src/glpini02.c
changeset 1 c445c931472f
equal deleted inserted replaced
-1:000000000000 0:4e2faa340b60
       
     1 /* glpini02.c */
       
     2 
       
     3 /***********************************************************************
       
     4 *  This code is part of GLPK (GNU Linear Programming Kit).
       
     5 *
       
     6 *  Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
       
     7 *  2009, 2010 Andrew Makhorin, Department for Applied Informatics,
       
     8 *  Moscow Aviation Institute, Moscow, Russia. All rights reserved.
       
     9 *  E-mail: <mao@gnu.org>.
       
    10 *
       
    11 *  GLPK is free software: you can redistribute it and/or modify it
       
    12 *  under the terms of the GNU General Public License as published by
       
    13 *  the Free Software Foundation, either version 3 of the License, or
       
    14 *  (at your option) any later version.
       
    15 *
       
    16 *  GLPK is distributed in the hope that it will be useful, but WITHOUT
       
    17 *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
       
    18 *  or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
       
    19 *  License for more details.
       
    20 *
       
    21 *  You should have received a copy of the GNU General Public License
       
    22 *  along with GLPK. If not, see <http://www.gnu.org/licenses/>.
       
    23 ***********************************************************************/
       
    24 
       
    25 #include "glpapi.h"
       
    26 
       
    27 struct var
       
    28 {     /* structural variable */
       
    29       int j;
       
    30       /* ordinal number */
       
    31       double q;
       
    32       /* penalty value */
       
    33 };
       
    34 
       
    35 static int fcmp(const void *ptr1, const void *ptr2)
       
    36 {     /* this routine is passed to the qsort() function */
       
    37       struct var *col1 = (void *)ptr1, *col2 = (void *)ptr2;
       
    38       if (col1->q < col2->q) return -1;
       
    39       if (col1->q > col2->q) return +1;
       
    40       return 0;
       
    41 }
       
    42 
       
    43 static int get_column(glp_prob *lp, int j, int ind[], double val[])
       
    44 {     /* Bixby's algorithm assumes that the constraint matrix is scaled
       
    45          such that the maximum absolute value in every non-zero row and
       
    46          column is 1 */
       
    47       int k, len;
       
    48       double big;
       
    49       len = glp_get_mat_col(lp, j, ind, val);
       
    50       big = 0.0;
       
    51       for (k = 1; k <= len; k++)
       
    52          if (big < fabs(val[k])) big = fabs(val[k]);
       
    53       if (big == 0.0) big = 1.0;
       
    54       for (k = 1; k <= len; k++) val[k] /= big;
       
    55       return len;
       
    56 }
       
    57 
       
    58 static void cpx_basis(glp_prob *lp)
       
    59 {     /* main routine */
       
    60       struct var *C, *C2, *C3, *C4;
       
    61       int m, n, i, j, jk, k, l, ll, t, n2, n3, n4, type, len, *I, *r,
       
    62          *ind;
       
    63       double alpha, gamma, cmax, temp, *v, *val;
       
    64       xprintf("Constructing initial basis...\n");
       
    65       /* determine the number of rows and columns */
       
    66       m = glp_get_num_rows(lp);
       
    67       n = glp_get_num_cols(lp);
       
    68       /* allocate working arrays */
       
    69       C = xcalloc(1+n, sizeof(struct var));
       
    70       I = xcalloc(1+m, sizeof(int));
       
    71       r = xcalloc(1+m, sizeof(int));
       
    72       v = xcalloc(1+m, sizeof(double));
       
    73       ind = xcalloc(1+m, sizeof(int));
       
    74       val = xcalloc(1+m, sizeof(double));
       
    75       /* make all auxiliary variables non-basic */
       
    76       for (i = 1; i <= m; i++)
       
    77       {  if (glp_get_row_type(lp, i) != GLP_DB)
       
    78             glp_set_row_stat(lp, i, GLP_NS);
       
    79          else if (fabs(glp_get_row_lb(lp, i)) <=
       
    80                   fabs(glp_get_row_ub(lp, i)))
       
    81             glp_set_row_stat(lp, i, GLP_NL);
       
    82          else
       
    83             glp_set_row_stat(lp, i, GLP_NU);
       
    84       }
       
    85       /* make all structural variables non-basic */
       
    86       for (j = 1; j <= n; j++)
       
    87       {  if (glp_get_col_type(lp, j) != GLP_DB)
       
    88             glp_set_col_stat(lp, j, GLP_NS);
       
    89          else if (fabs(glp_get_col_lb(lp, j)) <=
       
    90                   fabs(glp_get_col_ub(lp, j)))
       
    91             glp_set_col_stat(lp, j, GLP_NL);
       
    92          else
       
    93             glp_set_col_stat(lp, j, GLP_NU);
       
    94       }
       
    95       /* C2 is a set of free structural variables */
       
    96       n2 = 0, C2 = C + 0;
       
    97       for (j = 1; j <= n; j++)
       
    98       {  type = glp_get_col_type(lp, j);
       
    99          if (type == GLP_FR)
       
   100          {  n2++;
       
   101             C2[n2].j = j;
       
   102             C2[n2].q = 0.0;
       
   103          }
       
   104       }
       
   105       /* C3 is a set of structural variables having excatly one (lower
       
   106          or upper) bound */
       
   107       n3 = 0, C3 = C2 + n2;
       
   108       for (j = 1; j <= n; j++)
       
   109       {  type = glp_get_col_type(lp, j);
       
   110          if (type == GLP_LO)
       
   111          {  n3++;
       
   112             C3[n3].j = j;
       
   113             C3[n3].q = + glp_get_col_lb(lp, j);
       
   114          }
       
   115          else if (type == GLP_UP)
       
   116          {  n3++;
       
   117             C3[n3].j = j;
       
   118             C3[n3].q = - glp_get_col_ub(lp, j);
       
   119          }
       
   120       }
       
   121       /* C4 is a set of structural variables having both (lower and
       
   122          upper) bounds */
       
   123       n4 = 0, C4 = C3 + n3;
       
   124       for (j = 1; j <= n; j++)
       
   125       {  type = glp_get_col_type(lp, j);
       
   126          if (type == GLP_DB)
       
   127          {  n4++;
       
   128             C4[n4].j = j;
       
   129             C4[n4].q = glp_get_col_lb(lp, j) - glp_get_col_ub(lp, j);
       
   130          }
       
   131       }
       
   132       /* compute gamma = max{|c[j]|: 1 <= j <= n} */
       
   133       gamma = 0.0;
       
   134       for (j = 1; j <= n; j++)
       
   135       {  temp = fabs(glp_get_obj_coef(lp, j));
       
   136          if (gamma < temp) gamma = temp;
       
   137       }
       
   138       /* compute cmax */
       
   139       cmax = (gamma == 0.0 ? 1.0 : 1000.0 * gamma);
       
   140       /* compute final penalty for all structural variables within sets
       
   141          C2, C3, and C4 */
       
   142       switch (glp_get_obj_dir(lp))
       
   143       {  case GLP_MIN: temp = +1.0; break;
       
   144          case GLP_MAX: temp = -1.0; break;
       
   145          default: xassert(lp != lp);
       
   146       }
       
   147       for (k = 1; k <= n2+n3+n4; k++)
       
   148       {  j = C[k].j;
       
   149          C[k].q += (temp * glp_get_obj_coef(lp, j)) / cmax;
       
   150       }
       
   151       /* sort structural variables within C2, C3, and C4 in ascending
       
   152          order of penalty value */
       
   153       qsort(C2+1, n2, sizeof(struct var), fcmp);
       
   154       for (k = 1; k < n2; k++) xassert(C2[k].q <= C2[k+1].q);
       
   155       qsort(C3+1, n3, sizeof(struct var), fcmp);
       
   156       for (k = 1; k < n3; k++) xassert(C3[k].q <= C3[k+1].q);
       
   157       qsort(C4+1, n4, sizeof(struct var), fcmp);
       
   158       for (k = 1; k < n4; k++) xassert(C4[k].q <= C4[k+1].q);
       
   159       /*** STEP 1 ***/
       
   160       for (i = 1; i <= m; i++)
       
   161       {  type = glp_get_row_type(lp, i);
       
   162          if (type != GLP_FX)
       
   163          {  /* row i is either free or inequality constraint */
       
   164             glp_set_row_stat(lp, i, GLP_BS);
       
   165             I[i] = 1;
       
   166             r[i] = 1;
       
   167          }
       
   168          else
       
   169          {  /* row i is equality constraint */
       
   170             I[i] = 0;
       
   171             r[i] = 0;
       
   172          }
       
   173          v[i] = +DBL_MAX;
       
   174       }
       
   175       /*** STEP 2 ***/
       
   176       for (k = 1; k <= n2+n3+n4; k++)
       
   177       {  jk = C[k].j;
       
   178          len = get_column(lp, jk, ind, val);
       
   179          /* let alpha = max{|A[l,jk]|: r[l] = 0} and let l' be such
       
   180             that alpha = |A[l',jk]| */
       
   181          alpha = 0.0, ll = 0;
       
   182          for (t = 1; t <= len; t++)
       
   183          {  l = ind[t];
       
   184             if (r[l] == 0 && alpha < fabs(val[t]))
       
   185                alpha = fabs(val[t]), ll = l;
       
   186          }
       
   187          if (alpha >= 0.99)
       
   188          {  /* B := B union {jk} */
       
   189             glp_set_col_stat(lp, jk, GLP_BS);
       
   190             I[ll] = 1;
       
   191             v[ll] = alpha;
       
   192             /* r[l] := r[l] + 1 for all l such that |A[l,jk]| != 0 */
       
   193             for (t = 1; t <= len; t++)
       
   194             {  l = ind[t];
       
   195                if (val[t] != 0.0) r[l]++;
       
   196             }
       
   197             /* continue to the next k */
       
   198             continue;
       
   199          }
       
   200          /* if |A[l,jk]| > 0.01 * v[l] for some l, continue to the
       
   201             next k */
       
   202          for (t = 1; t <= len; t++)
       
   203          {  l = ind[t];
       
   204             if (fabs(val[t]) > 0.01 * v[l]) break;
       
   205          }
       
   206          if (t <= len) continue;
       
   207          /* otherwise, let alpha = max{|A[l,jk]|: I[l] = 0} and let l'
       
   208             be such that alpha = |A[l',jk]| */
       
   209          alpha = 0.0, ll = 0;
       
   210          for (t = 1; t <= len; t++)
       
   211          {  l = ind[t];
       
   212             if (I[l] == 0 && alpha < fabs(val[t]))
       
   213                alpha = fabs(val[t]), ll = l;
       
   214          }
       
   215          /* if alpha = 0, continue to the next k */
       
   216          if (alpha == 0.0) continue;
       
   217          /* B := B union {jk} */
       
   218          glp_set_col_stat(lp, jk, GLP_BS);
       
   219          I[ll] = 1;
       
   220          v[ll] = alpha;
       
   221          /* r[l] := r[l] + 1 for all l such that |A[l,jk]| != 0 */
       
   222          for (t = 1; t <= len; t++)
       
   223          {  l = ind[t];
       
   224             if (val[t] != 0.0) r[l]++;
       
   225          }
       
   226       }
       
   227       /*** STEP 3 ***/
       
   228       /* add an artificial variable (auxiliary variable for equality
       
   229          constraint) to cover each remaining uncovered row */
       
   230       for (i = 1; i <= m; i++)
       
   231          if (I[i] == 0) glp_set_row_stat(lp, i, GLP_BS);
       
   232       /* free working arrays */
       
   233       xfree(C);
       
   234       xfree(I);
       
   235       xfree(r);
       
   236       xfree(v);
       
   237       xfree(ind);
       
   238       xfree(val);
       
   239       return;
       
   240 }
       
   241 
       
   242 /***********************************************************************
       
   243 *  NAME
       
   244 *
       
   245 *  glp_cpx_basis - construct Bixby's initial LP basis
       
   246 *
       
   247 *  SYNOPSIS
       
   248 *
       
   249 *  void glp_cpx_basis(glp_prob *lp);
       
   250 *
       
   251 *  DESCRIPTION
       
   252 *
       
   253 *  The routine glp_cpx_basis constructs an advanced initial basis for
       
   254 *  the specified problem object.
       
   255 *
       
   256 *  The routine is based on Bixby's algorithm described in the paper:
       
   257 *
       
   258 *  Robert E. Bixby. Implementing the Simplex Method: The Initial Basis.
       
   259 *  ORSA Journal on Computing, Vol. 4, No. 3, 1992, pp. 267-84. */
       
   260 
       
   261 void glp_cpx_basis(glp_prob *lp)
       
   262 {     if (lp->m == 0 || lp->n == 0)
       
   263          glp_std_basis(lp);
       
   264       else
       
   265          cpx_basis(lp);
       
   266       return;
       
   267 }
       
   268 
       
   269 /* eof */