1.1 --- /dev/null Thu Jan 01 00:00:00 1970 +0000
1.2 +++ b/examples/dbf/ForestMgt_Model_I_GIS_dbf.mod Mon Dec 06 13:09:21 2010 +0100
1.3 @@ -0,0 +1,226 @@
1.4 +# Model I Forest Estate Modelling using GLPK/MathProg
1.5 +# Reading and writing dbf files
1.6 +
1.7 +# by Noli Sicad --- nsicad@gmail.com
1.8 +# 18 December 2009
1.9 +
1.10 +# Forest Management 4th Edition
1.11 +# by Lawrence Davis, K. Norman Johnson, Pete Bettinger, Theodore Howard
1.12 +# Chapter 11 - Daniel Pickett
1.13 +# http://warnell.forestry.uga.edu/Warnell/Bettinger/mgtbook/index.htm
1.14 +
1.15 +# Model I Formulation
1.16 +
1.17 +/* Note: This is not the full LP model mentioned in the book.
1.18 +Some of the constraints are deliberately omitted in this model for the purpose of clarity.
1.19 +
1.20 +The features of MathProg in this example are:
1.21 +* reading and writing dbf from regular dbf files,
1.22 +* reading dbf file (database of shapefile (stands.shp)) (e.g. area parameter),
1.23 +* using the area data in the constraints and
1.24 +* writing dbf file from result of LP model.
1.25 +
1.26 +Model I - Harvest Scheduling formulation for Sustainable Forest Management (SFM)
1.27 +
1.28 +Features are:
1.29 +* Net Present Value for the objective function (Revenue - Cost)
1.30 +* Harvest Constraints by period - Sustainable Yield per Period
1.31 +* Even-Flow Constraint / Volume - Harvest Flow Constraint - Alpha (1-Apha)
1.32 +* Even-Flow Constraint / Volume - Harvest Flow Constraint - Beta (1 +Beta)
1.33 +* Forest / Land Constraint -- Total Area of the forest
1.34 +* Forest Stand Constraint -- Individual stands
1.35 +
1.36 +What is next? -- Forest Mgt Carbon Accounting for Climate Change
1.37 +
1.38 +Note: The model file that the data containing in
1.39 +the dbf files is public domain material (so it is compatible with the
1.40 +GNU GPL) and data can be found in
1.41 +http://warnell.forestry.uga.edu/Warnell/Bettinger/mgtbook/index.htm
1.42 +
1.43 +# Noli Sicad --- nsicad@gmail.com
1.44 +
1.45 +*/
1.46 +
1.47 +set G_STAND_TYPE; # A, B, C
1.48 +
1.49 +set I_CULTURAL_PRES;
1.50 +set J_MGT_YEAR;
1.51 +
1.52 +param K_PERIOD;
1.53 +param Forest_Cost{G_STAND_TYPE,I_CULTURAL_PRES, J_MGT_YEAR}; # cost
1.54 +
1.55 +param Yield_Table_Vol{G_STAND_TYPE, I_CULTURAL_PRES, J_MGT_YEAR, 1..K_PERIOD} >= 0;
1.56 +
1.57 +
1.58 +param Alpha >= 0;
1.59 +param Beta >= 0;
1.60 +
1.61 +param TCost_Table{G_STAND_TYPE, I_CULTURAL_PRES, J_MGT_YEAR, 1..K_PERIOD} >= 0;
1.62 +
1.63 +param NetRev_Table{G_STAND_TYPE, I_CULTURAL_PRES, J_MGT_YEAR, 1..K_PERIOD};
1.64 +
1.65 +
1.66 +var XForestLand{g in G_STAND_TYPE, i in I_CULTURAL_PRES, j in J_MGT_YEAR} >= 0;
1.67 +
1.68 +
1.69 +#reading dbf tables
1.70 +table tab IN "xBASE" "standtype.dbf": G_STAND_TYPE <- [STAND];
1.71 +display G_STAND_TYPE;
1.72 +
1.73 +
1.74 +table tab2 IN "xBASE" "cultural_pres.dbf": I_CULTURAL_PRES <- [CUL_PRES];
1.75 +display I_CULTURAL_PRES;
1.76 +
1.77 +table tab3 IN "xBASE" "mgt_year.dbf": J_MGT_YEAR <- [MGT_YEAR];
1.78 +display J_MGT_YEAR;
1.79 +
1.80 +/*
1.81 +param Forest_Cost{G_STAND_TYPE,I_CULTURAL_PRES, J_MGT_YEAR} default 0; # cost
1.82 +*/
1.83 +
1.84 +set S1, dimen 3;
1.85 +table tab4 IN "xBASE" "Forest_Cost.dbf": S1 <- [STAND, CUL_PRES, MGT_YEAR],Forest_Cost ~FCOST;
1.86 +display Forest_Cost;
1.87 +
1.88 +set S2, dimen 4;
1.89 +table tab5 IN "xBASE" "Yield_Table_Vol.dbf": S2 <- [STAND, CUL_PRES, MGT_YEAR, PERIOD],Yield_Table_Vol ~YIELD;
1.90 +display Yield_Table_Vol;
1.91 +
1.92 +set S3, dimen 4;
1.93 +table tab5 IN "xBASE" "TCost_Table.dbf": S3 <- [STAND, CUL_PRES, MGT_YEAR, PERIOD],TCost_Table ~TCOST;
1.94 +display TCost_Table;
1.95 +
1.96 +
1.97 +set S4, dimen 4;
1.98 +table tab5 IN "xBASE" "NetRev_Table.dbf": S4 <- [STAND, CUL_PRES, MGT_YEAR, PERIOD],NetRev_Table ~NETREV;
1.99 +display NetRev_Table;
1.100 +
1.101 +
1.102 +param MGT;
1.103 +
1.104 +param Area_Stand_Indi{g in G_STAND_TYPE, m in 1..MGT} default 0;
1.105 +
1.106 +set ST, dimen 2;
1.107 +table tab5 IN "xBASE" "stands.dbf": ST <- [VEG_TYPE, MGT], Area_Stand_Indi ~ACRES;
1.108 +display Area_Stand_Indi;
1.109 +
1.110 +param Area_Stand_Type{g in G_STAND_TYPE}:= sum {m in 1..MGT } Area_Stand_Indi[g,m];
1.111 +display Area_Stand_Type;
1.112 +
1.113 +
1.114 +param Total_Area := sum {g in G_STAND_TYPE, m in 1..MGT } Area_Stand_Indi[g,m];
1.115 +display Total_Area;
1.116 +
1.117 +param Harvest_Min_Vol_Period;
1.118 +
1.119 +
1.120 +var NetPresentValue;
1.121 +
1.122 +# Objective function
1.123 +maximize Net_Present_Value: NetPresentValue;
1.124 +
1.125 +subject to NPV:
1.126 + NetPresentValue = sum {g in G_STAND_TYPE, i in I_CULTURAL_PRES, j in J_MGT_YEAR} Forest_Cost[g,i,j] * XForestLand[g,i,j];
1.127 +
1.128 +# Harvest Constraint by Period
1.129 +subject to Harvest_Period_H {k in 1..K_PERIOD}:
1.130 + sum {g in G_STAND_TYPE, i in I_CULTURAL_PRES, j in J_MGT_YEAR} Yield_Table_Vol[g,i,j,k] * XForestLand[g,i,j] >= Harvest_Min_Vol_Period;
1.131 +
1.132 +
1.133 +#Even-Flow Constraint / Volume - Harvest Flow Constraint - Alpha
1.134 +subject to Even_Flow_Constaints_Alpha {k in 6..K_PERIOD-1}:
1.135 + (1 - Alpha) * sum {g in G_STAND_TYPE, i in I_CULTURAL_PRES, j in J_MGT_YEAR} Yield_Table_Vol[g,i,j,k] * XForestLand[g,i,j] -
1.136 + sum {g in G_STAND_TYPE,i in I_CULTURAL_PRES, j in J_MGT_YEAR} Yield_Table_Vol[g,i,j,k+1] * XForestLand[g,i,j] <= 0;
1.137 +
1.138 +# Even-Flow Constraint / Volume - Harvest Flow Constraint - Beta
1.139 +subject to Even_Flow_Constaints_Beta {k in 6..K_PERIOD-1}:
1.140 + (1 + Beta) * sum {g in G_STAND_TYPE, i in I_CULTURAL_PRES, j in J_MGT_YEAR} Yield_Table_Vol[g,i,j,k] * XForestLand[g,i,j] -
1.141 + sum {g in G_STAND_TYPE,i in I_CULTURAL_PRES, j in J_MGT_YEAR} Yield_Table_Vol[g,i,j,k+1] * XForestLand[g,i,j] >= 0;
1.142 +
1.143 +# Forest / Land Constraints
1.144 +subject to Total_Area_Constraint:
1.145 + sum {g in G_STAND_TYPE, i in I_CULTURAL_PRES, j in J_MGT_YEAR} XForestLand[g,i,j] <= Total_Area;
1.146 +display Total_Area;
1.147 +
1.148 +# Forest / Land Constraints for A B C
1.149 +subject to Area {g in G_STAND_TYPE}:
1.150 + sum {i in I_CULTURAL_PRES,j in J_MGT_YEAR} XForestLand[g,i,j] = Area_Stand_Type[g];
1.151 +
1.152 +
1.153 +
1.154 +solve;
1.155 +#RESULT SECTION
1.156 +printf '#################################\n';
1.157 +printf 'Forest Management Model I - Noli Sicad\n';
1.158 +printf '\n';
1.159 +printf 'Net Present Value = %.2f\n', NetPresentValue;
1.160 +printf '\n';
1.161 +
1.162 +printf '\n';
1.163 +printf 'Variables\n';
1.164 +printf 'Stand_Type Age_Class Mgt_Presc Sign Value \n';
1.165 +printf{g in G_STAND_TYPE, i in I_CULTURAL_PRES, j in J_MGT_YEAR}:'%5s %10s %11s = %10.2f\n', g,i,j, XForestLand[g,i,j];
1.166 +printf '\n';
1.167 +
1.168 +printf 'Constraints\n';
1.169 +printf 'Period Harvest Sign \n';
1.170 +for {k in 1..K_PERIOD} {
1.171 + printf '%5s %10.2f >= %.3f\n', k, sum {g in G_STAND_TYPE, i in I_CULTURAL_PRES, j in J_MGT_YEAR} Yield_Table_Vol[g,i,j,k] * XForestLand[g,i,j], Harvest_Min_Vol_Period;
1.172 + }
1.173 +
1.174 +# xbase (dbf) output
1.175 +table Harvest{k in 1..K_PERIOD} OUT "xBASE" "HarvestArea1.dbf" "N(5)N(15,2)" : k ~ Period, (sum {g in G_STAND_TYPE, i in I_CULTURAL_PRES, j in J_MGT_YEAR} Yield_Table_Vol[g,i,j,k] * XForestLand[g,i,j]) ~ H_Area;
1.176 +
1.177 +# xbase (dbf) read
1.178 +set S, dimen 2;
1.179 +table tab2 IN "xBASE" "HarvestArea1.dbf": S <- [Period, H_Area];
1.180 +display S;
1.181 +
1.182 +
1.183 +
1.184 +
1.185 +printf '\n';
1.186 +printf 'Constraint\n';
1.187 +printf 'Harvest Period\n';
1.188 +printf 'Type AgeClass PrescMgt Period Value\n';
1.189 +printf{g in G_STAND_TYPE, i in I_CULTURAL_PRES, j in J_MGT_YEAR, k in 1..K_PERIOD}:'%5s %11s %11s %5s %10.2f\n', g,i,j, k, (Yield_Table_Vol[g,i,j,k] * XForestLand[g,i,j]);
1.190 +
1.191 +
1.192 +printf 'Even_Flow_Constaint_Alpha (1-Alpha)\n';
1.193 +printf 'Period Sign \n';
1.194 +for {k in 6..K_PERIOD-1} {
1.195 + printf "%s %10.2f <= %s\n", k, ((1 - Alpha) * sum {g in G_STAND_TYPE, i in I_CULTURAL_PRES, j in J_MGT_YEAR} Yield_Table_Vol[g,i,j,k] * XForestLand[g,i,j] - sum {g in G_STAND_TYPE,i in I_CULTURAL_PRES, j in J_MGT_YEAR} Yield_Table_Vol[g,i,j,k+1] * XForestLand[g,i,j]),0;
1.196 + }
1.197 +printf '\n';
1.198 +
1.199 +
1.200 +# Forest / Land Constraints
1.201 +printf '\n';
1.202 +printf 'Total Area Constraint\n';
1.203 +printf 'Type AgeClass PrescMgt Value Sign Total_Area \n';
1.204 +printf '%5s <= %.3f\n',sum {g in G_STAND_TYPE, i in I_CULTURAL_PRES, j in J_MGT_YEAR} XForestLand[g,i,j], Total_Area;
1.205 +
1.206 +printf 'Area\n';
1.207 +printf 'Area Value Sign Areas_Stand\n';
1.208 +for {g in G_STAND_TYPE} {
1.209 + printf '%5s %10.2f <= %.3f\n', g, sum {i in I_CULTURAL_PRES,j in J_MGT_YEAR} XForestLand[g,i,j], Area_Stand_Type[g];
1.210 + }
1.211 +
1.212 +
1.213 +#DATA SECTION
1.214 +
1.215 +data;
1.216 +
1.217 +# Most of the data has been moved to dbf format
1.218 +
1.219 +param MGT:=31;
1.220 +
1.221 +param K_PERIOD:= 7;
1.222 +
1.223 +param Alpha:= 0.20;
1.224 +param Beta:= 0.20;
1.225 +
1.226 +param Harvest_Min_Vol_Period:= 12000;
1.227 +
1.228 +end;
1.229 +