1.1 --- /dev/null Thu Jan 01 00:00:00 1970 +0000
1.2 +++ b/examples/mvcp.mod Mon Dec 06 13:09:21 2010 +0100
1.3 @@ -0,0 +1,43 @@
1.4 +/* MVCP, Minimum Vertex Cover Problem */
1.5 +
1.6 +/* Written in GNU MathProg by Andrew Makhorin <mao@gnu.org> */
1.7 +
1.8 +/* The Minimum Vertex Cover Problem in a network G = (V, E), where V
1.9 + is a set of nodes, E is a set of arcs, is to find a subset V' within
1.10 + V such that each edge (i,j) in E has at least one its endpoint in V'
1.11 + and which minimizes the sum of node weights w(i) over V'.
1.12 +
1.13 + Reference:
1.14 + Garey, M.R., and Johnson, D.S. (1979), Computers and Intractability:
1.15 + A guide to the theory of NP-completeness [Graph Theory, Covering and
1.16 + Partitioning, Minimum Vertex Cover, GT1]. */
1.17 +
1.18 +set E, dimen 2;
1.19 +/* set of edges */
1.20 +
1.21 +set V := (setof{(i,j) in E} i) union (setof{(i,j) in E} j);
1.22 +/* set of nodes */
1.23 +
1.24 +param w{i in V}, >= 0, default 1;
1.25 +/* w[i] is weight of vertex i */
1.26 +
1.27 +var x{i in V}, binary;
1.28 +/* x[i] = 1 means that node i is included into V' */
1.29 +
1.30 +s.t. cov{(i,j) in E}: x[i] + x[j] >= 1;
1.31 +/* each edge (i,j) must have node i or j (or both) in V' */
1.32 +
1.33 +minimize z: sum{i in V} w[i] * x[i];
1.34 +/* we need to minimize the sum of node weights over V' */
1.35 +
1.36 +data;
1.37 +
1.38 +/* These data correspond to an example from [Papadimitriou]. */
1.39 +
1.40 +/* Optimal solution is 6 (greedy heuristic gives 13) */
1.41 +
1.42 +set E := a1 b1, b1 c1, a1 b2, b2 c2, a2 b3, b3 c3, a2 b4, b4 c4, a3 b5,
1.43 + b5 c5, a3 b6, b6 c6, a4 b1, a4 b2, a4 b3, a5 b4, a5 b5, a5 b6,
1.44 + a6 b1, a6 b2, a6 b3, a6 b4, a7 b2, a7 b3, a7 b4, a7 b5, a7 b6;
1.45 +
1.46 +end;