
|
2032 ub = col->ub; |
|
2033 coef = col->coef; |
|
2034 stat = col->stat; |
|
2035 x = col->prim; |
|
2036 } |
|
2037 if (stat != GLP_BS) |
|
2038 xerror("glp_analyze_coef: k = %d; non-basic variable not allow" |
|
2039 "ed\n", k); |
|
2040 /* allocate working arrays */ |
|
2041 cind = xcalloc(1+m, sizeof(int)); |
|
2042 cval = xcalloc(1+m, sizeof(double)); |
|
2043 rind = xcalloc(1+n, sizeof(int)); |
|
2044 rval = xcalloc(1+n, sizeof(double)); |
|
2045 /* compute row of the simplex table corresponding to the basic |
|
2046 variable x[k] */ |
|
2047 rlen = glp_eval_tab_row(P, k, rind, rval); |
|
2048 xassert(0 <= rlen && rlen <= n); |
|
2049 /* perform analysis */ |
|
2050 for (kase = -1; kase <= +1; kase += 2) |
|
2051 { /* kase < 0 means objective coefficient c[k] is decreasing; |
|
2052 kase > 0 means objective coefficient c[k] is increasing */ |
|
2053 /* note that decreasing c[k] is equivalent to increasing dual |
|
2054 variable lambda[k] and vice versa; we need to correctly set |
|
2055 the dir flag as required by the routine glp_dual_rtest */ |
|
2056 if (P->dir == GLP_MIN) |
|
2057 dir = - kase; |
|
2058 else if (P->dir == GLP_MAX) |
|
2059 dir = + kase; |
|
2060 else |
|
2061 xassert(P != P); |
|
2062 /* use the dual ratio test to determine non-basic variable |
|
2063 x[q] whose reduced cost d[q] reaches zero bound first */ |
|
2064 rpiv = glp_dual_rtest(P, rlen, rind, rval, dir, 1e-9); |
|
2065 if (rpiv == 0) |
|
2066 { /* nothing limits changing c[k] */ |
|
2067 lim_coef = (kase < 0 ? -DBL_MAX : +DBL_MAX); |
|
2068 q = 0; |
|
2069 /* x[k] keeps its current value */ |
|
2070 new_x = x; |
|
2071 goto store; |
|
2072 } |
|
2073 /* non-basic variable x[q] limits changing coefficient c[k]; |
|
2074 determine its status and reduced cost d[k] in the current |
|
2075 basis */ |
|
2076 xassert(1 <= rpiv && rpiv <= rlen); |
|
2077 q = rind[rpiv]; |
|
2078 xassert(1 <= q && q <= m+n); |
|
2079 if (q <= m) |
|
2080 { row = P->row[q]; |
|
2081 stat = row->stat; |
|
2082 d = row->dual; |
|
2083 } |
|
2084 else |
|
2085 { col = P->col[q-m]; |
|
2086 stat = col->stat; |
|
2087 d = col->dual; |
|
2088 } |
|
2089 /* note that delta d[q] = new d[q] - d[q] = - d[q], because |
|
2090 new d[q] = 0; delta d[q] = alfa[k,q] * delta c[k], so |
|
2091 delta c[k] = delta d[q] / alfa[k,q] = - d[q] / alfa[k,q] */ |
|
2092 xassert(rval[rpiv] != 0.0); |
|
2093 delta = - d / rval[rpiv]; |
|
2094 /* compute new c[k] = c[k] + delta c[k], which is the limiting |
|
2095 value of the objective coefficient c[k] */ |
|
2096 lim_coef = coef + delta; |
|
2097 /* let c[k] continue decreasing/increasing that makes d[q] |
|
2098 dual infeasible and forces x[q] to enter the basis; |
|
2099 to perform the primal ratio test we need to know in which |
|
2100 direction x[q] changes on entering the basis; we determine |
|
2101 that analyzing the sign of delta d[q] (see above), since |
|
2102 d[q] may be close to zero having wrong sign */ |
|
2103 /* let, for simplicity, the problem is minimization */ |
|
2104 if (kase < 0 && rval[rpiv] > 0.0 || |
|
2105 kase > 0 && rval[rpiv] < 0.0) |
|
2106 { /* delta d[q] < 0, so d[q] being non-negative will become |
|
2107 negative, so x[q] will increase */ |
|
2108 dir = +1; |
|
2109 } |
|
2110 else |
|
2111 { /* delta d[q] > 0, so d[q] being non-positive will become |
|
2112 positive, so x[q] will decrease */ |
|
2113 dir = -1; |
|
2114 } |
|
2115 /* if the problem is maximization, correct the direction */ |
|
2116 if (P->dir == GLP_MAX) dir = - dir; |
|
2117 /* check that we didn't make a silly mistake */ |
|
2118 if (dir > 0) |
|
2119 xassert(stat == GLP_NL || stat == GLP_NF); |
|
2120 else |
|
2121 xassert(stat == GLP_NU || stat == GLP_NF); |
|
2122 /* compute column of the simplex table corresponding to the |
|
2123 non-basic variable x[q] */ |
|
2124 clen = glp_eval_tab_col(P, q, cind, cval); |
|
2125 /* make x[k] temporarily free (unbounded) */ |
|
2126 if (k <= m) |
|
2127 { row = P->row[k]; |
|
2128 row->type = GLP_FR; |
|
2129 row->lb = row->ub = 0.0; |
|
2130 } |
|
2131 else |
|
2132 { col = P->col[k-m]; |
|
2133 col->type = GLP_FR; |
|
2134 col->lb = col->ub = 0.0; |
|
2135 } |
|
2136 /* use the primal ratio test to determine some basic variable |
|
2137 which leaves the basis */ |
|
2138 cpiv = glp_prim_rtest(P, clen, cind, cval, dir, 1e-9); |
|
2139 /* restore original bounds of the basic variable x[k] */ |
|
2140 if (k <= m) |
|
2141 { row = P->row[k]; |
|
2142 row->type = type; |
|
2143 row->lb = lb, row->ub = ub; |
|
2144 } |
|
2145 else |
|
2146 { col = P->col[k-m]; |
|
2147 col->type = type; |
|
2148 col->lb = lb, col->ub = ub; |
|
2149 } |
|
2150 if (cpiv == 0) |
|
2151 { /* non-basic variable x[q] can change unlimitedly */ |
|
2152 if (dir < 0 && rval[rpiv] > 0.0 || |
|
2153 dir > 0 && rval[rpiv] < 0.0) |
|
2154 { /* delta x[k] = alfa[k,q] * delta x[q] < 0 */ |
|
2155 new_x = -DBL_MAX; |
|
2156 } |
|
2157 else |
|
2158 { /* delta x[k] = alfa[k,q] * delta x[q] > 0 */ |
|
2159 new_x = +DBL_MAX; |
|
2160 } |
|
2161 goto store; |
|
2162 } |
|
2163 /* some basic variable x[p] limits changing non-basic variable |
|
2164 x[q] in the adjacent basis */ |
|
2165 xassert(1 <= cpiv && cpiv <= clen); |
|
2166 p = cind[cpiv]; |
|
2167 xassert(1 <= p && p <= m+n); |
|
2168 xassert(p != k); |
|
2169 if (p <= m) |
|
2170 { row = P->row[p]; |
|
2171 xassert(row->stat == GLP_BS); |
|
2172 ll = glp_get_row_lb(P, row->i); |
|
2173 uu = glp_get_row_ub(P, row->i); |
|
2174 xx = row->prim; |
|
2175 } |
|
2176 else |
|
2177 { col = P->col[p-m]; |
|
2178 xassert(col->stat == GLP_BS); |
|
2179 ll = glp_get_col_lb(P, col->j); |
|
2180 uu = glp_get_col_ub(P, col->j); |
|
2181 xx = col->prim; |
|
2182 } |
|
2183 /* determine delta x[p] = new x[p] - x[p] */ |
|
2184 if (dir < 0 && cval[cpiv] > 0.0 || |
|
2185 dir > 0 && cval[cpiv] < 0.0) |
|
2186 { /* delta x[p] < 0, so x[p] goes toward its lower bound */ |
|
2187 xassert(ll != -DBL_MAX); |
|
2188 delta = ll - xx; |
|
2189 } |
|
2190 else |
|
2191 { /* delta x[p] > 0, so x[p] goes toward its upper bound */ |
|
2192 xassert(uu != +DBL_MAX); |
|
2193 delta = uu - xx; |
|
2194 } |
|
2195 /* compute new x[k] = x[k] + alfa[k,q] * delta x[q], where |
|
2196 delta x[q] = delta x[p] / alfa[p,q] */ |
|
2197 xassert(cval[cpiv] != 0.0); |
|
2198 new_x = x + (rval[rpiv] / cval[cpiv]) * delta; |
|
2199 store: /* store analysis results */ |
|
2200 if (kase < 0) |
|
2201 { if (coef1 != NULL) *coef1 = lim_coef; |
|
2202 if (var1 != NULL) *var1 = q; |
|
2203 if (value1 != NULL) *value1 = new_x; |
|
2204 } |
|
2205 else |
|
2206 { if (coef2 != NULL) *coef2 = lim_coef; |
|
2207 if (var2 != NULL) *var2 = q; |
|
2208 if (value2 != NULL) *value2 = new_x; |
|
2209 } |
|
2210 } |
|
2211 /* free working arrays */ |
|
2212 xfree(cind); |
|
2213 xfree(cval); |
|
2214 xfree(rind); |
|
2215 xfree(rval); |
|
2216 return; |
|
2217 } |
|
2218 |
|
2219 /* eof */ |