|
1 /* glpapi13.c (branch-and-bound interface routines) */ |
|
2 |
|
3 /*********************************************************************** |
|
4 * This code is part of GLPK (GNU Linear Programming Kit). |
|
5 * |
|
6 * Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, |
|
7 * 2009, 2010 Andrew Makhorin, Department for Applied Informatics, |
|
8 * Moscow Aviation Institute, Moscow, Russia. All rights reserved. |
|
9 * E-mail: <mao@gnu.org>. |
|
10 * |
|
11 * GLPK is free software: you can redistribute it and/or modify it |
|
12 * under the terms of the GNU General Public License as published by |
|
13 * the Free Software Foundation, either version 3 of the License, or |
|
14 * (at your option) any later version. |
|
15 * |
|
16 * GLPK is distributed in the hope that it will be useful, but WITHOUT |
|
17 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY |
|
18 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public |
|
19 * License for more details. |
|
20 * |
|
21 * You should have received a copy of the GNU General Public License |
|
22 * along with GLPK. If not, see <http://www.gnu.org/licenses/>. |
|
23 ***********************************************************************/ |
|
24 |
|
25 #include "glpios.h" |
|
26 |
|
27 /*********************************************************************** |
|
28 * NAME |
|
29 * |
|
30 * glp_ios_reason - determine reason for calling the callback routine |
|
31 * |
|
32 * SYNOPSIS |
|
33 * |
|
34 * glp_ios_reason(glp_tree *tree); |
|
35 * |
|
36 * RETURNS |
|
37 * |
|
38 * The routine glp_ios_reason returns a code, which indicates why the |
|
39 * user-defined callback routine is being called. */ |
|
40 |
|
41 int glp_ios_reason(glp_tree *tree) |
|
42 { return |
|
43 tree->reason; |
|
44 } |
|
45 |
|
46 /*********************************************************************** |
|
47 * NAME |
|
48 * |
|
49 * glp_ios_get_prob - access the problem object |
|
50 * |
|
51 * SYNOPSIS |
|
52 * |
|
53 * glp_prob *glp_ios_get_prob(glp_tree *tree); |
|
54 * |
|
55 * DESCRIPTION |
|
56 * |
|
57 * The routine glp_ios_get_prob can be called from the user-defined |
|
58 * callback routine to access the problem object, which is used by the |
|
59 * MIP solver. It is the original problem object passed to the routine |
|
60 * glp_intopt if the MIP presolver is not used; otherwise it is an |
|
61 * internal problem object built by the presolver. If the current |
|
62 * subproblem exists, LP segment of the problem object corresponds to |
|
63 * its LP relaxation. |
|
64 * |
|
65 * RETURNS |
|
66 * |
|
67 * The routine glp_ios_get_prob returns a pointer to the problem object |
|
68 * used by the MIP solver. */ |
|
69 |
|
70 glp_prob *glp_ios_get_prob(glp_tree *tree) |
|
71 { return |
|
72 tree->mip; |
|
73 } |
|
74 |
|
75 /*********************************************************************** |
|
76 * NAME |
|
77 * |
|
78 * glp_ios_tree_size - determine size of the branch-and-bound tree |
|
79 * |
|
80 * SYNOPSIS |
|
81 * |
|
82 * void glp_ios_tree_size(glp_tree *tree, int *a_cnt, int *n_cnt, |
|
83 * int *t_cnt); |
|
84 * |
|
85 * DESCRIPTION |
|
86 * |
|
87 * The routine glp_ios_tree_size stores the following three counts which |
|
88 * characterize the current size of the branch-and-bound tree: |
|
89 * |
|
90 * a_cnt is the current number of active nodes, i.e. the current size of |
|
91 * the active list; |
|
92 * |
|
93 * n_cnt is the current number of all (active and inactive) nodes; |
|
94 * |
|
95 * t_cnt is the total number of nodes including those which have been |
|
96 * already removed from the tree. This count is increased whenever |
|
97 * a new node appears in the tree and never decreased. |
|
98 * |
|
99 * If some of the parameters a_cnt, n_cnt, t_cnt is a null pointer, the |
|
100 * corresponding count is not stored. */ |
|
101 |
|
102 void glp_ios_tree_size(glp_tree *tree, int *a_cnt, int *n_cnt, |
|
103 int *t_cnt) |
|
104 { if (a_cnt != NULL) *a_cnt = tree->a_cnt; |
|
105 if (n_cnt != NULL) *n_cnt = tree->n_cnt; |
|
106 if (t_cnt != NULL) *t_cnt = tree->t_cnt; |
|
107 return; |
|
108 } |
|
109 |
|
110 /*********************************************************************** |
|
111 * NAME |
|
112 * |
|
113 * glp_ios_curr_node - determine current active subproblem |
|
114 * |
|
115 * SYNOPSIS |
|
116 * |
|
117 * int glp_ios_curr_node(glp_tree *tree); |
|
118 * |
|
119 * RETURNS |
|
120 * |
|
121 * The routine glp_ios_curr_node returns the reference number of the |
|
122 * current active subproblem. However, if the current subproblem does |
|
123 * not exist, the routine returns zero. */ |
|
124 |
|
125 int glp_ios_curr_node(glp_tree *tree) |
|
126 { IOSNPD *node; |
|
127 /* obtain pointer to the current subproblem */ |
|
128 node = tree->curr; |
|
129 /* return its reference number */ |
|
130 return node == NULL ? 0 : node->p; |
|
131 } |
|
132 |
|
133 /*********************************************************************** |
|
134 * NAME |
|
135 * |
|
136 * glp_ios_next_node - determine next active subproblem |
|
137 * |
|
138 * SYNOPSIS |
|
139 * |
|
140 * int glp_ios_next_node(glp_tree *tree, int p); |
|
141 * |
|
142 * RETURNS |
|
143 * |
|
144 * If the parameter p is zero, the routine glp_ios_next_node returns |
|
145 * the reference number of the first active subproblem. However, if the |
|
146 * tree is empty, zero is returned. |
|
147 * |
|
148 * If the parameter p is not zero, it must specify the reference number |
|
149 * of some active subproblem, in which case the routine returns the |
|
150 * reference number of the next active subproblem. However, if there is |
|
151 * no next active subproblem in the list, zero is returned. |
|
152 * |
|
153 * All subproblems in the active list are ordered chronologically, i.e. |
|
154 * subproblem A precedes subproblem B if A was created before B. */ |
|
155 |
|
156 int glp_ios_next_node(glp_tree *tree, int p) |
|
157 { IOSNPD *node; |
|
158 if (p == 0) |
|
159 { /* obtain pointer to the first active subproblem */ |
|
160 node = tree->head; |
|
161 } |
|
162 else |
|
163 { /* obtain pointer to the specified subproblem */ |
|
164 if (!(1 <= p && p <= tree->nslots)) |
|
165 err: xerror("glp_ios_next_node: p = %d; invalid subproblem refer" |
|
166 "ence number\n", p); |
|
167 node = tree->slot[p].node; |
|
168 if (node == NULL) goto err; |
|
169 /* the specified subproblem must be active */ |
|
170 if (node->count != 0) |
|
171 xerror("glp_ios_next_node: p = %d; subproblem not in the ac" |
|
172 "tive list\n", p); |
|
173 /* obtain pointer to the next active subproblem */ |
|
174 node = node->next; |
|
175 } |
|
176 /* return the reference number */ |
|
177 return node == NULL ? 0 : node->p; |
|
178 } |
|
179 |
|
180 /*********************************************************************** |
|
181 * NAME |
|
182 * |
|
183 * glp_ios_prev_node - determine previous active subproblem |
|
184 * |
|
185 * SYNOPSIS |
|
186 * |
|
187 * int glp_ios_prev_node(glp_tree *tree, int p); |
|
188 * |
|
189 * RETURNS |
|
190 * |
|
191 * If the parameter p is zero, the routine glp_ios_prev_node returns |
|
192 * the reference number of the last active subproblem. However, if the |
|
193 * tree is empty, zero is returned. |
|
194 * |
|
195 * If the parameter p is not zero, it must specify the reference number |
|
196 * of some active subproblem, in which case the routine returns the |
|
197 * reference number of the previous active subproblem. However, if there |
|
198 * is no previous active subproblem in the list, zero is returned. |
|
199 * |
|
200 * All subproblems in the active list are ordered chronologically, i.e. |
|
201 * subproblem A precedes subproblem B if A was created before B. */ |
|
202 |
|
203 int glp_ios_prev_node(glp_tree *tree, int p) |
|
204 { IOSNPD *node; |
|
205 if (p == 0) |
|
206 { /* obtain pointer to the last active subproblem */ |
|
207 node = tree->tail; |
|
208 } |
|
209 else |
|
210 { /* obtain pointer to the specified subproblem */ |
|
211 if (!(1 <= p && p <= tree->nslots)) |
|
212 err: xerror("glp_ios_prev_node: p = %d; invalid subproblem refer" |
|
213 "ence number\n", p); |
|
214 node = tree->slot[p].node; |
|
215 if (node == NULL) goto err; |
|
216 /* the specified subproblem must be active */ |
|
217 if (node->count != 0) |
|
218 xerror("glp_ios_prev_node: p = %d; subproblem not in the ac" |
|
219 "tive list\n", p); |
|
220 /* obtain pointer to the previous active subproblem */ |
|
221 node = node->prev; |
|
222 } |
|
223 /* return the reference number */ |
|
224 return node == NULL ? 0 : node->p; |
|
225 } |
|
226 |
|
227 /*********************************************************************** |
|
228 * NAME |
|
229 * |
|
230 * glp_ios_up_node - determine parent subproblem |
|
231 * |
|
232 * SYNOPSIS |
|
233 * |
|
234 * int glp_ios_up_node(glp_tree *tree, int p); |
|
235 * |
|
236 * RETURNS |
|
237 * |
|
238 * The parameter p must specify the reference number of some (active or |
|
239 * inactive) subproblem, in which case the routine iet_get_up_node |
|
240 * returns the reference number of its parent subproblem. However, if |
|
241 * the specified subproblem is the root of the tree and, therefore, has |
|
242 * no parent, the routine returns zero. */ |
|
243 |
|
244 int glp_ios_up_node(glp_tree *tree, int p) |
|
245 { IOSNPD *node; |
|
246 /* obtain pointer to the specified subproblem */ |
|
247 if (!(1 <= p && p <= tree->nslots)) |
|
248 err: xerror("glp_ios_up_node: p = %d; invalid subproblem reference " |
|
249 "number\n", p); |
|
250 node = tree->slot[p].node; |
|
251 if (node == NULL) goto err; |
|
252 /* obtain pointer to the parent subproblem */ |
|
253 node = node->up; |
|
254 /* return the reference number */ |
|
255 return node == NULL ? 0 : node->p; |
|
256 } |
|
257 |
|
258 /*********************************************************************** |
|
259 * NAME |
|
260 * |
|
261 * glp_ios_node_level - determine subproblem level |
|
262 * |
|
263 * SYNOPSIS |
|
264 * |
|
265 * int glp_ios_node_level(glp_tree *tree, int p); |
|
266 * |
|
267 * RETURNS |
|
268 * |
|
269 * The routine glp_ios_node_level returns the level of the subproblem, |
|
270 * whose reference number is p, in the branch-and-bound tree. (The root |
|
271 * subproblem has level 0, and the level of any other subproblem is the |
|
272 * level of its parent plus one.) */ |
|
273 |
|
274 int glp_ios_node_level(glp_tree *tree, int p) |
|
275 { IOSNPD *node; |
|
276 /* obtain pointer to the specified subproblem */ |
|
277 if (!(1 <= p && p <= tree->nslots)) |
|
278 err: xerror("glp_ios_node_level: p = %d; invalid subproblem referen" |
|
279 "ce number\n", p); |
|
280 node = tree->slot[p].node; |
|
281 if (node == NULL) goto err; |
|
282 /* return the node level */ |
|
283 return node->level; |
|
284 } |
|
285 |
|
286 /*********************************************************************** |
|
287 * NAME |
|
288 * |
|
289 * glp_ios_node_bound - determine subproblem local bound |
|
290 * |
|
291 * SYNOPSIS |
|
292 * |
|
293 * double glp_ios_node_bound(glp_tree *tree, int p); |
|
294 * |
|
295 * RETURNS |
|
296 * |
|
297 * The routine glp_ios_node_bound returns the local bound for (active or |
|
298 * inactive) subproblem, whose reference number is p. |
|
299 * |
|
300 * COMMENTS |
|
301 * |
|
302 * The local bound for subproblem p is an lower (minimization) or upper |
|
303 * (maximization) bound for integer optimal solution to this subproblem |
|
304 * (not to the original problem). This bound is local in the sense that |
|
305 * only subproblems in the subtree rooted at node p cannot have better |
|
306 * integer feasible solutions. |
|
307 * |
|
308 * On creating a subproblem (due to the branching step) its local bound |
|
309 * is inherited from its parent and then may get only stronger (never |
|
310 * weaker). For the root subproblem its local bound is initially set to |
|
311 * -DBL_MAX (minimization) or +DBL_MAX (maximization) and then improved |
|
312 * as the root LP relaxation has been solved. |
|
313 * |
|
314 * Note that the local bound is not necessarily the optimal objective |
|
315 * value to corresponding LP relaxation; it may be stronger. */ |
|
316 |
|
317 double glp_ios_node_bound(glp_tree *tree, int p) |
|
318 { IOSNPD *node; |
|
319 /* obtain pointer to the specified subproblem */ |
|
320 if (!(1 <= p && p <= tree->nslots)) |
|
321 err: xerror("glp_ios_node_bound: p = %d; invalid subproblem referen" |
|
322 "ce number\n", p); |
|
323 node = tree->slot[p].node; |
|
324 if (node == NULL) goto err; |
|
325 /* return the node local bound */ |
|
326 return node->bound; |
|
327 } |
|
328 |
|
329 /*********************************************************************** |
|
330 * NAME |
|
331 * |
|
332 * glp_ios_best_node - find active subproblem with best local bound |
|
333 * |
|
334 * SYNOPSIS |
|
335 * |
|
336 * int glp_ios_best_node(glp_tree *tree); |
|
337 * |
|
338 * RETURNS |
|
339 * |
|
340 * The routine glp_ios_best_node returns the reference number of the |
|
341 * active subproblem, whose local bound is best (i.e. smallest in case |
|
342 * of minimization or largest in case of maximization). However, if the |
|
343 * tree is empty, the routine returns zero. |
|
344 * |
|
345 * COMMENTS |
|
346 * |
|
347 * The best local bound is an lower (minimization) or upper |
|
348 * (maximization) bound for integer optimal solution to the original |
|
349 * MIP problem. */ |
|
350 |
|
351 int glp_ios_best_node(glp_tree *tree) |
|
352 { return |
|
353 ios_best_node(tree); |
|
354 } |
|
355 |
|
356 /*********************************************************************** |
|
357 * NAME |
|
358 * |
|
359 * glp_ios_mip_gap - compute relative MIP gap |
|
360 * |
|
361 * SYNOPSIS |
|
362 * |
|
363 * double glp_ios_mip_gap(glp_tree *tree); |
|
364 * |
|
365 * DESCRIPTION |
|
366 * |
|
367 * The routine glp_ios_mip_gap computes the relative MIP gap with the |
|
368 * following formula: |
|
369 * |
|
370 * gap = |best_mip - best_bnd| / (|best_mip| + DBL_EPSILON), |
|
371 * |
|
372 * where best_mip is the best integer feasible solution found so far, |
|
373 * best_bnd is the best (global) bound. If no integer feasible solution |
|
374 * has been found yet, gap is set to DBL_MAX. |
|
375 * |
|
376 * RETURNS |
|
377 * |
|
378 * The routine glp_ios_mip_gap returns the relative MIP gap. */ |
|
379 |
|
380 double glp_ios_mip_gap(glp_tree *tree) |
|
381 { return |
|
382 ios_relative_gap(tree); |
|
383 } |
|
384 |
|
385 /*********************************************************************** |
|
386 * NAME |
|
387 * |
|
388 * glp_ios_node_data - access subproblem application-specific data |
|
389 * |
|
390 * SYNOPSIS |
|
391 * |
|
392 * void *glp_ios_node_data(glp_tree *tree, int p); |
|
393 * |
|
394 * DESCRIPTION |
|
395 * |
|
396 * The routine glp_ios_node_data allows the application accessing a |
|
397 * memory block allocated for the subproblem (which may be active or |
|
398 * inactive), whose reference number is p. |
|
399 * |
|
400 * The size of the block is defined by the control parameter cb_size |
|
401 * passed to the routine glp_intopt. The block is initialized by binary |
|
402 * zeros on creating corresponding subproblem, and its contents is kept |
|
403 * until the subproblem will be removed from the tree. |
|
404 * |
|
405 * The application may use these memory blocks to store specific data |
|
406 * for each subproblem. |
|
407 * |
|
408 * RETURNS |
|
409 * |
|
410 * The routine glp_ios_node_data returns a pointer to the memory block |
|
411 * for the specified subproblem. Note that if cb_size = 0, the routine |
|
412 * returns a null pointer. */ |
|
413 |
|
414 void *glp_ios_node_data(glp_tree *tree, int p) |
|
415 { IOSNPD *node; |
|
416 /* obtain pointer to the specified subproblem */ |
|
417 if (!(1 <= p && p <= tree->nslots)) |
|
418 err: xerror("glp_ios_node_level: p = %d; invalid subproblem referen" |
|
419 "ce number\n", p); |
|
420 node = tree->slot[p].node; |
|
421 if (node == NULL) goto err; |
|
422 /* return pointer to the application-specific data */ |
|
423 return node->data; |
|
424 } |
|
425 |
|
426 /*********************************************************************** |
|
427 * NAME |
|
428 * |
|
429 * glp_ios_row_attr - retrieve additional row attributes |
|
430 * |
|
431 * SYNOPSIS |
|
432 * |
|
433 * void glp_ios_row_attr(glp_tree *tree, int i, glp_attr *attr); |
|
434 * |
|
435 * DESCRIPTION |
|
436 * |
|
437 * The routine glp_ios_row_attr retrieves additional attributes of row |
|
438 * i and stores them in the structure glp_attr. */ |
|
439 |
|
440 void glp_ios_row_attr(glp_tree *tree, int i, glp_attr *attr) |
|
441 { GLPROW *row; |
|
442 if (!(1 <= i && i <= tree->mip->m)) |
|
443 xerror("glp_ios_row_attr: i = %d; row number out of range\n", |
|
444 i); |
|
445 row = tree->mip->row[i]; |
|
446 attr->level = row->level; |
|
447 attr->origin = row->origin; |
|
448 attr->klass = row->klass; |
|
449 return; |
|
450 } |
|
451 |
|
452 /**********************************************************************/ |
|
453 |
|
454 int glp_ios_pool_size(glp_tree *tree) |
|
455 { /* determine current size of the cut pool */ |
|
456 if (tree->reason != GLP_ICUTGEN) |
|
457 xerror("glp_ios_pool_size: operation not allowed\n"); |
|
458 xassert(tree->local != NULL); |
|
459 return tree->local->size; |
|
460 } |
|
461 |
|
462 /**********************************************************************/ |
|
463 |
|
464 int glp_ios_add_row(glp_tree *tree, |
|
465 const char *name, int klass, int flags, int len, const int ind[], |
|
466 const double val[], int type, double rhs) |
|
467 { /* add row (constraint) to the cut pool */ |
|
468 int num; |
|
469 if (tree->reason != GLP_ICUTGEN) |
|
470 xerror("glp_ios_add_row: operation not allowed\n"); |
|
471 xassert(tree->local != NULL); |
|
472 num = ios_add_row(tree, tree->local, name, klass, flags, len, |
|
473 ind, val, type, rhs); |
|
474 return num; |
|
475 } |
|
476 |
|
477 /**********************************************************************/ |
|
478 |
|
479 void glp_ios_del_row(glp_tree *tree, int i) |
|
480 { /* remove row (constraint) from the cut pool */ |
|
481 if (tree->reason != GLP_ICUTGEN) |
|
482 xerror("glp_ios_del_row: operation not allowed\n"); |
|
483 ios_del_row(tree, tree->local, i); |
|
484 return; |
|
485 } |
|
486 |
|
487 /**********************************************************************/ |
|
488 |
|
489 void glp_ios_clear_pool(glp_tree *tree) |
|
490 { /* remove all rows (constraints) from the cut pool */ |
|
491 if (tree->reason != GLP_ICUTGEN) |
|
492 xerror("glp_ios_clear_pool: operation not allowed\n"); |
|
493 ios_clear_pool(tree, tree->local); |
|
494 return; |
|
495 } |
|
496 |
|
497 /*********************************************************************** |
|
498 * NAME |
|
499 * |
|
500 * glp_ios_can_branch - check if can branch upon specified variable |
|
501 * |
|
502 * SYNOPSIS |
|
503 * |
|
504 * int glp_ios_can_branch(glp_tree *tree, int j); |
|
505 * |
|
506 * RETURNS |
|
507 * |
|
508 * If j-th variable (column) can be used to branch upon, the routine |
|
509 * glp_ios_can_branch returns non-zero, otherwise zero. */ |
|
510 |
|
511 int glp_ios_can_branch(glp_tree *tree, int j) |
|
512 { if (!(1 <= j && j <= tree->mip->n)) |
|
513 xerror("glp_ios_can_branch: j = %d; column number out of range" |
|
514 "\n", j); |
|
515 return tree->non_int[j]; |
|
516 } |
|
517 |
|
518 /*********************************************************************** |
|
519 * NAME |
|
520 * |
|
521 * glp_ios_branch_upon - choose variable to branch upon |
|
522 * |
|
523 * SYNOPSIS |
|
524 * |
|
525 * void glp_ios_branch_upon(glp_tree *tree, int j, int sel); |
|
526 * |
|
527 * DESCRIPTION |
|
528 * |
|
529 * The routine glp_ios_branch_upon can be called from the user-defined |
|
530 * callback routine in response to the reason GLP_IBRANCH to choose a |
|
531 * branching variable, whose ordinal number is j. Should note that only |
|
532 * variables, for which the routine glp_ios_can_branch returns non-zero, |
|
533 * can be used to branch upon. |
|
534 * |
|
535 * The parameter sel is a flag that indicates which branch (subproblem) |
|
536 * should be selected next to continue the search: |
|
537 * |
|
538 * GLP_DN_BRNCH - select down-branch; |
|
539 * GLP_UP_BRNCH - select up-branch; |
|
540 * GLP_NO_BRNCH - use general selection technique. */ |
|
541 |
|
542 void glp_ios_branch_upon(glp_tree *tree, int j, int sel) |
|
543 { if (!(1 <= j && j <= tree->mip->n)) |
|
544 xerror("glp_ios_branch_upon: j = %d; column number out of rang" |
|
545 "e\n", j); |
|
546 if (!(sel == GLP_DN_BRNCH || sel == GLP_UP_BRNCH || |
|
547 sel == GLP_NO_BRNCH)) |
|
548 xerror("glp_ios_branch_upon: sel = %d: invalid branch selectio" |
|
549 "n flag\n", sel); |
|
550 if (!(tree->non_int[j])) |
|
551 xerror("glp_ios_branch_upon: j = %d; variable cannot be used t" |
|
552 "o branch upon\n", j); |
|
553 if (tree->br_var != 0) |
|
554 xerror("glp_ios_branch_upon: branching variable already chosen" |
|
555 "\n"); |
|
556 tree->br_var = j; |
|
557 tree->br_sel = sel; |
|
558 return; |
|
559 } |
|
560 |
|
561 /*********************************************************************** |
|
562 * NAME |
|
563 * |
|
564 * glp_ios_select_node - select subproblem to continue the search |
|
565 * |
|
566 * SYNOPSIS |
|
567 * |
|
568 * void glp_ios_select_node(glp_tree *tree, int p); |
|
569 * |
|
570 * DESCRIPTION |
|
571 * |
|
572 * The routine glp_ios_select_node can be called from the user-defined |
|
573 * callback routine in response to the reason GLP_ISELECT to select an |
|
574 * active subproblem, whose reference number is p. The search will be |
|
575 * continued from the subproblem selected. */ |
|
576 |
|
577 void glp_ios_select_node(glp_tree *tree, int p) |
|
578 { IOSNPD *node; |
|
579 /* obtain pointer to the specified subproblem */ |
|
580 if (!(1 <= p && p <= tree->nslots)) |
|
581 err: xerror("glp_ios_select_node: p = %d; invalid subproblem refere" |
|
582 "nce number\n", p); |
|
583 node = tree->slot[p].node; |
|
584 if (node == NULL) goto err; |
|
585 /* the specified subproblem must be active */ |
|
586 if (node->count != 0) |
|
587 xerror("glp_ios_select_node: p = %d; subproblem not in the act" |
|
588 "ive list\n", p); |
|
589 /* no subproblem must be selected yet */ |
|
590 if (tree->next_p != 0) |
|
591 xerror("glp_ios_select_node: subproblem already selected\n"); |
|
592 /* select the specified subproblem to continue the search */ |
|
593 tree->next_p = p; |
|
594 return; |
|
595 } |
|
596 |
|
597 /*********************************************************************** |
|
598 * NAME |
|
599 * |
|
600 * glp_ios_heur_sol - provide solution found by heuristic |
|
601 * |
|
602 * SYNOPSIS |
|
603 * |
|
604 * int glp_ios_heur_sol(glp_tree *tree, const double x[]); |
|
605 * |
|
606 * DESCRIPTION |
|
607 * |
|
608 * The routine glp_ios_heur_sol can be called from the user-defined |
|
609 * callback routine in response to the reason GLP_IHEUR to provide an |
|
610 * integer feasible solution found by a primal heuristic. |
|
611 * |
|
612 * Primal values of *all* variables (columns) found by the heuristic |
|
613 * should be placed in locations x[1], ..., x[n], where n is the number |
|
614 * of columns in the original problem object. Note that the routine |
|
615 * glp_ios_heur_sol *does not* check primal feasibility of the solution |
|
616 * provided. |
|
617 * |
|
618 * Using the solution passed in the array x the routine computes value |
|
619 * of the objective function. If the objective value is better than the |
|
620 * best known integer feasible solution, the routine computes values of |
|
621 * auxiliary variables (rows) and stores all solution components in the |
|
622 * problem object. |
|
623 * |
|
624 * RETURNS |
|
625 * |
|
626 * If the provided solution is accepted, the routine glp_ios_heur_sol |
|
627 * returns zero. Otherwise, if the provided solution is rejected, the |
|
628 * routine returns non-zero. */ |
|
629 |
|
630 int glp_ios_heur_sol(glp_tree *tree, const double x[]) |
|
631 { glp_prob *mip = tree->mip; |
|
632 int m = tree->orig_m; |
|
633 int n = tree->n; |
|
634 int i, j; |
|
635 double obj; |
|
636 xassert(mip->m >= m); |
|
637 xassert(mip->n == n); |
|
638 /* check values of integer variables and compute value of the |
|
639 objective function */ |
|
640 obj = mip->c0; |
|
641 for (j = 1; j <= n; j++) |
|
642 { GLPCOL *col = mip->col[j]; |
|
643 if (col->kind == GLP_IV) |
|
644 { /* provided value must be integral */ |
|
645 if (x[j] != floor(x[j])) return 1; |
|
646 } |
|
647 obj += col->coef * x[j]; |
|
648 } |
|
649 /* check if the provided solution is better than the best known |
|
650 integer feasible solution */ |
|
651 if (mip->mip_stat == GLP_FEAS) |
|
652 { switch (mip->dir) |
|
653 { case GLP_MIN: |
|
654 if (obj >= tree->mip->mip_obj) return 1; |
|
655 break; |
|
656 case GLP_MAX: |
|
657 if (obj <= tree->mip->mip_obj) return 1; |
|
658 break; |
|
659 default: |
|
660 xassert(mip != mip); |
|
661 } |
|
662 } |
|
663 /* it is better; store it in the problem object */ |
|
664 if (tree->parm->msg_lev >= GLP_MSG_ON) |
|
665 xprintf("Solution found by heuristic: %.12g\n", obj); |
|
666 mip->mip_stat = GLP_FEAS; |
|
667 mip->mip_obj = obj; |
|
668 for (j = 1; j <= n; j++) |
|
669 mip->col[j]->mipx = x[j]; |
|
670 for (i = 1; i <= m; i++) |
|
671 { GLPROW *row = mip->row[i]; |
|
672 GLPAIJ *aij; |
|
673 row->mipx = 0.0; |
|
674 for (aij = row->ptr; aij != NULL; aij = aij->r_next) |
|
675 row->mipx += aij->val * aij->col->mipx; |
|
676 } |
|
677 return 0; |
|
678 } |
|
679 |
|
680 /*********************************************************************** |
|
681 * NAME |
|
682 * |
|
683 * glp_ios_terminate - terminate the solution process. |
|
684 * |
|
685 * SYNOPSIS |
|
686 * |
|
687 * void glp_ios_terminate(glp_tree *tree); |
|
688 * |
|
689 * DESCRIPTION |
|
690 * |
|
691 * The routine glp_ios_terminate sets a flag indicating that the MIP |
|
692 * solver should prematurely terminate the search. */ |
|
693 |
|
694 void glp_ios_terminate(glp_tree *tree) |
|
695 { if (tree->parm->msg_lev >= GLP_MSG_DBG) |
|
696 xprintf("The search is prematurely terminated due to applicati" |
|
697 "on request\n"); |
|
698 tree->stop = 1; |
|
699 return; |
|
700 } |
|
701 |
|
702 /* eof */ |