src/glpapi18.c
changeset 1 c445c931472f
equal deleted inserted replaced
-1:000000000000 0:b2c31db37ddd
       
     1 /* glpapi18.c (maximum clique problem) */
       
     2 
       
     3 /***********************************************************************
       
     4 *  This code is part of GLPK (GNU Linear Programming Kit).
       
     5 *
       
     6 *  Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
       
     7 *  2009, 2010 Andrew Makhorin, Department for Applied Informatics,
       
     8 *  Moscow Aviation Institute, Moscow, Russia. All rights reserved.
       
     9 *  E-mail: <mao@gnu.org>.
       
    10 *
       
    11 *  GLPK is free software: you can redistribute it and/or modify it
       
    12 *  under the terms of the GNU General Public License as published by
       
    13 *  the Free Software Foundation, either version 3 of the License, or
       
    14 *  (at your option) any later version.
       
    15 *
       
    16 *  GLPK is distributed in the hope that it will be useful, but WITHOUT
       
    17 *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
       
    18 *  or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
       
    19 *  License for more details.
       
    20 *
       
    21 *  You should have received a copy of the GNU General Public License
       
    22 *  along with GLPK. If not, see <http://www.gnu.org/licenses/>.
       
    23 ***********************************************************************/
       
    24 
       
    25 #include "glpapi.h"
       
    26 #include "glpnet.h"
       
    27 
       
    28 static void set_edge(int nv, unsigned char a[], int i, int j)
       
    29 {     int k;
       
    30       xassert(1 <= j && j < i && i <= nv);
       
    31       k = ((i - 1) * (i - 2)) / 2 + (j - 1);
       
    32       a[k / CHAR_BIT] |=
       
    33          (unsigned char)(1 << ((CHAR_BIT - 1) - k % CHAR_BIT));
       
    34       return;
       
    35 }
       
    36 
       
    37 int glp_wclique_exact(glp_graph *G, int v_wgt, double *sol, int v_set)
       
    38 {     /* find maximum weight clique with exact algorithm */
       
    39       glp_arc *e;
       
    40       int i, j, k, len, x, *w, *ind, ret = 0;
       
    41       unsigned char *a;
       
    42       double s, t;
       
    43       if (v_wgt >= 0 && v_wgt > G->v_size - (int)sizeof(double))
       
    44          xerror("glp_wclique_exact: v_wgt = %d; invalid parameter\n",
       
    45             v_wgt);
       
    46       if (v_set >= 0 && v_set > G->v_size - (int)sizeof(int))
       
    47          xerror("glp_wclique_exact: v_set = %d; invalid parameter\n",
       
    48             v_set);
       
    49       if (G->nv == 0)
       
    50       {  /* empty graph has only empty clique */
       
    51          if (sol != NULL) *sol = 0.0;
       
    52          return 0;
       
    53       }
       
    54       /* allocate working arrays */
       
    55       w = xcalloc(1+G->nv, sizeof(int));
       
    56       ind = xcalloc(1+G->nv, sizeof(int));
       
    57       len = G->nv; /* # vertices */
       
    58       len = len * (len - 1) / 2; /* # entries in lower triangle */
       
    59       len = (len + (CHAR_BIT - 1)) / CHAR_BIT; /* # bytes needed */
       
    60       a = xcalloc(len, sizeof(char));
       
    61       memset(a, 0, len * sizeof(char));
       
    62       /* determine vertex weights */
       
    63       s = 0.0;
       
    64       for (i = 1; i <= G->nv; i++)
       
    65       {  if (v_wgt >= 0)
       
    66          {  memcpy(&t, (char *)G->v[i]->data + v_wgt, sizeof(double));
       
    67             if (!(0.0 <= t && t <= (double)INT_MAX && t == floor(t)))
       
    68             {  ret = GLP_EDATA;
       
    69                goto done;
       
    70             }
       
    71             w[i] = (int)t;
       
    72          }
       
    73          else
       
    74             w[i] = 1;
       
    75          s += (double)w[i];
       
    76       }
       
    77       if (s > (double)INT_MAX)
       
    78       {  ret = GLP_EDATA;
       
    79          goto done;
       
    80       }
       
    81       /* build the adjacency matrix */
       
    82       for (i = 1; i <= G->nv; i++)
       
    83       {  for (e = G->v[i]->in; e != NULL; e = e->h_next)
       
    84          {  j = e->tail->i;
       
    85             /* there exists edge (j,i) in the graph */
       
    86             if (i > j) set_edge(G->nv, a, i, j);
       
    87          }
       
    88          for (e = G->v[i]->out; e != NULL; e = e->t_next)
       
    89          {  j = e->head->i;
       
    90             /* there exists edge (i,j) in the graph */
       
    91             if (i > j) set_edge(G->nv, a, i, j);
       
    92          }
       
    93       }
       
    94       /* find maximum weight clique in the graph */
       
    95       len = wclique(G->nv, w, a, ind);
       
    96       /* compute the clique weight */
       
    97       s = 0.0;
       
    98       for (k = 1; k <= len; k++)
       
    99       {  i = ind[k];
       
   100          xassert(1 <= i && i <= G->nv);
       
   101          s += (double)w[i];
       
   102       }
       
   103       if (sol != NULL) *sol = s;
       
   104       /* mark vertices included in the clique */
       
   105       if (v_set >= 0)
       
   106       {  x = 0;
       
   107          for (i = 1; i <= G->nv; i++)
       
   108             memcpy((char *)G->v[i]->data + v_set, &x, sizeof(int));
       
   109          x = 1;
       
   110          for (k = 1; k <= len; k++)
       
   111          {  i = ind[k];
       
   112             memcpy((char *)G->v[i]->data + v_set, &x, sizeof(int));
       
   113          }
       
   114       }
       
   115 done: /* free working arrays */
       
   116       xfree(w);
       
   117       xfree(ind);
       
   118       xfree(a);
       
   119       return ret;
       
   120 }
       
   121 
       
   122 /* eof */