1.1 --- /dev/null Thu Jan 01 00:00:00 1970 +0000
1.2 +++ b/src/glpgmp.h Mon Dec 06 13:09:21 2010 +0100
1.3 @@ -0,0 +1,190 @@
1.4 +/* glpgmp.h (bignum arithmetic) */
1.5 +
1.6 +/***********************************************************************
1.7 +* This code is part of GLPK (GNU Linear Programming Kit).
1.8 +*
1.9 +* Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
1.10 +* 2009, 2010 Andrew Makhorin, Department for Applied Informatics,
1.11 +* Moscow Aviation Institute, Moscow, Russia. All rights reserved.
1.12 +* E-mail: <mao@gnu.org>.
1.13 +*
1.14 +* GLPK is free software: you can redistribute it and/or modify it
1.15 +* under the terms of the GNU General Public License as published by
1.16 +* the Free Software Foundation, either version 3 of the License, or
1.17 +* (at your option) any later version.
1.18 +*
1.19 +* GLPK is distributed in the hope that it will be useful, but WITHOUT
1.20 +* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
1.21 +* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
1.22 +* License for more details.
1.23 +*
1.24 +* You should have received a copy of the GNU General Public License
1.25 +* along with GLPK. If not, see <http://www.gnu.org/licenses/>.
1.26 +***********************************************************************/
1.27 +
1.28 +#ifndef GLPGMP_H
1.29 +#define GLPGMP_H
1.30 +
1.31 +#ifdef HAVE_CONFIG_H
1.32 +#include <config.h>
1.33 +#endif
1.34 +
1.35 +#ifdef HAVE_GMP /* use GNU MP bignum library */
1.36 +
1.37 +#include <gmp.h>
1.38 +
1.39 +#define gmp_pool_count _glp_gmp_pool_count
1.40 +#define gmp_free_mem _glp_gmp_free_mem
1.41 +
1.42 +int gmp_pool_count(void);
1.43 +void gmp_free_mem(void);
1.44 +
1.45 +#else /* use GLPK bignum module */
1.46 +
1.47 +/*----------------------------------------------------------------------
1.48 +// INTEGER NUMBERS
1.49 +//
1.50 +// Depending on its magnitude an integer number of arbitrary precision
1.51 +// is represented either in short format or in long format.
1.52 +//
1.53 +// Short format corresponds to the int type and allows representing
1.54 +// integer numbers in the range [-(2^31-1), +(2^31-1)]. Note that for
1.55 +// the most negative number of int type the short format is not used.
1.56 +//
1.57 +// In long format integer numbers are represented using the positional
1.58 +// system with the base (radix) 2^16 = 65536:
1.59 +//
1.60 +// x = (-1)^s sum{j in 0..n-1} d[j] * 65536^j,
1.61 +//
1.62 +// where x is the integer to be represented, s is its sign (+1 or -1),
1.63 +// d[j] are its digits (0 <= d[j] <= 65535).
1.64 +//
1.65 +// RATIONAL NUMBERS
1.66 +//
1.67 +// A rational number is represented as an irreducible fraction:
1.68 +//
1.69 +// p / q,
1.70 +//
1.71 +// where p (numerator) and q (denominator) are integer numbers (q > 0)
1.72 +// having no common divisors. */
1.73 +
1.74 +struct mpz
1.75 +{ /* integer number */
1.76 + int val;
1.77 + /* if ptr is a null pointer, the number is in short format, and
1.78 + val is its value; otherwise, the number is in long format, and
1.79 + val is its sign (+1 or -1) */
1.80 + struct mpz_seg *ptr;
1.81 + /* pointer to the linked list of the number segments ordered in
1.82 + ascending of powers of the base */
1.83 +};
1.84 +
1.85 +struct mpz_seg
1.86 +{ /* integer number segment */
1.87 + unsigned short d[6];
1.88 + /* six digits of the number ordered in ascending of powers of the
1.89 + base */
1.90 + struct mpz_seg *next;
1.91 + /* pointer to the next number segment */
1.92 +};
1.93 +
1.94 +struct mpq
1.95 +{ /* rational number (p / q) */
1.96 + struct mpz p;
1.97 + /* numerator */
1.98 + struct mpz q;
1.99 + /* denominator */
1.100 +};
1.101 +
1.102 +typedef struct mpz *mpz_t;
1.103 +typedef struct mpq *mpq_t;
1.104 +
1.105 +#define gmp_get_atom _glp_gmp_get_atom
1.106 +#define gmp_free_atom _glp_gmp_free_atom
1.107 +#define gmp_pool_count _glp_gmp_pool_count
1.108 +#define gmp_get_work _glp_gmp_get_work
1.109 +#define gmp_free_mem _glp_gmp_free_mem
1.110 +
1.111 +#define _mpz_init _glp_mpz_init
1.112 +#define mpz_clear _glp_mpz_clear
1.113 +#define mpz_set _glp_mpz_set
1.114 +#define mpz_set_si _glp_mpz_set_si
1.115 +#define mpz_get_d _glp_mpz_get_d
1.116 +#define mpz_get_d_2exp _glp_mpz_get_d_2exp
1.117 +#define mpz_swap _glp_mpz_swap
1.118 +#define mpz_add _glp_mpz_add
1.119 +#define mpz_sub _glp_mpz_sub
1.120 +#define mpz_mul _glp_mpz_mul
1.121 +#define mpz_neg _glp_mpz_neg
1.122 +#define mpz_abs _glp_mpz_abs
1.123 +#define mpz_div _glp_mpz_div
1.124 +#define mpz_gcd _glp_mpz_gcd
1.125 +#define mpz_cmp _glp_mpz_cmp
1.126 +#define mpz_sgn _glp_mpz_sgn
1.127 +#define mpz_out_str _glp_mpz_out_str
1.128 +
1.129 +#define _mpq_init _glp_mpq_init
1.130 +#define mpq_clear _glp_mpq_clear
1.131 +#define mpq_canonicalize _glp_mpq_canonicalize
1.132 +#define mpq_set _glp_mpq_set
1.133 +#define mpq_set_si _glp_mpq_set_si
1.134 +#define mpq_get_d _glp_mpq_get_d
1.135 +#define mpq_set_d _glp_mpq_set_d
1.136 +#define mpq_add _glp_mpq_add
1.137 +#define mpq_sub _glp_mpq_sub
1.138 +#define mpq_mul _glp_mpq_mul
1.139 +#define mpq_div _glp_mpq_div
1.140 +#define mpq_neg _glp_mpq_neg
1.141 +#define mpq_abs _glp_mpq_abs
1.142 +#define mpq_cmp _glp_mpq_cmp
1.143 +#define mpq_sgn _glp_mpq_sgn
1.144 +#define mpq_out_str _glp_mpq_out_str
1.145 +
1.146 +void *gmp_get_atom(int size);
1.147 +void gmp_free_atom(void *ptr, int size);
1.148 +int gmp_pool_count(void);
1.149 +unsigned short *gmp_get_work(int size);
1.150 +void gmp_free_mem(void);
1.151 +
1.152 +mpz_t _mpz_init(void);
1.153 +#define mpz_init(x) (void)((x) = _mpz_init())
1.154 +void mpz_clear(mpz_t x);
1.155 +void mpz_set(mpz_t z, mpz_t x);
1.156 +void mpz_set_si(mpz_t x, int val);
1.157 +double mpz_get_d(mpz_t x);
1.158 +double mpz_get_d_2exp(int *exp, mpz_t x);
1.159 +void mpz_swap(mpz_t x, mpz_t y);
1.160 +void mpz_add(mpz_t, mpz_t, mpz_t);
1.161 +void mpz_sub(mpz_t, mpz_t, mpz_t);
1.162 +void mpz_mul(mpz_t, mpz_t, mpz_t);
1.163 +void mpz_neg(mpz_t z, mpz_t x);
1.164 +void mpz_abs(mpz_t z, mpz_t x);
1.165 +void mpz_div(mpz_t q, mpz_t r, mpz_t x, mpz_t y);
1.166 +void mpz_gcd(mpz_t z, mpz_t x, mpz_t y);
1.167 +int mpz_cmp(mpz_t x, mpz_t y);
1.168 +int mpz_sgn(mpz_t x);
1.169 +int mpz_out_str(void *fp, int base, mpz_t x);
1.170 +
1.171 +mpq_t _mpq_init(void);
1.172 +#define mpq_init(x) (void)((x) = _mpq_init())
1.173 +void mpq_clear(mpq_t x);
1.174 +void mpq_canonicalize(mpq_t x);
1.175 +void mpq_set(mpq_t z, mpq_t x);
1.176 +void mpq_set_si(mpq_t x, int p, unsigned int q);
1.177 +double mpq_get_d(mpq_t x);
1.178 +void mpq_set_d(mpq_t x, double val);
1.179 +void mpq_add(mpq_t z, mpq_t x, mpq_t y);
1.180 +void mpq_sub(mpq_t z, mpq_t x, mpq_t y);
1.181 +void mpq_mul(mpq_t z, mpq_t x, mpq_t y);
1.182 +void mpq_div(mpq_t z, mpq_t x, mpq_t y);
1.183 +void mpq_neg(mpq_t z, mpq_t x);
1.184 +void mpq_abs(mpq_t z, mpq_t x);
1.185 +int mpq_cmp(mpq_t x, mpq_t y);
1.186 +int mpq_sgn(mpq_t x);
1.187 +int mpq_out_str(void *fp, int base, mpq_t x);
1.188 +
1.189 +#endif
1.190 +
1.191 +#endif
1.192 +
1.193 +/* eof */