|
1 /* glpssx02.c */ |
|
2 |
|
3 /*********************************************************************** |
|
4 * This code is part of GLPK (GNU Linear Programming Kit). |
|
5 * |
|
6 * Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, |
|
7 * 2009, 2010 Andrew Makhorin, Department for Applied Informatics, |
|
8 * Moscow Aviation Institute, Moscow, Russia. All rights reserved. |
|
9 * E-mail: <mao@gnu.org>. |
|
10 * |
|
11 * GLPK is free software: you can redistribute it and/or modify it |
|
12 * under the terms of the GNU General Public License as published by |
|
13 * the Free Software Foundation, either version 3 of the License, or |
|
14 * (at your option) any later version. |
|
15 * |
|
16 * GLPK is distributed in the hope that it will be useful, but WITHOUT |
|
17 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY |
|
18 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public |
|
19 * License for more details. |
|
20 * |
|
21 * You should have received a copy of the GNU General Public License |
|
22 * along with GLPK. If not, see <http://www.gnu.org/licenses/>. |
|
23 ***********************************************************************/ |
|
24 |
|
25 #include "glpenv.h" |
|
26 #include "glpssx.h" |
|
27 |
|
28 static void show_progress(SSX *ssx, int phase) |
|
29 { /* this auxiliary routine displays information about progress of |
|
30 the search */ |
|
31 int i, def = 0; |
|
32 for (i = 1; i <= ssx->m; i++) |
|
33 if (ssx->type[ssx->Q_col[i]] == SSX_FX) def++; |
|
34 xprintf("%s%6d: %s = %22.15g (%d)\n", phase == 1 ? " " : "*", |
|
35 ssx->it_cnt, phase == 1 ? "infsum" : "objval", |
|
36 mpq_get_d(ssx->bbar[0]), def); |
|
37 #if 0 |
|
38 ssx->tm_lag = utime(); |
|
39 #else |
|
40 ssx->tm_lag = xtime(); |
|
41 #endif |
|
42 return; |
|
43 } |
|
44 |
|
45 /*---------------------------------------------------------------------- |
|
46 // ssx_phase_I - find primal feasible solution. |
|
47 // |
|
48 // This routine implements phase I of the primal simplex method. |
|
49 // |
|
50 // On exit the routine returns one of the following codes: |
|
51 // |
|
52 // 0 - feasible solution found; |
|
53 // 1 - problem has no feasible solution; |
|
54 // 2 - iterations limit exceeded; |
|
55 // 3 - time limit exceeded. |
|
56 ----------------------------------------------------------------------*/ |
|
57 |
|
58 int ssx_phase_I(SSX *ssx) |
|
59 { int m = ssx->m; |
|
60 int n = ssx->n; |
|
61 int *type = ssx->type; |
|
62 mpq_t *lb = ssx->lb; |
|
63 mpq_t *ub = ssx->ub; |
|
64 mpq_t *coef = ssx->coef; |
|
65 int *A_ptr = ssx->A_ptr; |
|
66 int *A_ind = ssx->A_ind; |
|
67 mpq_t *A_val = ssx->A_val; |
|
68 int *Q_col = ssx->Q_col; |
|
69 mpq_t *bbar = ssx->bbar; |
|
70 mpq_t *pi = ssx->pi; |
|
71 mpq_t *cbar = ssx->cbar; |
|
72 int *orig_type, orig_dir; |
|
73 mpq_t *orig_lb, *orig_ub, *orig_coef; |
|
74 int i, k, ret; |
|
75 /* save components of the original LP problem, which are changed |
|
76 by the routine */ |
|
77 orig_type = xcalloc(1+m+n, sizeof(int)); |
|
78 orig_lb = xcalloc(1+m+n, sizeof(mpq_t)); |
|
79 orig_ub = xcalloc(1+m+n, sizeof(mpq_t)); |
|
80 orig_coef = xcalloc(1+m+n, sizeof(mpq_t)); |
|
81 for (k = 1; k <= m+n; k++) |
|
82 { orig_type[k] = type[k]; |
|
83 mpq_init(orig_lb[k]); |
|
84 mpq_set(orig_lb[k], lb[k]); |
|
85 mpq_init(orig_ub[k]); |
|
86 mpq_set(orig_ub[k], ub[k]); |
|
87 } |
|
88 orig_dir = ssx->dir; |
|
89 for (k = 0; k <= m+n; k++) |
|
90 { mpq_init(orig_coef[k]); |
|
91 mpq_set(orig_coef[k], coef[k]); |
|
92 } |
|
93 /* build an artificial basic solution, which is primal feasible, |
|
94 and also build an auxiliary objective function to minimize the |
|
95 sum of infeasibilities for the original problem */ |
|
96 ssx->dir = SSX_MIN; |
|
97 for (k = 0; k <= m+n; k++) mpq_set_si(coef[k], 0, 1); |
|
98 mpq_set_si(bbar[0], 0, 1); |
|
99 for (i = 1; i <= m; i++) |
|
100 { int t; |
|
101 k = Q_col[i]; /* x[k] = xB[i] */ |
|
102 t = type[k]; |
|
103 if (t == SSX_LO || t == SSX_DB || t == SSX_FX) |
|
104 { /* in the original problem x[k] has lower bound */ |
|
105 if (mpq_cmp(bbar[i], lb[k]) < 0) |
|
106 { /* which is violated */ |
|
107 type[k] = SSX_UP; |
|
108 mpq_set(ub[k], lb[k]); |
|
109 mpq_set_si(lb[k], 0, 1); |
|
110 mpq_set_si(coef[k], -1, 1); |
|
111 mpq_add(bbar[0], bbar[0], ub[k]); |
|
112 mpq_sub(bbar[0], bbar[0], bbar[i]); |
|
113 } |
|
114 } |
|
115 if (t == SSX_UP || t == SSX_DB || t == SSX_FX) |
|
116 { /* in the original problem x[k] has upper bound */ |
|
117 if (mpq_cmp(bbar[i], ub[k]) > 0) |
|
118 { /* which is violated */ |
|
119 type[k] = SSX_LO; |
|
120 mpq_set(lb[k], ub[k]); |
|
121 mpq_set_si(ub[k], 0, 1); |
|
122 mpq_set_si(coef[k], +1, 1); |
|
123 mpq_add(bbar[0], bbar[0], bbar[i]); |
|
124 mpq_sub(bbar[0], bbar[0], lb[k]); |
|
125 } |
|
126 } |
|
127 } |
|
128 /* now the initial basic solution should be primal feasible due |
|
129 to changes of bounds of some basic variables, which turned to |
|
130 implicit artifical variables */ |
|
131 /* compute simplex multipliers and reduced costs */ |
|
132 ssx_eval_pi(ssx); |
|
133 ssx_eval_cbar(ssx); |
|
134 /* display initial progress of the search */ |
|
135 show_progress(ssx, 1); |
|
136 /* main loop starts here */ |
|
137 for (;;) |
|
138 { /* display current progress of the search */ |
|
139 #if 0 |
|
140 if (utime() - ssx->tm_lag >= ssx->out_frq - 0.001) |
|
141 #else |
|
142 if (xdifftime(xtime(), ssx->tm_lag) >= ssx->out_frq - 0.001) |
|
143 #endif |
|
144 show_progress(ssx, 1); |
|
145 /* we do not need to wait until all artificial variables have |
|
146 left the basis */ |
|
147 if (mpq_sgn(bbar[0]) == 0) |
|
148 { /* the sum of infeasibilities is zero, therefore the current |
|
149 solution is primal feasible for the original problem */ |
|
150 ret = 0; |
|
151 break; |
|
152 } |
|
153 /* check if the iterations limit has been exhausted */ |
|
154 if (ssx->it_lim == 0) |
|
155 { ret = 2; |
|
156 break; |
|
157 } |
|
158 /* check if the time limit has been exhausted */ |
|
159 #if 0 |
|
160 if (ssx->tm_lim >= 0.0 && ssx->tm_lim <= utime() - ssx->tm_beg) |
|
161 #else |
|
162 if (ssx->tm_lim >= 0.0 && |
|
163 ssx->tm_lim <= xdifftime(xtime(), ssx->tm_beg)) |
|
164 #endif |
|
165 { ret = 3; |
|
166 break; |
|
167 } |
|
168 /* choose non-basic variable xN[q] */ |
|
169 ssx_chuzc(ssx); |
|
170 /* if xN[q] cannot be chosen, the sum of infeasibilities is |
|
171 minimal but non-zero; therefore the original problem has no |
|
172 primal feasible solution */ |
|
173 if (ssx->q == 0) |
|
174 { ret = 1; |
|
175 break; |
|
176 } |
|
177 /* compute q-th column of the simplex table */ |
|
178 ssx_eval_col(ssx); |
|
179 /* choose basic variable xB[p] */ |
|
180 ssx_chuzr(ssx); |
|
181 /* the sum of infeasibilities cannot be negative, therefore |
|
182 the auxiliary lp problem cannot have unbounded solution */ |
|
183 xassert(ssx->p != 0); |
|
184 /* update values of basic variables */ |
|
185 ssx_update_bbar(ssx); |
|
186 if (ssx->p > 0) |
|
187 { /* compute p-th row of the inverse inv(B) */ |
|
188 ssx_eval_rho(ssx); |
|
189 /* compute p-th row of the simplex table */ |
|
190 ssx_eval_row(ssx); |
|
191 xassert(mpq_cmp(ssx->aq[ssx->p], ssx->ap[ssx->q]) == 0); |
|
192 /* update simplex multipliers */ |
|
193 ssx_update_pi(ssx); |
|
194 /* update reduced costs of non-basic variables */ |
|
195 ssx_update_cbar(ssx); |
|
196 } |
|
197 /* xB[p] is leaving the basis; if it is implicit artificial |
|
198 variable, the corresponding residual vanishes; therefore |
|
199 bounds of this variable should be restored to the original |
|
200 values */ |
|
201 if (ssx->p > 0) |
|
202 { k = Q_col[ssx->p]; /* x[k] = xB[p] */ |
|
203 if (type[k] != orig_type[k]) |
|
204 { /* x[k] is implicit artificial variable */ |
|
205 type[k] = orig_type[k]; |
|
206 mpq_set(lb[k], orig_lb[k]); |
|
207 mpq_set(ub[k], orig_ub[k]); |
|
208 xassert(ssx->p_stat == SSX_NL || ssx->p_stat == SSX_NU); |
|
209 ssx->p_stat = (ssx->p_stat == SSX_NL ? SSX_NU : SSX_NL); |
|
210 if (type[k] == SSX_FX) ssx->p_stat = SSX_NS; |
|
211 /* nullify the objective coefficient at x[k] */ |
|
212 mpq_set_si(coef[k], 0, 1); |
|
213 /* since coef[k] has been changed, we need to compute |
|
214 new reduced cost of x[k], which it will have in the |
|
215 adjacent basis */ |
|
216 /* the formula d[j] = cN[j] - pi' * N[j] is used (note |
|
217 that the vector pi is not changed, because it depends |
|
218 on objective coefficients at basic variables, but in |
|
219 the adjacent basis, for which the vector pi has been |
|
220 just recomputed, x[k] is non-basic) */ |
|
221 if (k <= m) |
|
222 { /* x[k] is auxiliary variable */ |
|
223 mpq_neg(cbar[ssx->q], pi[k]); |
|
224 } |
|
225 else |
|
226 { /* x[k] is structural variable */ |
|
227 int ptr; |
|
228 mpq_t temp; |
|
229 mpq_init(temp); |
|
230 mpq_set_si(cbar[ssx->q], 0, 1); |
|
231 for (ptr = A_ptr[k-m]; ptr < A_ptr[k-m+1]; ptr++) |
|
232 { mpq_mul(temp, pi[A_ind[ptr]], A_val[ptr]); |
|
233 mpq_add(cbar[ssx->q], cbar[ssx->q], temp); |
|
234 } |
|
235 mpq_clear(temp); |
|
236 } |
|
237 } |
|
238 } |
|
239 /* jump to the adjacent vertex of the polyhedron */ |
|
240 ssx_change_basis(ssx); |
|
241 /* one simplex iteration has been performed */ |
|
242 if (ssx->it_lim > 0) ssx->it_lim--; |
|
243 ssx->it_cnt++; |
|
244 } |
|
245 /* display final progress of the search */ |
|
246 show_progress(ssx, 1); |
|
247 /* restore components of the original problem, which were changed |
|
248 by the routine */ |
|
249 for (k = 1; k <= m+n; k++) |
|
250 { type[k] = orig_type[k]; |
|
251 mpq_set(lb[k], orig_lb[k]); |
|
252 mpq_clear(orig_lb[k]); |
|
253 mpq_set(ub[k], orig_ub[k]); |
|
254 mpq_clear(orig_ub[k]); |
|
255 } |
|
256 ssx->dir = orig_dir; |
|
257 for (k = 0; k <= m+n; k++) |
|
258 { mpq_set(coef[k], orig_coef[k]); |
|
259 mpq_clear(orig_coef[k]); |
|
260 } |
|
261 xfree(orig_type); |
|
262 xfree(orig_lb); |
|
263 xfree(orig_ub); |
|
264 xfree(orig_coef); |
|
265 /* return to the calling program */ |
|
266 return ret; |
|
267 } |
|
268 |
|
269 /*---------------------------------------------------------------------- |
|
270 // ssx_phase_II - find optimal solution. |
|
271 // |
|
272 // This routine implements phase II of the primal simplex method. |
|
273 // |
|
274 // On exit the routine returns one of the following codes: |
|
275 // |
|
276 // 0 - optimal solution found; |
|
277 // 1 - problem has unbounded solution; |
|
278 // 2 - iterations limit exceeded; |
|
279 // 3 - time limit exceeded. |
|
280 ----------------------------------------------------------------------*/ |
|
281 |
|
282 int ssx_phase_II(SSX *ssx) |
|
283 { int ret; |
|
284 /* display initial progress of the search */ |
|
285 show_progress(ssx, 2); |
|
286 /* main loop starts here */ |
|
287 for (;;) |
|
288 { /* display current progress of the search */ |
|
289 #if 0 |
|
290 if (utime() - ssx->tm_lag >= ssx->out_frq - 0.001) |
|
291 #else |
|
292 if (xdifftime(xtime(), ssx->tm_lag) >= ssx->out_frq - 0.001) |
|
293 #endif |
|
294 show_progress(ssx, 2); |
|
295 /* check if the iterations limit has been exhausted */ |
|
296 if (ssx->it_lim == 0) |
|
297 { ret = 2; |
|
298 break; |
|
299 } |
|
300 /* check if the time limit has been exhausted */ |
|
301 #if 0 |
|
302 if (ssx->tm_lim >= 0.0 && ssx->tm_lim <= utime() - ssx->tm_beg) |
|
303 #else |
|
304 if (ssx->tm_lim >= 0.0 && |
|
305 ssx->tm_lim <= xdifftime(xtime(), ssx->tm_beg)) |
|
306 #endif |
|
307 { ret = 3; |
|
308 break; |
|
309 } |
|
310 /* choose non-basic variable xN[q] */ |
|
311 ssx_chuzc(ssx); |
|
312 /* if xN[q] cannot be chosen, the current basic solution is |
|
313 dual feasible and therefore optimal */ |
|
314 if (ssx->q == 0) |
|
315 { ret = 0; |
|
316 break; |
|
317 } |
|
318 /* compute q-th column of the simplex table */ |
|
319 ssx_eval_col(ssx); |
|
320 /* choose basic variable xB[p] */ |
|
321 ssx_chuzr(ssx); |
|
322 /* if xB[p] cannot be chosen, the problem has no dual feasible |
|
323 solution (i.e. unbounded) */ |
|
324 if (ssx->p == 0) |
|
325 { ret = 1; |
|
326 break; |
|
327 } |
|
328 /* update values of basic variables */ |
|
329 ssx_update_bbar(ssx); |
|
330 if (ssx->p > 0) |
|
331 { /* compute p-th row of the inverse inv(B) */ |
|
332 ssx_eval_rho(ssx); |
|
333 /* compute p-th row of the simplex table */ |
|
334 ssx_eval_row(ssx); |
|
335 xassert(mpq_cmp(ssx->aq[ssx->p], ssx->ap[ssx->q]) == 0); |
|
336 #if 0 |
|
337 /* update simplex multipliers */ |
|
338 ssx_update_pi(ssx); |
|
339 #endif |
|
340 /* update reduced costs of non-basic variables */ |
|
341 ssx_update_cbar(ssx); |
|
342 } |
|
343 /* jump to the adjacent vertex of the polyhedron */ |
|
344 ssx_change_basis(ssx); |
|
345 /* one simplex iteration has been performed */ |
|
346 if (ssx->it_lim > 0) ssx->it_lim--; |
|
347 ssx->it_cnt++; |
|
348 } |
|
349 /* display final progress of the search */ |
|
350 show_progress(ssx, 2); |
|
351 /* return to the calling program */ |
|
352 return ret; |
|
353 } |
|
354 |
|
355 /*---------------------------------------------------------------------- |
|
356 // ssx_driver - base driver to exact simplex method. |
|
357 // |
|
358 // This routine is a base driver to a version of the primal simplex |
|
359 // method using exact (bignum) arithmetic. |
|
360 // |
|
361 // On exit the routine returns one of the following codes: |
|
362 // |
|
363 // 0 - optimal solution found; |
|
364 // 1 - problem has no feasible solution; |
|
365 // 2 - problem has unbounded solution; |
|
366 // 3 - iterations limit exceeded (phase I); |
|
367 // 4 - iterations limit exceeded (phase II); |
|
368 // 5 - time limit exceeded (phase I); |
|
369 // 6 - time limit exceeded (phase II); |
|
370 // 7 - initial basis matrix is exactly singular. |
|
371 ----------------------------------------------------------------------*/ |
|
372 |
|
373 int ssx_driver(SSX *ssx) |
|
374 { int m = ssx->m; |
|
375 int *type = ssx->type; |
|
376 mpq_t *lb = ssx->lb; |
|
377 mpq_t *ub = ssx->ub; |
|
378 int *Q_col = ssx->Q_col; |
|
379 mpq_t *bbar = ssx->bbar; |
|
380 int i, k, ret; |
|
381 ssx->tm_beg = xtime(); |
|
382 /* factorize the initial basis matrix */ |
|
383 if (ssx_factorize(ssx)) |
|
384 { xprintf("Initial basis matrix is singular\n"); |
|
385 ret = 7; |
|
386 goto done; |
|
387 } |
|
388 /* compute values of basic variables */ |
|
389 ssx_eval_bbar(ssx); |
|
390 /* check if the initial basic solution is primal feasible */ |
|
391 for (i = 1; i <= m; i++) |
|
392 { int t; |
|
393 k = Q_col[i]; /* x[k] = xB[i] */ |
|
394 t = type[k]; |
|
395 if (t == SSX_LO || t == SSX_DB || t == SSX_FX) |
|
396 { /* x[k] has lower bound */ |
|
397 if (mpq_cmp(bbar[i], lb[k]) < 0) |
|
398 { /* which is violated */ |
|
399 break; |
|
400 } |
|
401 } |
|
402 if (t == SSX_UP || t == SSX_DB || t == SSX_FX) |
|
403 { /* x[k] has upper bound */ |
|
404 if (mpq_cmp(bbar[i], ub[k]) > 0) |
|
405 { /* which is violated */ |
|
406 break; |
|
407 } |
|
408 } |
|
409 } |
|
410 if (i > m) |
|
411 { /* no basic variable violates its bounds */ |
|
412 ret = 0; |
|
413 goto skip; |
|
414 } |
|
415 /* phase I: find primal feasible solution */ |
|
416 ret = ssx_phase_I(ssx); |
|
417 switch (ret) |
|
418 { case 0: |
|
419 ret = 0; |
|
420 break; |
|
421 case 1: |
|
422 xprintf("PROBLEM HAS NO FEASIBLE SOLUTION\n"); |
|
423 ret = 1; |
|
424 break; |
|
425 case 2: |
|
426 xprintf("ITERATIONS LIMIT EXCEEDED; SEARCH TERMINATED\n"); |
|
427 ret = 3; |
|
428 break; |
|
429 case 3: |
|
430 xprintf("TIME LIMIT EXCEEDED; SEARCH TERMINATED\n"); |
|
431 ret = 5; |
|
432 break; |
|
433 default: |
|
434 xassert(ret != ret); |
|
435 } |
|
436 /* compute values of basic variables (actually only the objective |
|
437 value needs to be computed) */ |
|
438 ssx_eval_bbar(ssx); |
|
439 skip: /* compute simplex multipliers */ |
|
440 ssx_eval_pi(ssx); |
|
441 /* compute reduced costs of non-basic variables */ |
|
442 ssx_eval_cbar(ssx); |
|
443 /* if phase I failed, do not start phase II */ |
|
444 if (ret != 0) goto done; |
|
445 /* phase II: find optimal solution */ |
|
446 ret = ssx_phase_II(ssx); |
|
447 switch (ret) |
|
448 { case 0: |
|
449 xprintf("OPTIMAL SOLUTION FOUND\n"); |
|
450 ret = 0; |
|
451 break; |
|
452 case 1: |
|
453 xprintf("PROBLEM HAS UNBOUNDED SOLUTION\n"); |
|
454 ret = 2; |
|
455 break; |
|
456 case 2: |
|
457 xprintf("ITERATIONS LIMIT EXCEEDED; SEARCH TERMINATED\n"); |
|
458 ret = 4; |
|
459 break; |
|
460 case 3: |
|
461 xprintf("TIME LIMIT EXCEEDED; SEARCH TERMINATED\n"); |
|
462 ret = 6; |
|
463 break; |
|
464 default: |
|
465 xassert(ret != ret); |
|
466 } |
|
467 done: /* decrease the time limit by the spent amount of time */ |
|
468 if (ssx->tm_lim >= 0.0) |
|
469 #if 0 |
|
470 { ssx->tm_lim -= utime() - ssx->tm_beg; |
|
471 #else |
|
472 { ssx->tm_lim -= xdifftime(xtime(), ssx->tm_beg); |
|
473 #endif |
|
474 if (ssx->tm_lim < 0.0) ssx->tm_lim = 0.0; |
|
475 } |
|
476 return ret; |
|
477 } |
|
478 |
|
479 /* eof */ |