1.1 --- /dev/null Thu Jan 01 00:00:00 1970 +0000
1.2 +++ b/examples/gap.mod Mon Dec 06 13:09:21 2010 +0100
1.3 @@ -0,0 +1,79 @@
1.4 +/* GAP, Generalized Assignment Problem */
1.5 +
1.6 +/* Written in GNU MathProg by Andrew Makhorin <mao@gnu.org> */
1.7 +
1.8 +/* The Generalized Assignment Problem (GAP) is to assign a set of jobs
1.9 + to a set of agents subject to the constraints that each job must be
1.10 + assigned exactly to one agent and the total resources consumed by all
1.11 + jobs assigned to an agent must not exceed the agent's capacity. */
1.12 +
1.13 +param m, integer, > 0;
1.14 +/* number of agents */
1.15 +
1.16 +param n, integer, > 0;
1.17 +/* number of jobs */
1.18 +
1.19 +set I := 1..m;
1.20 +/* set of agents */
1.21 +
1.22 +set J := 1..n;
1.23 +/* set of jobs */
1.24 +
1.25 +param a{i in I, j in J}, >= 0;
1.26 +/* resource consumed in allocating job j to agent i */
1.27 +
1.28 +param b{i in I}, >= 0;
1.29 +/* resource capacity of agent i */
1.30 +
1.31 +param c{i in I, j in J}, >= 0;
1.32 +/* cost of allocating job j to agent i */
1.33 +
1.34 +var x{i in I, j in J}, binary;
1.35 +/* x[i,j] = 1 means job j is assigned to agent i */
1.36 +
1.37 +s.t. one{j in J}: sum{i in I} x[i,j] = 1;
1.38 +/* job j must be assigned exactly to one agent */
1.39 +
1.40 +s.t. lim{i in I}: sum{j in J} a[i,j] * x[i,j] <= b[i];
1.41 +/* total amount of resources consumed by all jobs assigned to agent i
1.42 + must not exceed the agent's capacity */
1.43 +
1.44 +minimize obj: sum{i in I, j in J} c[i,j] * x[i,j];
1.45 +/* the objective is to find cheapest assignment (note that gap can also
1.46 + be formulated as maximization problem) */
1.47 +
1.48 +data;
1.49 +
1.50 +/* These data correspond to the instance c515-1 (gap1) from:
1.51 +
1.52 + I.H. Osman, "Heuristics for the Generalised Assignment Problem:
1.53 + Simulated Annealing and Tabu Search Approaches", OR Spektrum, Volume
1.54 + 17, 211-225, 1995
1.55 +
1.56 + D. Cattrysse, M. Salomon and L.N. Van Wassenhove, "A set partitioning
1.57 + heuristic for the generalized assignment problem", European Journal
1.58 + of Operational Research, Volume 72, 167-174, 1994 */
1.59 +
1.60 +/* The optimal solution is 261 (minimization) or 336 (maximization) */
1.61 +
1.62 +param m := 5;
1.63 +
1.64 +param n := 15;
1.65 +
1.66 +param a : 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 :=
1.67 + 1 8 15 14 23 8 16 8 25 9 17 25 15 10 8 24
1.68 + 2 15 7 23 22 11 11 12 10 17 16 7 16 10 18 22
1.69 + 3 21 20 6 22 24 10 24 9 21 14 11 14 11 19 16
1.70 + 4 20 11 8 14 9 5 6 19 19 7 6 6 13 9 18
1.71 + 5 8 13 13 13 10 20 25 16 16 17 10 10 5 12 23 ;
1.72 +
1.73 +param b := 1 36, 2 34, 3 38, 4 27, 5 33;
1.74 +
1.75 +param c : 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 :=
1.76 + 1 17 21 22 18 24 15 20 18 19 18 16 22 24 24 16
1.77 + 2 23 16 21 16 17 16 19 25 18 21 17 15 25 17 24
1.78 + 3 16 20 16 25 24 16 17 19 19 18 20 16 17 21 24
1.79 + 4 19 19 22 22 20 16 19 17 21 19 25 23 25 25 25
1.80 + 5 18 19 15 15 21 25 16 16 23 15 22 17 19 22 24 ;
1.81 +
1.82 +end;