|
1 /* glpnet01.c (permutations for zero-free diagonal) */ |
|
2 |
|
3 /*********************************************************************** |
|
4 * This code is part of GLPK (GNU Linear Programming Kit). |
|
5 * |
|
6 * This code is the result of translation of the Fortran subroutines |
|
7 * MC21A and MC21B associated with the following paper: |
|
8 * |
|
9 * I.S.Duff, Algorithm 575: Permutations for zero-free diagonal, ACM |
|
10 * Trans. on Math. Softw. 7 (1981), 387-390. |
|
11 * |
|
12 * Use of ACM Algorithms is subject to the ACM Software Copyright and |
|
13 * License Agreement. See <http://www.acm.org/publications/policies>. |
|
14 * |
|
15 * The translation was made by Andrew Makhorin <mao@gnu.org>. |
|
16 * |
|
17 * GLPK is free software: you can redistribute it and/or modify it |
|
18 * under the terms of the GNU General Public License as published by |
|
19 * the Free Software Foundation, either version 3 of the License, or |
|
20 * (at your option) any later version. |
|
21 * |
|
22 * GLPK is distributed in the hope that it will be useful, but WITHOUT |
|
23 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY |
|
24 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public |
|
25 * License for more details. |
|
26 * |
|
27 * You should have received a copy of the GNU General Public License |
|
28 * along with GLPK. If not, see <http://www.gnu.org/licenses/>. |
|
29 ***********************************************************************/ |
|
30 |
|
31 #include "glpnet.h" |
|
32 |
|
33 /*********************************************************************** |
|
34 * NAME |
|
35 * |
|
36 * mc21a - permutations for zero-free diagonal |
|
37 * |
|
38 * SYNOPSIS |
|
39 * |
|
40 * #include "glpnet.h" |
|
41 * int mc21a(int n, const int icn[], const int ip[], const int lenr[], |
|
42 * int iperm[], int pr[], int arp[], int cv[], int out[]); |
|
43 * |
|
44 * DESCRIPTION |
|
45 * |
|
46 * Given the pattern of nonzeros of a sparse matrix, the routine mc21a |
|
47 * attempts to find a permutation of its rows that makes the matrix have |
|
48 * no zeros on its diagonal. |
|
49 * |
|
50 * INPUT PARAMETERS |
|
51 * |
|
52 * n order of matrix. |
|
53 * |
|
54 * icn array containing the column indices of the non-zeros. Those |
|
55 * belonging to a single row must be contiguous but the ordering |
|
56 * of column indices within each row is unimportant and wasted |
|
57 * space between rows is permitted. |
|
58 * |
|
59 * ip ip[i], i = 1,2,...,n, is the position in array icn of the |
|
60 * first column index of a non-zero in row i. |
|
61 * |
|
62 * lenr lenr[i], i = 1,2,...,n, is the number of non-zeros in row i. |
|
63 * |
|
64 * OUTPUT PARAMETER |
|
65 * |
|
66 * iperm contains permutation to make diagonal have the smallest |
|
67 * number of zeros on it. Elements (iperm[i], i), i = 1,2,...,n, |
|
68 * are non-zero at the end of the algorithm unless the matrix is |
|
69 * structurally singular. In this case, (iperm[i], i) will be |
|
70 * zero for n - numnz entries. |
|
71 * |
|
72 * WORKING ARRAYS |
|
73 * |
|
74 * pr working array of length [1+n], where pr[0] is not used. |
|
75 * pr[i] is the previous row to i in the depth first search. |
|
76 * |
|
77 * arp working array of length [1+n], where arp[0] is not used. |
|
78 * arp[i] is one less than the number of non-zeros in row i which |
|
79 * have not been scanned when looking for a cheap assignment. |
|
80 * |
|
81 * cv working array of length [1+n], where cv[0] is not used. |
|
82 * cv[i] is the most recent row extension at which column i was |
|
83 * visited. |
|
84 * |
|
85 * out working array of length [1+n], where out[0] is not used. |
|
86 * out[i] is one less than the number of non-zeros in row i |
|
87 * which have not been scanned during one pass through the main |
|
88 * loop. |
|
89 * |
|
90 * RETURNS |
|
91 * |
|
92 * The routine mc21a returns numnz, the number of non-zeros on diagonal |
|
93 * of permuted matrix. */ |
|
94 |
|
95 int mc21a(int n, const int icn[], const int ip[], const int lenr[], |
|
96 int iperm[], int pr[], int arp[], int cv[], int out[]) |
|
97 { int i, ii, in1, in2, j, j1, jord, k, kk, numnz; |
|
98 /* Initialization of arrays. */ |
|
99 for (i = 1; i <= n; i++) |
|
100 { arp[i] = lenr[i] - 1; |
|
101 cv[i] = iperm[i] = 0; |
|
102 } |
|
103 numnz = 0; |
|
104 /* Main loop. */ |
|
105 /* Each pass round this loop either results in a new assignment |
|
106 or gives a row with no assignment. */ |
|
107 for (jord = 1; jord <= n; jord++) |
|
108 { j = jord; |
|
109 pr[j] = -1; |
|
110 for (k = 1; k <= jord; k++) |
|
111 { /* Look for a cheap assignment. */ |
|
112 in1 = arp[j]; |
|
113 if (in1 >= 0) |
|
114 { in2 = ip[j] + lenr[j] - 1; |
|
115 in1 = in2 - in1; |
|
116 for (ii = in1; ii <= in2; ii++) |
|
117 { i = icn[ii]; |
|
118 if (iperm[i] == 0) goto L110; |
|
119 } |
|
120 /* No cheap assignment in row. */ |
|
121 arp[j] = -1; |
|
122 } |
|
123 /* Begin looking for assignment chain starting with row j.*/ |
|
124 out[j] = lenr[j] - 1; |
|
125 /* Inner loop. Extends chain by one or backtracks. */ |
|
126 for (kk = 1; kk <= jord; kk++) |
|
127 { in1 = out[j]; |
|
128 if (in1 >= 0) |
|
129 { in2 = ip[j] + lenr[j] - 1; |
|
130 in1 = in2 - in1; |
|
131 /* Forward scan. */ |
|
132 for (ii = in1; ii <= in2; ii++) |
|
133 { i = icn[ii]; |
|
134 if (cv[i] != jord) |
|
135 { /* Column i has not yet been accessed during |
|
136 this pass. */ |
|
137 j1 = j; |
|
138 j = iperm[i]; |
|
139 cv[i] = jord; |
|
140 pr[j] = j1; |
|
141 out[j1] = in2 - ii - 1; |
|
142 goto L100; |
|
143 } |
|
144 } |
|
145 } |
|
146 /* Backtracking step. */ |
|
147 j = pr[j]; |
|
148 if (j == -1) goto L130; |
|
149 } |
|
150 L100: ; |
|
151 } |
|
152 L110: /* New assignment is made. */ |
|
153 iperm[i] = j; |
|
154 arp[j] = in2 - ii - 1; |
|
155 numnz++; |
|
156 for (k = 1; k <= jord; k++) |
|
157 { j = pr[j]; |
|
158 if (j == -1) break; |
|
159 ii = ip[j] + lenr[j] - out[j] - 2; |
|
160 i = icn[ii]; |
|
161 iperm[i] = j; |
|
162 } |
|
163 L130: ; |
|
164 } |
|
165 /* If matrix is structurally singular, we now complete the |
|
166 permutation iperm. */ |
|
167 if (numnz < n) |
|
168 { for (i = 1; i <= n; i++) |
|
169 arp[i] = 0; |
|
170 k = 0; |
|
171 for (i = 1; i <= n; i++) |
|
172 { if (iperm[i] == 0) |
|
173 out[++k] = i; |
|
174 else |
|
175 arp[iperm[i]] = i; |
|
176 } |
|
177 k = 0; |
|
178 for (i = 1; i <= n; i++) |
|
179 { if (arp[i] == 0) |
|
180 iperm[out[++k]] = i; |
|
181 } |
|
182 } |
|
183 return numnz; |
|
184 } |
|
185 |
|
186 /**********************************************************************/ |
|
187 |
|
188 #if 0 |
|
189 #include "glplib.h" |
|
190 |
|
191 int sing; |
|
192 |
|
193 void ranmat(int m, int n, int icn[], int iptr[], int nnnp1, int *knum, |
|
194 int iw[]); |
|
195 |
|
196 void fa01bs(int max, int *nrand); |
|
197 |
|
198 int main(void) |
|
199 { /* test program for the routine mc21a */ |
|
200 /* these runs on random matrices cause all possible statements in |
|
201 mc21a to be executed */ |
|
202 int i, iold, j, j1, j2, jj, knum, l, licn, n, nov4, num, numnz; |
|
203 int ip[1+21], icn[1+1000], iperm[1+20], lenr[1+20], iw1[1+80]; |
|
204 licn = 1000; |
|
205 /* run on random matrices of orders 1 through 20 */ |
|
206 for (n = 1; n <= 20; n++) |
|
207 { nov4 = n / 4; |
|
208 if (nov4 < 1) nov4 = 1; |
|
209 L10: fa01bs(nov4, &l); |
|
210 knum = l * n; |
|
211 /* knum is requested number of non-zeros in random matrix */ |
|
212 if (knum > licn) goto L10; |
|
213 /* if sing is false, matrix is guaranteed structurally |
|
214 non-singular */ |
|
215 sing = ((n / 2) * 2 == n); |
|
216 /* call to subroutine to generate random matrix */ |
|
217 ranmat(n, n, icn, ip, n+1, &knum, iw1); |
|
218 /* knum is now actual number of non-zeros in random matrix */ |
|
219 if (knum > licn) goto L10; |
|
220 xprintf("n = %2d; nz = %4d; sing = %d\n", n, knum, sing); |
|
221 /* set up array of row lengths */ |
|
222 for (i = 1; i <= n; i++) |
|
223 lenr[i] = ip[i+1] - ip[i]; |
|
224 /* call to mc21a */ |
|
225 numnz = mc21a(n, icn, ip, lenr, iperm, &iw1[0], &iw1[n], |
|
226 &iw1[n+n], &iw1[n+n+n]); |
|
227 /* testing to see if there are numnz non-zeros on the diagonal |
|
228 of the permuted matrix. */ |
|
229 num = 0; |
|
230 for (i = 1; i <= n; i++) |
|
231 { iold = iperm[i]; |
|
232 j1 = ip[iold]; |
|
233 j2 = j1 + lenr[iold] - 1; |
|
234 if (j2 < j1) continue; |
|
235 for (jj = j1; jj <= j2; jj++) |
|
236 { j = icn[jj]; |
|
237 if (j == i) |
|
238 { num++; |
|
239 break; |
|
240 } |
|
241 } |
|
242 } |
|
243 if (num != numnz) |
|
244 xprintf("Failure in mc21a, numnz = %d instead of %d\n", |
|
245 numnz, num); |
|
246 } |
|
247 return 0; |
|
248 } |
|
249 |
|
250 void ranmat(int m, int n, int icn[], int iptr[], int nnnp1, int *knum, |
|
251 int iw[]) |
|
252 { /* subroutine to generate random matrix */ |
|
253 int i, ii, inum, j, lrow, matnum; |
|
254 inum = (*knum / n) * 2; |
|
255 if (inum > n-1) inum = n-1; |
|
256 matnum = 1; |
|
257 /* each pass through this loop generates a row of the matrix */ |
|
258 for (j = 1; j <= m; j++) |
|
259 { iptr[j] = matnum; |
|
260 if (!(sing || j > n)) |
|
261 icn[matnum++] = j; |
|
262 if (n == 1) continue; |
|
263 for (i = 1; i <= n; i++) iw[i] = 0; |
|
264 if (!sing) iw[j] = 1; |
|
265 fa01bs(inum, &lrow); |
|
266 lrow--; |
|
267 if (lrow == 0) continue; |
|
268 /* lrow off-diagonal non-zeros in row j of the matrix */ |
|
269 for (ii = 1; ii <= lrow; ii++) |
|
270 { for (;;) |
|
271 { fa01bs(n, &i); |
|
272 if (iw[i] != 1) break; |
|
273 } |
|
274 iw[i] = 1; |
|
275 icn[matnum++] = i; |
|
276 } |
|
277 } |
|
278 for (i = m+1; i <= nnnp1; i++) |
|
279 iptr[i] = matnum; |
|
280 *knum = matnum - 1; |
|
281 return; |
|
282 } |
|
283 |
|
284 double g = 1431655765.0; |
|
285 |
|
286 double fa01as(int i) |
|
287 { /* random number generator */ |
|
288 g = fmod(g * 9228907.0, 4294967296.0); |
|
289 if (i >= 0) |
|
290 return g / 4294967296.0; |
|
291 else |
|
292 return 2.0 * g / 4294967296.0 - 1.0; |
|
293 } |
|
294 |
|
295 void fa01bs(int max, int *nrand) |
|
296 { *nrand = (int)(fa01as(1) * (double)max) + 1; |
|
297 return; |
|
298 } |
|
299 #endif |
|
300 |
|
301 /* eof */ |