src/glplpx01.c
changeset 1 c445c931472f
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/src/glplpx01.c	Mon Dec 06 13:09:21 2010 +0100
     1.3 @@ -0,0 +1,1542 @@
     1.4 +/* glplpx01.c (obsolete API routines) */
     1.5 +
     1.6 +/***********************************************************************
     1.7 +*  This code is part of GLPK (GNU Linear Programming Kit).
     1.8 +*
     1.9 +*  Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
    1.10 +*  2009, 2010 Andrew Makhorin, Department for Applied Informatics,
    1.11 +*  Moscow Aviation Institute, Moscow, Russia. All rights reserved.
    1.12 +*  E-mail: <mao@gnu.org>.
    1.13 +*
    1.14 +*  GLPK is free software: you can redistribute it and/or modify it
    1.15 +*  under the terms of the GNU General Public License as published by
    1.16 +*  the Free Software Foundation, either version 3 of the License, or
    1.17 +*  (at your option) any later version.
    1.18 +*
    1.19 +*  GLPK is distributed in the hope that it will be useful, but WITHOUT
    1.20 +*  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
    1.21 +*  or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
    1.22 +*  License for more details.
    1.23 +*
    1.24 +*  You should have received a copy of the GNU General Public License
    1.25 +*  along with GLPK. If not, see <http://www.gnu.org/licenses/>.
    1.26 +***********************************************************************/
    1.27 +
    1.28 +#include "glpapi.h"
    1.29 +
    1.30 +struct LPXCPS
    1.31 +{     /* control parameters and statistics */
    1.32 +      int msg_lev;
    1.33 +      /* level of messages output by the solver:
    1.34 +         0 - no output
    1.35 +         1 - error messages only
    1.36 +         2 - normal output
    1.37 +         3 - full output (includes informational messages) */
    1.38 +      int scale;
    1.39 +      /* scaling option:
    1.40 +         0 - no scaling
    1.41 +         1 - equilibration scaling
    1.42 +         2 - geometric mean scaling
    1.43 +         3 - geometric mean scaling, then equilibration scaling */
    1.44 +      int dual;
    1.45 +      /* dual simplex option:
    1.46 +         0 - use primal simplex
    1.47 +         1 - use dual simplex */
    1.48 +      int price;
    1.49 +      /* pricing option (for both primal and dual simplex):
    1.50 +         0 - textbook pricing
    1.51 +         1 - steepest edge pricing */
    1.52 +      double relax;
    1.53 +      /* relaxation parameter used in the ratio test; if it is zero,
    1.54 +         the textbook ratio test is used; if it is non-zero (should be
    1.55 +         positive), Harris' two-pass ratio test is used; in the latter
    1.56 +         case on the first pass basic variables (in the case of primal
    1.57 +         simplex) or reduced costs of non-basic variables (in the case
    1.58 +         of dual simplex) are allowed to slightly violate their bounds,
    1.59 +         but not more than (relax * tol_bnd) or (relax * tol_dj) (thus,
    1.60 +         relax is a percentage of tol_bnd or tol_dj) */
    1.61 +      double tol_bnd;
    1.62 +      /* relative tolerance used to check if the current basic solution
    1.63 +         is primal feasible */
    1.64 +      double tol_dj;
    1.65 +      /* absolute tolerance used to check if the current basic solution
    1.66 +         is dual feasible */
    1.67 +      double tol_piv;
    1.68 +      /* relative tolerance used to choose eligible pivotal elements of
    1.69 +         the simplex table in the ratio test */
    1.70 +      int round;
    1.71 +      /* solution rounding option:
    1.72 +         0 - report all computed values and reduced costs "as is"
    1.73 +         1 - if possible (allowed by the tolerances), replace computed
    1.74 +             values and reduced costs which are close to zero by exact
    1.75 +             zeros */
    1.76 +      double obj_ll;
    1.77 +      /* lower limit of the objective function; if on the phase II the
    1.78 +         objective function reaches this limit and continues decreasing,
    1.79 +         the solver stops the search */
    1.80 +      double obj_ul;
    1.81 +      /* upper limit of the objective function; if on the phase II the
    1.82 +         objective function reaches this limit and continues increasing,
    1.83 +         the solver stops the search */
    1.84 +      int it_lim;
    1.85 +      /* simplex iterations limit; if this value is positive, it is
    1.86 +         decreased by one each time when one simplex iteration has been
    1.87 +         performed, and reaching zero value signals the solver to stop
    1.88 +         the search; negative value means no iterations limit */
    1.89 +      double tm_lim;
    1.90 +      /* searching time limit, in seconds; if this value is positive,
    1.91 +         it is decreased each time when one simplex iteration has been
    1.92 +         performed by the amount of time spent for the iteration, and
    1.93 +         reaching zero value signals the solver to stop the search;
    1.94 +         negative value means no time limit */
    1.95 +      int out_frq;
    1.96 +      /* output frequency, in iterations; this parameter specifies how
    1.97 +         frequently the solver sends information about the solution to
    1.98 +         the standard output */
    1.99 +      double out_dly;
   1.100 +      /* output delay, in seconds; this parameter specifies how long
   1.101 +         the solver should delay sending information about the solution
   1.102 +         to the standard output; zero value means no delay */
   1.103 +      int branch; /* MIP */
   1.104 +      /* branching heuristic:
   1.105 +         0 - branch on first variable
   1.106 +         1 - branch on last variable
   1.107 +         2 - branch using heuristic by Driebeck and Tomlin
   1.108 +         3 - branch on most fractional variable */
   1.109 +      int btrack; /* MIP */
   1.110 +      /* backtracking heuristic:
   1.111 +         0 - select most recent node (depth first search)
   1.112 +         1 - select earliest node (breadth first search)
   1.113 +         2 - select node using the best projection heuristic
   1.114 +         3 - select node with best local bound */
   1.115 +      double tol_int; /* MIP */
   1.116 +      /* absolute tolerance used to check if the current basic solution
   1.117 +         is integer feasible */
   1.118 +      double tol_obj; /* MIP */
   1.119 +      /* relative tolerance used to check if the value of the objective
   1.120 +         function is not better than in the best known integer feasible
   1.121 +         solution */
   1.122 +      int mps_info; /* lpx_write_mps */
   1.123 +      /* if this flag is set, the routine lpx_write_mps outputs several
   1.124 +         comment cards that contains some information about the problem;
   1.125 +         otherwise the routine outputs no comment cards */
   1.126 +      int mps_obj; /* lpx_write_mps */
   1.127 +      /* this parameter tells the routine lpx_write_mps how to output
   1.128 +         the objective function row:
   1.129 +         0 - never output objective function row
   1.130 +         1 - always output objective function row
   1.131 +         2 - output objective function row if and only if the problem
   1.132 +             has no free rows */
   1.133 +      int mps_orig; /* lpx_write_mps */
   1.134 +      /* if this flag is set, the routine lpx_write_mps uses original
   1.135 +         row and column symbolic names; otherwise the routine generates
   1.136 +         plain names using ordinal numbers of rows and columns */
   1.137 +      int mps_wide; /* lpx_write_mps */
   1.138 +      /* if this flag is set, the routine lpx_write_mps uses all data
   1.139 +         fields; otherwise the routine keeps fields 5 and 6 empty */
   1.140 +      int mps_free; /* lpx_write_mps */
   1.141 +      /* if this flag is set, the routine lpx_write_mps omits column
   1.142 +         and vector names everytime if possible (free style); otherwise
   1.143 +         the routine never omits these names (pedantic style) */
   1.144 +      int mps_skip; /* lpx_write_mps */
   1.145 +      /* if this flag is set, the routine lpx_write_mps skips empty
   1.146 +         columns (i.e. which has no constraint coefficients); otherwise
   1.147 +         the routine outputs all columns */
   1.148 +      int lpt_orig; /* lpx_write_lpt */
   1.149 +      /* if this flag is set, the routine lpx_write_lpt uses original
   1.150 +         row and column symbolic names; otherwise the routine generates
   1.151 +         plain names using ordinal numbers of rows and columns */
   1.152 +      int presol; /* lpx_simplex */
   1.153 +      /* LP presolver option:
   1.154 +         0 - do not use LP presolver
   1.155 +         1 - use LP presolver */
   1.156 +      int binarize; /* lpx_intopt */
   1.157 +      /* if this flag is set, the routine lpx_intopt replaces integer
   1.158 +         columns by binary ones */
   1.159 +      int use_cuts; /* lpx_intopt */
   1.160 +      /* if this flag is set, the routine lpx_intopt tries generating
   1.161 +         cutting planes:
   1.162 +         LPX_C_COVER  - mixed cover cuts
   1.163 +         LPX_C_CLIQUE - clique cuts
   1.164 +         LPX_C_GOMORY - Gomory's mixed integer cuts
   1.165 +         LPX_C_ALL    - all cuts */
   1.166 +      double mip_gap; /* MIP */
   1.167 +      /* relative MIP gap tolerance */
   1.168 +};
   1.169 +
   1.170 +LPX *lpx_create_prob(void)
   1.171 +{     /* create problem object */
   1.172 +      return glp_create_prob();
   1.173 +}
   1.174 +
   1.175 +void lpx_set_prob_name(LPX *lp, const char *name)
   1.176 +{     /* assign (change) problem name */
   1.177 +      glp_set_prob_name(lp, name);
   1.178 +      return;
   1.179 +}
   1.180 +
   1.181 +void lpx_set_obj_name(LPX *lp, const char *name)
   1.182 +{     /* assign (change) objective function name */
   1.183 +      glp_set_obj_name(lp, name);
   1.184 +      return;
   1.185 +}
   1.186 +
   1.187 +void lpx_set_obj_dir(LPX *lp, int dir)
   1.188 +{     /* set (change) optimization direction flag */
   1.189 +      glp_set_obj_dir(lp, dir - LPX_MIN + GLP_MIN);
   1.190 +      return;
   1.191 +}
   1.192 +
   1.193 +int lpx_add_rows(LPX *lp, int nrs)
   1.194 +{     /* add new rows to problem object */
   1.195 +      return glp_add_rows(lp, nrs);
   1.196 +}
   1.197 +
   1.198 +int lpx_add_cols(LPX *lp, int ncs)
   1.199 +{     /* add new columns to problem object */
   1.200 +      return glp_add_cols(lp, ncs);
   1.201 +}
   1.202 +
   1.203 +void lpx_set_row_name(LPX *lp, int i, const char *name)
   1.204 +{     /* assign (change) row name */
   1.205 +      glp_set_row_name(lp, i, name);
   1.206 +      return;
   1.207 +}
   1.208 +
   1.209 +void lpx_set_col_name(LPX *lp, int j, const char *name)
   1.210 +{     /* assign (change) column name */
   1.211 +      glp_set_col_name(lp, j, name);
   1.212 +      return;
   1.213 +}
   1.214 +
   1.215 +void lpx_set_row_bnds(LPX *lp, int i, int type, double lb, double ub)
   1.216 +{     /* set (change) row bounds */
   1.217 +      glp_set_row_bnds(lp, i, type - LPX_FR + GLP_FR, lb, ub);
   1.218 +      return;
   1.219 +}
   1.220 +
   1.221 +void lpx_set_col_bnds(LPX *lp, int j, int type, double lb, double ub)
   1.222 +{     /* set (change) column bounds */
   1.223 +      glp_set_col_bnds(lp, j, type - LPX_FR + GLP_FR, lb, ub);
   1.224 +      return;
   1.225 +}
   1.226 +
   1.227 +void lpx_set_obj_coef(glp_prob *lp, int j, double coef)
   1.228 +{     /* set (change) obj. coefficient or constant term */
   1.229 +      glp_set_obj_coef(lp, j, coef);
   1.230 +      return;
   1.231 +}
   1.232 +
   1.233 +void lpx_set_mat_row(LPX *lp, int i, int len, const int ind[],
   1.234 +      const double val[])
   1.235 +{     /* set (replace) row of the constraint matrix */
   1.236 +      glp_set_mat_row(lp, i, len, ind, val);
   1.237 +      return;
   1.238 +}
   1.239 +
   1.240 +void lpx_set_mat_col(LPX *lp, int j, int len, const int ind[],
   1.241 +      const double val[])
   1.242 +{     /* set (replace) column of the constraint matrix */
   1.243 +      glp_set_mat_col(lp, j, len, ind, val);
   1.244 +      return;
   1.245 +}
   1.246 +
   1.247 +void lpx_load_matrix(LPX *lp, int ne, const int ia[], const int ja[],
   1.248 +      const double ar[])
   1.249 +{     /* load (replace) the whole constraint matrix */
   1.250 +      glp_load_matrix(lp, ne, ia, ja, ar);
   1.251 +      return;
   1.252 +}
   1.253 +
   1.254 +void lpx_del_rows(LPX *lp, int nrs, const int num[])
   1.255 +{     /* delete specified rows from problem object */
   1.256 +      glp_del_rows(lp, nrs, num);
   1.257 +      return;
   1.258 +}
   1.259 +
   1.260 +void lpx_del_cols(LPX *lp, int ncs, const int num[])
   1.261 +{     /* delete specified columns from problem object */
   1.262 +      glp_del_cols(lp, ncs, num);
   1.263 +      return;
   1.264 +}
   1.265 +
   1.266 +void lpx_delete_prob(LPX *lp)
   1.267 +{     /* delete problem object */
   1.268 +      glp_delete_prob(lp);
   1.269 +      return;
   1.270 +}
   1.271 +
   1.272 +const char *lpx_get_prob_name(LPX *lp)
   1.273 +{     /* retrieve problem name */
   1.274 +      return glp_get_prob_name(lp);
   1.275 +}
   1.276 +
   1.277 +const char *lpx_get_obj_name(LPX *lp)
   1.278 +{     /* retrieve objective function name */
   1.279 +      return glp_get_obj_name(lp);
   1.280 +}
   1.281 +
   1.282 +int lpx_get_obj_dir(LPX *lp)
   1.283 +{     /* retrieve optimization direction flag */
   1.284 +      return glp_get_obj_dir(lp) - GLP_MIN + LPX_MIN;
   1.285 +}
   1.286 +
   1.287 +int lpx_get_num_rows(LPX *lp)
   1.288 +{     /* retrieve number of rows */
   1.289 +      return glp_get_num_rows(lp);
   1.290 +}
   1.291 +
   1.292 +int lpx_get_num_cols(LPX *lp)
   1.293 +{     /* retrieve number of columns */
   1.294 +      return glp_get_num_cols(lp);
   1.295 +}
   1.296 +
   1.297 +const char *lpx_get_row_name(LPX *lp, int i)
   1.298 +{     /* retrieve row name */
   1.299 +      return glp_get_row_name(lp, i);
   1.300 +}
   1.301 +
   1.302 +const char *lpx_get_col_name(LPX *lp, int j)
   1.303 +{     /* retrieve column name */
   1.304 +      return glp_get_col_name(lp, j);
   1.305 +}
   1.306 +
   1.307 +int lpx_get_row_type(LPX *lp, int i)
   1.308 +{     /* retrieve row type */
   1.309 +      return glp_get_row_type(lp, i) - GLP_FR + LPX_FR;
   1.310 +}
   1.311 +
   1.312 +double lpx_get_row_lb(glp_prob *lp, int i)
   1.313 +{     /* retrieve row lower bound */
   1.314 +      double lb;
   1.315 +      lb = glp_get_row_lb(lp, i);
   1.316 +      if (lb == -DBL_MAX) lb = 0.0;
   1.317 +      return lb;
   1.318 +}
   1.319 +
   1.320 +double lpx_get_row_ub(glp_prob *lp, int i)
   1.321 +{     /* retrieve row upper bound */
   1.322 +      double ub;
   1.323 +      ub = glp_get_row_ub(lp, i);
   1.324 +      if (ub == +DBL_MAX) ub = 0.0;
   1.325 +      return ub;
   1.326 +}
   1.327 +
   1.328 +void lpx_get_row_bnds(glp_prob *lp, int i, int *typx, double *lb,
   1.329 +      double *ub)
   1.330 +{     /* retrieve row bounds */
   1.331 +      if (typx != NULL) *typx = lpx_get_row_type(lp, i);
   1.332 +      if (lb != NULL) *lb = lpx_get_row_lb(lp, i);
   1.333 +      if (ub != NULL) *ub = lpx_get_row_ub(lp, i);
   1.334 +      return;
   1.335 +}
   1.336 +
   1.337 +int lpx_get_col_type(LPX *lp, int j)
   1.338 +{     /* retrieve column type */
   1.339 +      return glp_get_col_type(lp, j) - GLP_FR + LPX_FR;
   1.340 +}
   1.341 +
   1.342 +double lpx_get_col_lb(glp_prob *lp, int j)
   1.343 +{     /* retrieve column lower bound */
   1.344 +      double lb;
   1.345 +      lb = glp_get_col_lb(lp, j);
   1.346 +      if (lb == -DBL_MAX) lb = 0.0;
   1.347 +      return lb;
   1.348 +}
   1.349 +
   1.350 +double lpx_get_col_ub(glp_prob *lp, int j)
   1.351 +{     /* retrieve column upper bound */
   1.352 +      double ub;
   1.353 +      ub = glp_get_col_ub(lp, j);
   1.354 +      if (ub == +DBL_MAX) ub = 0.0;
   1.355 +      return ub;
   1.356 +}
   1.357 +
   1.358 +void lpx_get_col_bnds(glp_prob *lp, int j, int *typx, double *lb,
   1.359 +      double *ub)
   1.360 +{     /* retrieve column bounds */
   1.361 +      if (typx != NULL) *typx = lpx_get_col_type(lp, j);
   1.362 +      if (lb != NULL) *lb = lpx_get_col_lb(lp, j);
   1.363 +      if (ub != NULL) *ub = lpx_get_col_ub(lp, j);
   1.364 +      return;
   1.365 +}
   1.366 +
   1.367 +double lpx_get_obj_coef(LPX *lp, int j)
   1.368 +{     /* retrieve obj. coefficient or constant term */
   1.369 +      return glp_get_obj_coef(lp, j);
   1.370 +}
   1.371 +
   1.372 +int lpx_get_num_nz(LPX *lp)
   1.373 +{     /* retrieve number of constraint coefficients */
   1.374 +      return glp_get_num_nz(lp);
   1.375 +}
   1.376 +
   1.377 +int lpx_get_mat_row(LPX *lp, int i, int ind[], double val[])
   1.378 +{     /* retrieve row of the constraint matrix */
   1.379 +      return glp_get_mat_row(lp, i, ind, val);
   1.380 +}
   1.381 +
   1.382 +int lpx_get_mat_col(LPX *lp, int j, int ind[], double val[])
   1.383 +{     /* retrieve column of the constraint matrix */
   1.384 +      return glp_get_mat_col(lp, j, ind, val);
   1.385 +}
   1.386 +
   1.387 +void lpx_create_index(LPX *lp)
   1.388 +{     /* create the name index */
   1.389 +      glp_create_index(lp);
   1.390 +      return;
   1.391 +}
   1.392 +
   1.393 +int lpx_find_row(LPX *lp, const char *name)
   1.394 +{     /* find row by its name */
   1.395 +      return glp_find_row(lp, name);
   1.396 +}
   1.397 +
   1.398 +int lpx_find_col(LPX *lp, const char *name)
   1.399 +{     /* find column by its name */
   1.400 +      return glp_find_col(lp, name);
   1.401 +}
   1.402 +
   1.403 +void lpx_delete_index(LPX *lp)
   1.404 +{     /* delete the name index */
   1.405 +      glp_delete_index(lp);
   1.406 +      return;
   1.407 +}
   1.408 +
   1.409 +void lpx_scale_prob(LPX *lp)
   1.410 +{     /* scale problem data */
   1.411 +      switch (lpx_get_int_parm(lp, LPX_K_SCALE))
   1.412 +      {  case 0:
   1.413 +            /* no scaling */
   1.414 +            glp_unscale_prob(lp);
   1.415 +            break;
   1.416 +         case 1:
   1.417 +            /* equilibration scaling */
   1.418 +            glp_scale_prob(lp, GLP_SF_EQ);
   1.419 +            break;
   1.420 +         case 2:
   1.421 +            /* geometric mean scaling */
   1.422 +            glp_scale_prob(lp, GLP_SF_GM);
   1.423 +            break;
   1.424 +         case 3:
   1.425 +            /* geometric mean scaling, then equilibration scaling */
   1.426 +            glp_scale_prob(lp, GLP_SF_GM | GLP_SF_EQ);
   1.427 +            break;
   1.428 +         default:
   1.429 +            xassert(lp != lp);
   1.430 +      }
   1.431 +      return;
   1.432 +}
   1.433 +
   1.434 +void lpx_unscale_prob(LPX *lp)
   1.435 +{     /* unscale problem data */
   1.436 +      glp_unscale_prob(lp);
   1.437 +      return;
   1.438 +}
   1.439 +
   1.440 +void lpx_set_row_stat(LPX *lp, int i, int stat)
   1.441 +{     /* set (change) row status */
   1.442 +      glp_set_row_stat(lp, i, stat - LPX_BS + GLP_BS);
   1.443 +      return;
   1.444 +}
   1.445 +
   1.446 +void lpx_set_col_stat(LPX *lp, int j, int stat)
   1.447 +{     /* set (change) column status */
   1.448 +      glp_set_col_stat(lp, j, stat - LPX_BS + GLP_BS);
   1.449 +      return;
   1.450 +}
   1.451 +
   1.452 +void lpx_std_basis(LPX *lp)
   1.453 +{     /* construct standard initial LP basis */
   1.454 +      glp_std_basis(lp);
   1.455 +      return;
   1.456 +}
   1.457 +
   1.458 +void lpx_adv_basis(LPX *lp)
   1.459 +{     /* construct advanced initial LP basis */
   1.460 +      glp_adv_basis(lp, 0);
   1.461 +      return;
   1.462 +}
   1.463 +
   1.464 +void lpx_cpx_basis(LPX *lp)
   1.465 +{     /* construct Bixby's initial LP basis */
   1.466 +      glp_cpx_basis(lp);
   1.467 +      return;
   1.468 +}
   1.469 +
   1.470 +static void fill_smcp(LPX *lp, glp_smcp *parm)
   1.471 +{     glp_init_smcp(parm);
   1.472 +      switch (lpx_get_int_parm(lp, LPX_K_MSGLEV))
   1.473 +      {  case 0:  parm->msg_lev = GLP_MSG_OFF;   break;
   1.474 +         case 1:  parm->msg_lev = GLP_MSG_ERR;   break;
   1.475 +         case 2:  parm->msg_lev = GLP_MSG_ON;    break;
   1.476 +         case 3:  parm->msg_lev = GLP_MSG_ALL;   break;
   1.477 +         default: xassert(lp != lp);
   1.478 +      }
   1.479 +      switch (lpx_get_int_parm(lp, LPX_K_DUAL))
   1.480 +      {  case 0:  parm->meth = GLP_PRIMAL;       break;
   1.481 +         case 1:  parm->meth = GLP_DUAL;         break;
   1.482 +         default: xassert(lp != lp);
   1.483 +      }
   1.484 +      switch (lpx_get_int_parm(lp, LPX_K_PRICE))
   1.485 +      {  case 0:  parm->pricing = GLP_PT_STD;    break;
   1.486 +         case 1:  parm->pricing = GLP_PT_PSE;    break;
   1.487 +         default: xassert(lp != lp);
   1.488 +      }
   1.489 +      if (lpx_get_real_parm(lp, LPX_K_RELAX) == 0.0)
   1.490 +         parm->r_test = GLP_RT_STD;
   1.491 +      else
   1.492 +         parm->r_test = GLP_RT_HAR;
   1.493 +      parm->tol_bnd = lpx_get_real_parm(lp, LPX_K_TOLBND);
   1.494 +      parm->tol_dj  = lpx_get_real_parm(lp, LPX_K_TOLDJ);
   1.495 +      parm->tol_piv = lpx_get_real_parm(lp, LPX_K_TOLPIV);
   1.496 +      parm->obj_ll  = lpx_get_real_parm(lp, LPX_K_OBJLL);
   1.497 +      parm->obj_ul  = lpx_get_real_parm(lp, LPX_K_OBJUL);
   1.498 +      if (lpx_get_int_parm(lp, LPX_K_ITLIM) < 0)
   1.499 +         parm->it_lim = INT_MAX;
   1.500 +      else
   1.501 +         parm->it_lim = lpx_get_int_parm(lp, LPX_K_ITLIM);
   1.502 +      if (lpx_get_real_parm(lp, LPX_K_TMLIM) < 0.0)
   1.503 +         parm->tm_lim = INT_MAX;
   1.504 +      else
   1.505 +         parm->tm_lim =
   1.506 +            (int)(1000.0 * lpx_get_real_parm(lp, LPX_K_TMLIM));
   1.507 +      parm->out_frq = lpx_get_int_parm(lp, LPX_K_OUTFRQ);
   1.508 +      parm->out_dly =
   1.509 +            (int)(1000.0 * lpx_get_real_parm(lp, LPX_K_OUTDLY));
   1.510 +      switch (lpx_get_int_parm(lp, LPX_K_PRESOL))
   1.511 +      {  case 0:  parm->presolve = GLP_OFF;      break;
   1.512 +         case 1:  parm->presolve = GLP_ON;       break;
   1.513 +         default: xassert(lp != lp);
   1.514 +      }
   1.515 +      return;
   1.516 +}
   1.517 +
   1.518 +int lpx_simplex(LPX *lp)
   1.519 +{     /* easy-to-use driver to the simplex method */
   1.520 +      glp_smcp parm;
   1.521 +      int ret;
   1.522 +      fill_smcp(lp, &parm);
   1.523 +      ret = glp_simplex(lp, &parm);
   1.524 +      switch (ret)
   1.525 +      {  case 0:           ret = LPX_E_OK;      break;
   1.526 +         case GLP_EBADB:
   1.527 +         case GLP_ESING:
   1.528 +         case GLP_ECOND:
   1.529 +         case GLP_EBOUND:  ret = LPX_E_FAULT;   break;
   1.530 +         case GLP_EFAIL:   ret = LPX_E_SING;    break;
   1.531 +         case GLP_EOBJLL:  ret = LPX_E_OBJLL;   break;
   1.532 +         case GLP_EOBJUL:  ret = LPX_E_OBJUL;   break;
   1.533 +         case GLP_EITLIM:  ret = LPX_E_ITLIM;   break;
   1.534 +         case GLP_ETMLIM:  ret = LPX_E_TMLIM;   break;
   1.535 +         case GLP_ENOPFS:  ret = LPX_E_NOPFS;   break;
   1.536 +         case GLP_ENODFS:  ret = LPX_E_NODFS;   break;
   1.537 +         default:          xassert(ret != ret);
   1.538 +      }
   1.539 +      return ret;
   1.540 +}
   1.541 +
   1.542 +int lpx_exact(LPX *lp)
   1.543 +{     /* easy-to-use driver to the exact simplex method */
   1.544 +      glp_smcp parm;
   1.545 +      int ret;
   1.546 +      fill_smcp(lp, &parm);
   1.547 +      ret = glp_exact(lp, &parm);
   1.548 +      switch (ret)
   1.549 +      {  case 0:           ret = LPX_E_OK;      break;
   1.550 +         case GLP_EBADB:
   1.551 +         case GLP_ESING:
   1.552 +         case GLP_EBOUND:
   1.553 +         case GLP_EFAIL:   ret = LPX_E_FAULT;   break;
   1.554 +         case GLP_EITLIM:  ret = LPX_E_ITLIM;   break;
   1.555 +         case GLP_ETMLIM:  ret = LPX_E_TMLIM;   break;
   1.556 +         default:          xassert(ret != ret);
   1.557 +      }
   1.558 +      return ret;
   1.559 +}
   1.560 +
   1.561 +int lpx_get_status(glp_prob *lp)
   1.562 +{     /* retrieve generic status of basic solution */
   1.563 +      int status;
   1.564 +      switch (glp_get_status(lp))
   1.565 +      {  case GLP_OPT:    status = LPX_OPT;    break;
   1.566 +         case GLP_FEAS:   status = LPX_FEAS;   break;
   1.567 +         case GLP_INFEAS: status = LPX_INFEAS; break;
   1.568 +         case GLP_NOFEAS: status = LPX_NOFEAS; break;
   1.569 +         case GLP_UNBND:  status = LPX_UNBND;  break;
   1.570 +         case GLP_UNDEF:  status = LPX_UNDEF;  break;
   1.571 +         default:         xassert(lp != lp);
   1.572 +      }
   1.573 +      return status;
   1.574 +}
   1.575 +
   1.576 +int lpx_get_prim_stat(glp_prob *lp)
   1.577 +{     /* retrieve status of primal basic solution */
   1.578 +      return glp_get_prim_stat(lp) - GLP_UNDEF + LPX_P_UNDEF;
   1.579 +}
   1.580 +
   1.581 +int lpx_get_dual_stat(glp_prob *lp)
   1.582 +{     /* retrieve status of dual basic solution */
   1.583 +      return glp_get_dual_stat(lp) - GLP_UNDEF + LPX_D_UNDEF;
   1.584 +}
   1.585 +
   1.586 +double lpx_get_obj_val(LPX *lp)
   1.587 +{     /* retrieve objective value (basic solution) */
   1.588 +      return glp_get_obj_val(lp);
   1.589 +}
   1.590 +
   1.591 +int lpx_get_row_stat(LPX *lp, int i)
   1.592 +{     /* retrieve row status (basic solution) */
   1.593 +      return glp_get_row_stat(lp, i) - GLP_BS + LPX_BS;
   1.594 +}
   1.595 +
   1.596 +double lpx_get_row_prim(LPX *lp, int i)
   1.597 +{     /* retrieve row primal value (basic solution) */
   1.598 +      return glp_get_row_prim(lp, i);
   1.599 +}
   1.600 +
   1.601 +double lpx_get_row_dual(LPX *lp, int i)
   1.602 +{     /* retrieve row dual value (basic solution) */
   1.603 +      return glp_get_row_dual(lp, i);
   1.604 +}
   1.605 +
   1.606 +void lpx_get_row_info(glp_prob *lp, int i, int *tagx, double *vx,
   1.607 +      double *dx)
   1.608 +{     /* obtain row solution information */
   1.609 +      if (tagx != NULL) *tagx = lpx_get_row_stat(lp, i);
   1.610 +      if (vx != NULL) *vx = lpx_get_row_prim(lp, i);
   1.611 +      if (dx != NULL) *dx = lpx_get_row_dual(lp, i);
   1.612 +      return;
   1.613 +}
   1.614 +
   1.615 +int lpx_get_col_stat(LPX *lp, int j)
   1.616 +{     /* retrieve column status (basic solution) */
   1.617 +      return glp_get_col_stat(lp, j) - GLP_BS + LPX_BS;
   1.618 +}
   1.619 +
   1.620 +double lpx_get_col_prim(LPX *lp, int j)
   1.621 +{     /* retrieve column primal value (basic solution) */
   1.622 +      return glp_get_col_prim(lp, j);
   1.623 +}
   1.624 +
   1.625 +double lpx_get_col_dual(glp_prob *lp, int j)
   1.626 +{     /* retrieve column dual value (basic solution) */
   1.627 +      return glp_get_col_dual(lp, j);
   1.628 +}
   1.629 +
   1.630 +void lpx_get_col_info(glp_prob *lp, int j, int *tagx, double *vx,
   1.631 +      double *dx)
   1.632 +{     /* obtain column solution information */
   1.633 +      if (tagx != NULL) *tagx = lpx_get_col_stat(lp, j);
   1.634 +      if (vx != NULL) *vx = lpx_get_col_prim(lp, j);
   1.635 +      if (dx != NULL) *dx = lpx_get_col_dual(lp, j);
   1.636 +      return;
   1.637 +}
   1.638 +
   1.639 +int lpx_get_ray_info(LPX *lp)
   1.640 +{     /* determine what causes primal unboundness */
   1.641 +      return glp_get_unbnd_ray(lp);
   1.642 +}
   1.643 +
   1.644 +void lpx_check_kkt(LPX *lp, int scaled, LPXKKT *kkt)
   1.645 +{     /* check Karush-Kuhn-Tucker conditions */
   1.646 +      int ae_ind, re_ind;
   1.647 +      double ae_max, re_max;
   1.648 +      xassert(scaled == scaled);
   1.649 +      _glp_check_kkt(lp, GLP_SOL, GLP_KKT_PE, &ae_max, &ae_ind, &re_max,
   1.650 +         &re_ind);
   1.651 +      kkt->pe_ae_max = ae_max;
   1.652 +      kkt->pe_ae_row = ae_ind;
   1.653 +      kkt->pe_re_max = re_max;
   1.654 +      kkt->pe_re_row = re_ind;
   1.655 +      if (re_max <= 1e-9)
   1.656 +         kkt->pe_quality = 'H';
   1.657 +      else if (re_max <= 1e-6)
   1.658 +         kkt->pe_quality = 'M';
   1.659 +      else if (re_max <= 1e-3)
   1.660 +         kkt->pe_quality = 'L';
   1.661 +      else
   1.662 +         kkt->pe_quality = '?';
   1.663 +      _glp_check_kkt(lp, GLP_SOL, GLP_KKT_PB, &ae_max, &ae_ind, &re_max,
   1.664 +         &re_ind);
   1.665 +      kkt->pb_ae_max = ae_max;
   1.666 +      kkt->pb_ae_ind = ae_ind;
   1.667 +      kkt->pb_re_max = re_max;
   1.668 +      kkt->pb_re_ind = re_ind;
   1.669 +      if (re_max <= 1e-9)
   1.670 +         kkt->pb_quality = 'H';
   1.671 +      else if (re_max <= 1e-6)
   1.672 +         kkt->pb_quality = 'M';
   1.673 +      else if (re_max <= 1e-3)
   1.674 +         kkt->pb_quality = 'L';
   1.675 +      else
   1.676 +         kkt->pb_quality = '?';
   1.677 +      _glp_check_kkt(lp, GLP_SOL, GLP_KKT_DE, &ae_max, &ae_ind, &re_max,
   1.678 +         &re_ind);
   1.679 +      kkt->de_ae_max = ae_max;
   1.680 +      if (ae_ind == 0)
   1.681 +         kkt->de_ae_col = 0;
   1.682 +      else
   1.683 +         kkt->de_ae_col = ae_ind - lp->m;
   1.684 +      kkt->de_re_max = re_max;
   1.685 +      if (re_ind == 0)
   1.686 +         kkt->de_re_col = 0;
   1.687 +      else
   1.688 +         kkt->de_re_col = ae_ind - lp->m;
   1.689 +      if (re_max <= 1e-9)
   1.690 +         kkt->de_quality = 'H';
   1.691 +      else if (re_max <= 1e-6)
   1.692 +         kkt->de_quality = 'M';
   1.693 +      else if (re_max <= 1e-3)
   1.694 +         kkt->de_quality = 'L';
   1.695 +      else
   1.696 +         kkt->de_quality = '?';
   1.697 +      _glp_check_kkt(lp, GLP_SOL, GLP_KKT_DB, &ae_max, &ae_ind, &re_max,
   1.698 +         &re_ind);
   1.699 +      kkt->db_ae_max = ae_max;
   1.700 +      kkt->db_ae_ind = ae_ind;
   1.701 +      kkt->db_re_max = re_max;
   1.702 +      kkt->db_re_ind = re_ind;
   1.703 +      if (re_max <= 1e-9)
   1.704 +         kkt->db_quality = 'H';
   1.705 +      else if (re_max <= 1e-6)
   1.706 +         kkt->db_quality = 'M';
   1.707 +      else if (re_max <= 1e-3)
   1.708 +         kkt->db_quality = 'L';
   1.709 +      else
   1.710 +         kkt->db_quality = '?';
   1.711 +      kkt->cs_ae_max = 0.0, kkt->cs_ae_ind = 0;
   1.712 +      kkt->cs_re_max = 0.0, kkt->cs_re_ind = 0;
   1.713 +      kkt->cs_quality = 'H';
   1.714 +      return;
   1.715 +}
   1.716 +
   1.717 +int lpx_warm_up(LPX *lp)
   1.718 +{     /* "warm up" LP basis */
   1.719 +      int ret;
   1.720 +      ret = glp_warm_up(lp);
   1.721 +      if (ret == 0)
   1.722 +         ret = LPX_E_OK;
   1.723 +      else if (ret == GLP_EBADB)
   1.724 +         ret = LPX_E_BADB;
   1.725 +      else if (ret == GLP_ESING)
   1.726 +         ret = LPX_E_SING;
   1.727 +      else if (ret == GLP_ECOND)
   1.728 +         ret = LPX_E_SING;
   1.729 +      else
   1.730 +         xassert(ret != ret);
   1.731 +      return ret;
   1.732 +}
   1.733 +
   1.734 +int lpx_eval_tab_row(LPX *lp, int k, int ind[], double val[])
   1.735 +{     /* compute row of the simplex tableau */
   1.736 +      return glp_eval_tab_row(lp, k, ind, val);
   1.737 +}
   1.738 +
   1.739 +int lpx_eval_tab_col(LPX *lp, int k, int ind[], double val[])
   1.740 +{     /* compute column of the simplex tableau */
   1.741 +      return glp_eval_tab_col(lp, k, ind, val);
   1.742 +}
   1.743 +
   1.744 +int lpx_transform_row(LPX *lp, int len, int ind[], double val[])
   1.745 +{     /* transform explicitly specified row */
   1.746 +      return glp_transform_row(lp, len, ind, val);
   1.747 +}
   1.748 +
   1.749 +int lpx_transform_col(LPX *lp, int len, int ind[], double val[])
   1.750 +{     /* transform explicitly specified column */
   1.751 +      return glp_transform_col(lp, len, ind, val);
   1.752 +}
   1.753 +
   1.754 +int lpx_prim_ratio_test(LPX *lp, int len, const int ind[],
   1.755 +      const double val[], int how, double tol)
   1.756 +{     /* perform primal ratio test */
   1.757 +      int piv;
   1.758 +      piv = glp_prim_rtest(lp, len, ind, val, how, tol);
   1.759 +      xassert(0 <= piv && piv <= len);
   1.760 +      return piv == 0 ? 0 : ind[piv];
   1.761 +}
   1.762 +
   1.763 +int lpx_dual_ratio_test(LPX *lp, int len, const int ind[],
   1.764 +      const double val[], int how, double tol)
   1.765 +{     /* perform dual ratio test */
   1.766 +      int piv;
   1.767 +      piv = glp_dual_rtest(lp, len, ind, val, how, tol);
   1.768 +      xassert(0 <= piv && piv <= len);
   1.769 +      return piv == 0 ? 0 : ind[piv];
   1.770 +}
   1.771 +
   1.772 +int lpx_interior(LPX *lp)
   1.773 +{     /* easy-to-use driver to the interior-point method */
   1.774 +      int ret;
   1.775 +      ret = glp_interior(lp, NULL);
   1.776 +      switch (ret)
   1.777 +      {  case 0:           ret = LPX_E_OK;      break;
   1.778 +         case GLP_EFAIL:   ret = LPX_E_FAULT;   break;
   1.779 +         case GLP_ENOFEAS: ret = LPX_E_NOFEAS;  break;
   1.780 +         case GLP_ENOCVG:  ret = LPX_E_NOCONV;  break;
   1.781 +         case GLP_EITLIM:  ret = LPX_E_ITLIM;   break;
   1.782 +         case GLP_EINSTAB: ret = LPX_E_INSTAB;  break;
   1.783 +         default:          xassert(ret != ret);
   1.784 +      }
   1.785 +      return ret;
   1.786 +}
   1.787 +
   1.788 +int lpx_ipt_status(glp_prob *lp)
   1.789 +{     /* retrieve status of interior-point solution */
   1.790 +      int status;
   1.791 +      switch (glp_ipt_status(lp))
   1.792 +      {  case GLP_UNDEF:  status = LPX_T_UNDEF;  break;
   1.793 +         case GLP_OPT:    status = LPX_T_OPT;    break;
   1.794 +         default:         xassert(lp != lp);
   1.795 +      }
   1.796 +      return status;
   1.797 +}
   1.798 +
   1.799 +double lpx_ipt_obj_val(LPX *lp)
   1.800 +{     /* retrieve objective value (interior point) */
   1.801 +      return glp_ipt_obj_val(lp);
   1.802 +}
   1.803 +
   1.804 +double lpx_ipt_row_prim(LPX *lp, int i)
   1.805 +{     /* retrieve row primal value (interior point) */
   1.806 +      return glp_ipt_row_prim(lp, i);
   1.807 +}
   1.808 +
   1.809 +double lpx_ipt_row_dual(LPX *lp, int i)
   1.810 +{     /* retrieve row dual value (interior point) */
   1.811 +      return glp_ipt_row_dual(lp, i);
   1.812 +}
   1.813 +
   1.814 +double lpx_ipt_col_prim(LPX *lp, int j)
   1.815 +{     /* retrieve column primal value (interior point) */
   1.816 +      return glp_ipt_col_prim(lp, j);
   1.817 +}
   1.818 +
   1.819 +double lpx_ipt_col_dual(LPX *lp, int j)
   1.820 +{     /* retrieve column dual value (interior point) */
   1.821 +      return glp_ipt_col_dual(lp, j);
   1.822 +}
   1.823 +
   1.824 +void lpx_set_class(LPX *lp, int klass)
   1.825 +{     /* set problem class */
   1.826 +      xassert(lp == lp);
   1.827 +      if (!(klass == LPX_LP || klass == LPX_MIP))
   1.828 +         xerror("lpx_set_class: invalid problem class\n");
   1.829 +      return;
   1.830 +}
   1.831 +
   1.832 +int lpx_get_class(LPX *lp)
   1.833 +{     /* determine problem klass */
   1.834 +      return glp_get_num_int(lp) == 0 ? LPX_LP : LPX_MIP;
   1.835 +}
   1.836 +
   1.837 +void lpx_set_col_kind(LPX *lp, int j, int kind)
   1.838 +{     /* set (change) column kind */
   1.839 +      glp_set_col_kind(lp, j, kind - LPX_CV + GLP_CV);
   1.840 +      return;
   1.841 +}
   1.842 +
   1.843 +int lpx_get_col_kind(LPX *lp, int j)
   1.844 +{     /* retrieve column kind */
   1.845 +      return glp_get_col_kind(lp, j) == GLP_CV ? LPX_CV : LPX_IV;
   1.846 +}
   1.847 +
   1.848 +int lpx_get_num_int(LPX *lp)
   1.849 +{     /* retrieve number of integer columns */
   1.850 +      return glp_get_num_int(lp);
   1.851 +}
   1.852 +
   1.853 +int lpx_get_num_bin(LPX *lp)
   1.854 +{     /* retrieve number of binary columns */
   1.855 +      return glp_get_num_bin(lp);
   1.856 +}
   1.857 +
   1.858 +static int solve_mip(LPX *lp, int presolve)
   1.859 +{     glp_iocp parm;
   1.860 +      int ret;
   1.861 +      glp_init_iocp(&parm);
   1.862 +      switch (lpx_get_int_parm(lp, LPX_K_MSGLEV))
   1.863 +      {  case 0:  parm.msg_lev = GLP_MSG_OFF;   break;
   1.864 +         case 1:  parm.msg_lev = GLP_MSG_ERR;   break;
   1.865 +         case 2:  parm.msg_lev = GLP_MSG_ON;    break;
   1.866 +         case 3:  parm.msg_lev = GLP_MSG_ALL;   break;
   1.867 +         default: xassert(lp != lp);
   1.868 +      }
   1.869 +      switch (lpx_get_int_parm(lp, LPX_K_BRANCH))
   1.870 +      {  case 0:  parm.br_tech = GLP_BR_FFV;    break;
   1.871 +         case 1:  parm.br_tech = GLP_BR_LFV;    break;
   1.872 +         case 2:  parm.br_tech = GLP_BR_DTH;    break;
   1.873 +         case 3:  parm.br_tech = GLP_BR_MFV;    break;
   1.874 +         default: xassert(lp != lp);
   1.875 +      }
   1.876 +      switch (lpx_get_int_parm(lp, LPX_K_BTRACK))
   1.877 +      {  case 0:  parm.bt_tech = GLP_BT_DFS;    break;
   1.878 +         case 1:  parm.bt_tech = GLP_BT_BFS;    break;
   1.879 +         case 2:  parm.bt_tech = GLP_BT_BPH;    break;
   1.880 +         case 3:  parm.bt_tech = GLP_BT_BLB;    break;
   1.881 +         default: xassert(lp != lp);
   1.882 +      }
   1.883 +      parm.tol_int = lpx_get_real_parm(lp, LPX_K_TOLINT);
   1.884 +      parm.tol_obj = lpx_get_real_parm(lp, LPX_K_TOLOBJ);
   1.885 +      if (lpx_get_real_parm(lp, LPX_K_TMLIM) < 0.0 ||
   1.886 +          lpx_get_real_parm(lp, LPX_K_TMLIM) > 1e6)
   1.887 +         parm.tm_lim = INT_MAX;
   1.888 +      else
   1.889 +         parm.tm_lim =
   1.890 +            (int)(1000.0 * lpx_get_real_parm(lp, LPX_K_TMLIM));
   1.891 +      parm.mip_gap = lpx_get_real_parm(lp, LPX_K_MIPGAP);
   1.892 +      if (lpx_get_int_parm(lp, LPX_K_USECUTS) & LPX_C_GOMORY)
   1.893 +         parm.gmi_cuts = GLP_ON;
   1.894 +      else
   1.895 +         parm.gmi_cuts = GLP_OFF;
   1.896 +      if (lpx_get_int_parm(lp, LPX_K_USECUTS) & LPX_C_MIR)
   1.897 +         parm.mir_cuts = GLP_ON;
   1.898 +      else
   1.899 +         parm.mir_cuts = GLP_OFF;
   1.900 +      if (lpx_get_int_parm(lp, LPX_K_USECUTS) & LPX_C_COVER)
   1.901 +         parm.cov_cuts = GLP_ON;
   1.902 +      else
   1.903 +         parm.cov_cuts = GLP_OFF;
   1.904 +      if (lpx_get_int_parm(lp, LPX_K_USECUTS) & LPX_C_CLIQUE)
   1.905 +         parm.clq_cuts = GLP_ON;
   1.906 +      else
   1.907 +         parm.clq_cuts = GLP_OFF;
   1.908 +      parm.presolve = presolve;
   1.909 +      if (lpx_get_int_parm(lp, LPX_K_BINARIZE))
   1.910 +         parm.binarize = GLP_ON;
   1.911 +      ret = glp_intopt(lp, &parm);
   1.912 +      switch (ret)
   1.913 +      {  case 0:           ret = LPX_E_OK;      break;
   1.914 +         case GLP_ENOPFS:  ret = LPX_E_NOPFS;   break;
   1.915 +         case GLP_ENODFS:  ret = LPX_E_NODFS;   break;
   1.916 +         case GLP_EBOUND:
   1.917 +         case GLP_EROOT:   ret = LPX_E_FAULT;   break;
   1.918 +         case GLP_EFAIL:   ret = LPX_E_SING;    break;
   1.919 +         case GLP_EMIPGAP: ret = LPX_E_MIPGAP;  break;
   1.920 +         case GLP_ETMLIM:  ret = LPX_E_TMLIM;   break;
   1.921 +         default:          xassert(ret != ret);
   1.922 +      }
   1.923 +      return ret;
   1.924 +}
   1.925 +
   1.926 +int lpx_integer(LPX *lp)
   1.927 +{     /* easy-to-use driver to the branch-and-bound method */
   1.928 +      return solve_mip(lp, GLP_OFF);
   1.929 +}
   1.930 +
   1.931 +int lpx_intopt(LPX *lp)
   1.932 +{     /* easy-to-use driver to the branch-and-bound method */
   1.933 +      return solve_mip(lp, GLP_ON);
   1.934 +}
   1.935 +
   1.936 +int lpx_mip_status(glp_prob *lp)
   1.937 +{     /* retrieve status of MIP solution */
   1.938 +      int status;
   1.939 +      switch (glp_mip_status(lp))
   1.940 +      {  case GLP_UNDEF:  status = LPX_I_UNDEF;  break;
   1.941 +         case GLP_OPT:    status = LPX_I_OPT;    break;
   1.942 +         case GLP_FEAS:   status = LPX_I_FEAS;   break;
   1.943 +         case GLP_NOFEAS: status = LPX_I_NOFEAS; break;
   1.944 +         default:         xassert(lp != lp);
   1.945 +      }
   1.946 +      return status;
   1.947 +}
   1.948 +
   1.949 +double lpx_mip_obj_val(LPX *lp)
   1.950 +{     /* retrieve objective value (MIP solution) */
   1.951 +      return glp_mip_obj_val(lp);
   1.952 +}
   1.953 +
   1.954 +double lpx_mip_row_val(LPX *lp, int i)
   1.955 +{     /* retrieve row value (MIP solution) */
   1.956 +      return glp_mip_row_val(lp, i);
   1.957 +}
   1.958 +
   1.959 +double lpx_mip_col_val(LPX *lp, int j)
   1.960 +{     /* retrieve column value (MIP solution) */
   1.961 +      return glp_mip_col_val(lp, j);
   1.962 +}
   1.963 +
   1.964 +void lpx_check_int(LPX *lp, LPXKKT *kkt)
   1.965 +{     /* check integer feasibility conditions */
   1.966 +      int ae_ind, re_ind;
   1.967 +      double ae_max, re_max;
   1.968 +      _glp_check_kkt(lp, GLP_MIP, GLP_KKT_PE, &ae_max, &ae_ind, &re_max,
   1.969 +         &re_ind);
   1.970 +      kkt->pe_ae_max = ae_max;
   1.971 +      kkt->pe_ae_row = ae_ind;
   1.972 +      kkt->pe_re_max = re_max;
   1.973 +      kkt->pe_re_row = re_ind;
   1.974 +      if (re_max <= 1e-9)
   1.975 +         kkt->pe_quality = 'H';
   1.976 +      else if (re_max <= 1e-6)
   1.977 +         kkt->pe_quality = 'M';
   1.978 +      else if (re_max <= 1e-3)
   1.979 +         kkt->pe_quality = 'L';
   1.980 +      else
   1.981 +         kkt->pe_quality = '?';
   1.982 +      _glp_check_kkt(lp, GLP_MIP, GLP_KKT_PB, &ae_max, &ae_ind, &re_max,
   1.983 +         &re_ind);
   1.984 +      kkt->pb_ae_max = ae_max;
   1.985 +      kkt->pb_ae_ind = ae_ind;
   1.986 +      kkt->pb_re_max = re_max;
   1.987 +      kkt->pb_re_ind = re_ind;
   1.988 +      if (re_max <= 1e-9)
   1.989 +         kkt->pb_quality = 'H';
   1.990 +      else if (re_max <= 1e-6)
   1.991 +         kkt->pb_quality = 'M';
   1.992 +      else if (re_max <= 1e-3)
   1.993 +         kkt->pb_quality = 'L';
   1.994 +      else
   1.995 +         kkt->pb_quality = '?';
   1.996 +      return;
   1.997 +}
   1.998 +
   1.999 +#if 1 /* 17/XI-2009 */
  1.1000 +static void reset_parms(LPX *lp)
  1.1001 +{     /* reset control parameters to default values */
  1.1002 +      struct LPXCPS *cps = lp->parms;
  1.1003 +      xassert(cps != NULL);
  1.1004 +      cps->msg_lev  = 3;
  1.1005 +      cps->scale    = 1;
  1.1006 +      cps->dual     = 0;
  1.1007 +      cps->price    = 1;
  1.1008 +      cps->relax    = 0.07;
  1.1009 +      cps->tol_bnd  = 1e-7;
  1.1010 +      cps->tol_dj   = 1e-7;
  1.1011 +      cps->tol_piv  = 1e-9;
  1.1012 +      cps->round    = 0;
  1.1013 +      cps->obj_ll   = -DBL_MAX;
  1.1014 +      cps->obj_ul   = +DBL_MAX;
  1.1015 +      cps->it_lim   = -1;
  1.1016 +#if 0 /* 02/XII-2010 */
  1.1017 +      lp->it_cnt   = 0;
  1.1018 +#endif
  1.1019 +      cps->tm_lim   = -1.0;
  1.1020 +      cps->out_frq  = 200;
  1.1021 +      cps->out_dly  = 0.0;
  1.1022 +      cps->branch   = 2;
  1.1023 +      cps->btrack   = 3;
  1.1024 +      cps->tol_int  = 1e-5;
  1.1025 +      cps->tol_obj  = 1e-7;
  1.1026 +      cps->mps_info = 1;
  1.1027 +      cps->mps_obj  = 2;
  1.1028 +      cps->mps_orig = 0;
  1.1029 +      cps->mps_wide = 1;
  1.1030 +      cps->mps_free = 0;
  1.1031 +      cps->mps_skip = 0;
  1.1032 +      cps->lpt_orig = 0;
  1.1033 +      cps->presol = 0;
  1.1034 +      cps->binarize = 0;
  1.1035 +      cps->use_cuts = 0;
  1.1036 +      cps->mip_gap = 0.0;
  1.1037 +      return;
  1.1038 +}
  1.1039 +#endif
  1.1040 +
  1.1041 +#if 1 /* 17/XI-2009 */
  1.1042 +static struct LPXCPS *access_parms(LPX *lp)
  1.1043 +{     /* allocate and initialize control parameters, if necessary */
  1.1044 +      if (lp->parms == NULL)
  1.1045 +      {  lp->parms = xmalloc(sizeof(struct LPXCPS));
  1.1046 +         reset_parms(lp);
  1.1047 +      }
  1.1048 +      return lp->parms;
  1.1049 +}
  1.1050 +#endif
  1.1051 +
  1.1052 +#if 1 /* 17/XI-2009 */
  1.1053 +void lpx_reset_parms(LPX *lp)
  1.1054 +{     /* reset control parameters to default values */
  1.1055 +      access_parms(lp);
  1.1056 +      reset_parms(lp);
  1.1057 +      return;
  1.1058 +}
  1.1059 +#endif
  1.1060 +
  1.1061 +void lpx_set_int_parm(LPX *lp, int parm, int val)
  1.1062 +{     /* set (change) integer control parameter */
  1.1063 +#if 0 /* 17/XI-2009 */
  1.1064 +      struct LPXCPS *cps = lp->cps;
  1.1065 +#else
  1.1066 +      struct LPXCPS *cps = access_parms(lp);
  1.1067 +#endif
  1.1068 +      switch (parm)
  1.1069 +      {  case LPX_K_MSGLEV:
  1.1070 +            if (!(0 <= val && val <= 3))
  1.1071 +               xerror("lpx_set_int_parm: MSGLEV = %d; invalid value\n",
  1.1072 +                  val);
  1.1073 +            cps->msg_lev = val;
  1.1074 +            break;
  1.1075 +         case LPX_K_SCALE:
  1.1076 +            if (!(0 <= val && val <= 3))
  1.1077 +               xerror("lpx_set_int_parm: SCALE = %d; invalid value\n",
  1.1078 +                  val);
  1.1079 +            cps->scale = val;
  1.1080 +            break;
  1.1081 +         case LPX_K_DUAL:
  1.1082 +            if (!(val == 0 || val == 1))
  1.1083 +               xerror("lpx_set_int_parm: DUAL = %d; invalid value\n",
  1.1084 +                  val);
  1.1085 +            cps->dual = val;
  1.1086 +            break;
  1.1087 +         case LPX_K_PRICE:
  1.1088 +            if (!(val == 0 || val == 1))
  1.1089 +               xerror("lpx_set_int_parm: PRICE = %d; invalid value\n",
  1.1090 +                  val);
  1.1091 +            cps->price = val;
  1.1092 +            break;
  1.1093 +         case LPX_K_ROUND:
  1.1094 +            if (!(val == 0 || val == 1))
  1.1095 +               xerror("lpx_set_int_parm: ROUND = %d; invalid value\n",
  1.1096 +                  val);
  1.1097 +            cps->round = val;
  1.1098 +            break;
  1.1099 +         case LPX_K_ITLIM:
  1.1100 +            cps->it_lim = val;
  1.1101 +            break;
  1.1102 +         case LPX_K_ITCNT:
  1.1103 +            lp->it_cnt = val;
  1.1104 +            break;
  1.1105 +         case LPX_K_OUTFRQ:
  1.1106 +            if (!(val > 0))
  1.1107 +               xerror("lpx_set_int_parm: OUTFRQ = %d; invalid value\n",
  1.1108 +                  val);
  1.1109 +            cps->out_frq = val;
  1.1110 +            break;
  1.1111 +         case LPX_K_BRANCH:
  1.1112 +            if (!(val == 0 || val == 1 || val == 2 || val == 3))
  1.1113 +               xerror("lpx_set_int_parm: BRANCH = %d; invalid value\n",
  1.1114 +                  val);
  1.1115 +            cps->branch = val;
  1.1116 +            break;
  1.1117 +         case LPX_K_BTRACK:
  1.1118 +            if (!(val == 0 || val == 1 || val == 2 || val == 3))
  1.1119 +               xerror("lpx_set_int_parm: BTRACK = %d; invalid value\n",
  1.1120 +                  val);
  1.1121 +            cps->btrack = val;
  1.1122 +            break;
  1.1123 +         case LPX_K_MPSINFO:
  1.1124 +            if (!(val == 0 || val == 1))
  1.1125 +               xerror("lpx_set_int_parm: MPSINFO = %d; invalid value\n",
  1.1126 +                  val);
  1.1127 +            cps->mps_info = val;
  1.1128 +            break;
  1.1129 +         case LPX_K_MPSOBJ:
  1.1130 +            if (!(val == 0 || val == 1 || val == 2))
  1.1131 +               xerror("lpx_set_int_parm: MPSOBJ = %d; invalid value\n",
  1.1132 +                  val);
  1.1133 +            cps->mps_obj = val;
  1.1134 +            break;
  1.1135 +         case LPX_K_MPSORIG:
  1.1136 +            if (!(val == 0 || val == 1))
  1.1137 +               xerror("lpx_set_int_parm: MPSORIG = %d; invalid value\n",
  1.1138 +                  val);
  1.1139 +            cps->mps_orig = val;
  1.1140 +            break;
  1.1141 +         case LPX_K_MPSWIDE:
  1.1142 +            if (!(val == 0 || val == 1))
  1.1143 +               xerror("lpx_set_int_parm: MPSWIDE = %d; invalid value\n",
  1.1144 +                  val);
  1.1145 +            cps->mps_wide = val;
  1.1146 +            break;
  1.1147 +         case LPX_K_MPSFREE:
  1.1148 +            if (!(val == 0 || val == 1))
  1.1149 +               xerror("lpx_set_int_parm: MPSFREE = %d; invalid value\n",
  1.1150 +                  val);
  1.1151 +            cps->mps_free = val;
  1.1152 +            break;
  1.1153 +         case LPX_K_MPSSKIP:
  1.1154 +            if (!(val == 0 || val == 1))
  1.1155 +               xerror("lpx_set_int_parm: MPSSKIP = %d; invalid value\n",
  1.1156 +                  val);
  1.1157 +            cps->mps_skip = val;
  1.1158 +            break;
  1.1159 +         case LPX_K_LPTORIG:
  1.1160 +            if (!(val == 0 || val == 1))
  1.1161 +               xerror("lpx_set_int_parm: LPTORIG = %d; invalid value\n",
  1.1162 +                  val);
  1.1163 +            cps->lpt_orig = val;
  1.1164 +            break;
  1.1165 +         case LPX_K_PRESOL:
  1.1166 +            if (!(val == 0 || val == 1))
  1.1167 +               xerror("lpx_set_int_parm: PRESOL = %d; invalid value\n",
  1.1168 +                  val);
  1.1169 +            cps->presol = val;
  1.1170 +            break;
  1.1171 +         case LPX_K_BINARIZE:
  1.1172 +            if (!(val == 0 || val == 1))
  1.1173 +               xerror("lpx_set_int_parm: BINARIZE = %d; invalid value\n"
  1.1174 +                  , val);
  1.1175 +            cps->binarize = val;
  1.1176 +            break;
  1.1177 +         case LPX_K_USECUTS:
  1.1178 +            if (val & ~LPX_C_ALL)
  1.1179 +            xerror("lpx_set_int_parm: USECUTS = 0x%X; invalid value\n",
  1.1180 +                  val);
  1.1181 +            cps->use_cuts = val;
  1.1182 +            break;
  1.1183 +         case LPX_K_BFTYPE:
  1.1184 +#if 0
  1.1185 +            if (!(1 <= val && val <= 3))
  1.1186 +               xerror("lpx_set_int_parm: BFTYPE = %d; invalid value\n",
  1.1187 +                  val);
  1.1188 +            cps->bf_type = val;
  1.1189 +#else
  1.1190 +            {  glp_bfcp parm;
  1.1191 +               glp_get_bfcp(lp, &parm);
  1.1192 +               switch (val)
  1.1193 +               {  case 1:
  1.1194 +                     parm.type = GLP_BF_FT; break;
  1.1195 +                  case 2:
  1.1196 +                     parm.type = GLP_BF_BG; break;
  1.1197 +                  case 3:
  1.1198 +                     parm.type = GLP_BF_GR; break;
  1.1199 +                  default:
  1.1200 +                     xerror("lpx_set_int_parm: BFTYPE = %d; invalid val"
  1.1201 +                        "ue\n", val);
  1.1202 +               }
  1.1203 +               glp_set_bfcp(lp, &parm);
  1.1204 +            }
  1.1205 +#endif
  1.1206 +            break;
  1.1207 +         default:
  1.1208 +            xerror("lpx_set_int_parm: parm = %d; invalid parameter\n",
  1.1209 +               parm);
  1.1210 +      }
  1.1211 +      return;
  1.1212 +}
  1.1213 +
  1.1214 +int lpx_get_int_parm(LPX *lp, int parm)
  1.1215 +{     /* query integer control parameter */
  1.1216 +#if 0 /* 17/XI-2009 */
  1.1217 +      struct LPXCPS *cps = lp->cps;
  1.1218 +#else
  1.1219 +      struct LPXCPS *cps = access_parms(lp);
  1.1220 +#endif
  1.1221 +      int val = 0;
  1.1222 +      switch (parm)
  1.1223 +      {  case LPX_K_MSGLEV:
  1.1224 +            val = cps->msg_lev; break;
  1.1225 +         case LPX_K_SCALE:
  1.1226 +            val = cps->scale; break;
  1.1227 +         case LPX_K_DUAL:
  1.1228 +            val = cps->dual; break;
  1.1229 +         case LPX_K_PRICE:
  1.1230 +            val = cps->price; break;
  1.1231 +         case LPX_K_ROUND:
  1.1232 +            val = cps->round; break;
  1.1233 +         case LPX_K_ITLIM:
  1.1234 +            val = cps->it_lim; break;
  1.1235 +         case LPX_K_ITCNT:
  1.1236 +            val = lp->it_cnt; break;
  1.1237 +         case LPX_K_OUTFRQ:
  1.1238 +            val = cps->out_frq; break;
  1.1239 +         case LPX_K_BRANCH:
  1.1240 +            val = cps->branch; break;
  1.1241 +         case LPX_K_BTRACK:
  1.1242 +            val = cps->btrack; break;
  1.1243 +         case LPX_K_MPSINFO:
  1.1244 +            val = cps->mps_info; break;
  1.1245 +         case LPX_K_MPSOBJ:
  1.1246 +            val = cps->mps_obj; break;
  1.1247 +         case LPX_K_MPSORIG:
  1.1248 +            val = cps->mps_orig; break;
  1.1249 +         case LPX_K_MPSWIDE:
  1.1250 +            val = cps->mps_wide; break;
  1.1251 +         case LPX_K_MPSFREE:
  1.1252 +            val = cps->mps_free; break;
  1.1253 +         case LPX_K_MPSSKIP:
  1.1254 +            val = cps->mps_skip; break;
  1.1255 +         case LPX_K_LPTORIG:
  1.1256 +            val = cps->lpt_orig; break;
  1.1257 +         case LPX_K_PRESOL:
  1.1258 +            val = cps->presol; break;
  1.1259 +         case LPX_K_BINARIZE:
  1.1260 +            val = cps->binarize; break;
  1.1261 +         case LPX_K_USECUTS:
  1.1262 +            val = cps->use_cuts; break;
  1.1263 +         case LPX_K_BFTYPE:
  1.1264 +#if 0
  1.1265 +            val = cps->bf_type; break;
  1.1266 +#else
  1.1267 +            {  glp_bfcp parm;
  1.1268 +               glp_get_bfcp(lp, &parm);
  1.1269 +               switch (parm.type)
  1.1270 +               {  case GLP_BF_FT:
  1.1271 +                     val = 1; break;
  1.1272 +                  case GLP_BF_BG:
  1.1273 +                     val = 2; break;
  1.1274 +                  case GLP_BF_GR:
  1.1275 +                     val = 3; break;
  1.1276 +                  default:
  1.1277 +                     xassert(lp != lp);
  1.1278 +               }
  1.1279 +            }
  1.1280 +            break;
  1.1281 +#endif
  1.1282 +         default:
  1.1283 +            xerror("lpx_get_int_parm: parm = %d; invalid parameter\n",
  1.1284 +               parm);
  1.1285 +      }
  1.1286 +      return val;
  1.1287 +}
  1.1288 +
  1.1289 +void lpx_set_real_parm(LPX *lp, int parm, double val)
  1.1290 +{     /* set (change) real control parameter */
  1.1291 +#if 0 /* 17/XI-2009 */
  1.1292 +      struct LPXCPS *cps = lp->cps;
  1.1293 +#else
  1.1294 +      struct LPXCPS *cps = access_parms(lp);
  1.1295 +#endif
  1.1296 +      switch (parm)
  1.1297 +      {  case LPX_K_RELAX:
  1.1298 +            if (!(0.0 <= val && val <= 1.0))
  1.1299 +               xerror("lpx_set_real_parm: RELAX = %g; invalid value\n",
  1.1300 +                  val);
  1.1301 +            cps->relax = val;
  1.1302 +            break;
  1.1303 +         case LPX_K_TOLBND:
  1.1304 +            if (!(DBL_EPSILON <= val && val <= 0.001))
  1.1305 +               xerror("lpx_set_real_parm: TOLBND = %g; invalid value\n",
  1.1306 +                  val);
  1.1307 +#if 0
  1.1308 +            if (cps->tol_bnd > val)
  1.1309 +            {  /* invalidate the basic solution */
  1.1310 +               lp->p_stat = LPX_P_UNDEF;
  1.1311 +               lp->d_stat = LPX_D_UNDEF;
  1.1312 +            }
  1.1313 +#endif
  1.1314 +            cps->tol_bnd = val;
  1.1315 +            break;
  1.1316 +         case LPX_K_TOLDJ:
  1.1317 +            if (!(DBL_EPSILON <= val && val <= 0.001))
  1.1318 +               xerror("lpx_set_real_parm: TOLDJ = %g; invalid value\n",
  1.1319 +                  val);
  1.1320 +#if 0
  1.1321 +            if (cps->tol_dj > val)
  1.1322 +            {  /* invalidate the basic solution */
  1.1323 +               lp->p_stat = LPX_P_UNDEF;
  1.1324 +               lp->d_stat = LPX_D_UNDEF;
  1.1325 +            }
  1.1326 +#endif
  1.1327 +            cps->tol_dj = val;
  1.1328 +            break;
  1.1329 +         case LPX_K_TOLPIV:
  1.1330 +            if (!(DBL_EPSILON <= val && val <= 0.001))
  1.1331 +               xerror("lpx_set_real_parm: TOLPIV = %g; invalid value\n",
  1.1332 +                  val);
  1.1333 +            cps->tol_piv = val;
  1.1334 +            break;
  1.1335 +         case LPX_K_OBJLL:
  1.1336 +            cps->obj_ll = val;
  1.1337 +            break;
  1.1338 +         case LPX_K_OBJUL:
  1.1339 +            cps->obj_ul = val;
  1.1340 +            break;
  1.1341 +         case LPX_K_TMLIM:
  1.1342 +            cps->tm_lim = val;
  1.1343 +            break;
  1.1344 +         case LPX_K_OUTDLY:
  1.1345 +            cps->out_dly = val;
  1.1346 +            break;
  1.1347 +         case LPX_K_TOLINT:
  1.1348 +            if (!(DBL_EPSILON <= val && val <= 0.001))
  1.1349 +               xerror("lpx_set_real_parm: TOLINT = %g; invalid value\n",
  1.1350 +                  val);
  1.1351 +            cps->tol_int = val;
  1.1352 +            break;
  1.1353 +         case LPX_K_TOLOBJ:
  1.1354 +            if (!(DBL_EPSILON <= val && val <= 0.001))
  1.1355 +               xerror("lpx_set_real_parm: TOLOBJ = %g; invalid value\n",
  1.1356 +                  val);
  1.1357 +            cps->tol_obj = val;
  1.1358 +            break;
  1.1359 +         case LPX_K_MIPGAP:
  1.1360 +            if (val < 0.0)
  1.1361 +               xerror("lpx_set_real_parm: MIPGAP = %g; invalid value\n",
  1.1362 +                  val);
  1.1363 +            cps->mip_gap = val;
  1.1364 +            break;
  1.1365 +         default:
  1.1366 +            xerror("lpx_set_real_parm: parm = %d; invalid parameter\n",
  1.1367 +               parm);
  1.1368 +      }
  1.1369 +      return;
  1.1370 +}
  1.1371 +
  1.1372 +double lpx_get_real_parm(LPX *lp, int parm)
  1.1373 +{     /* query real control parameter */
  1.1374 +#if 0 /* 17/XI-2009 */
  1.1375 +      struct LPXCPS *cps = lp->cps;
  1.1376 +#else
  1.1377 +      struct LPXCPS *cps = access_parms(lp);
  1.1378 +#endif
  1.1379 +      double val = 0.0;
  1.1380 +      switch (parm)
  1.1381 +      {  case LPX_K_RELAX:
  1.1382 +            val = cps->relax;
  1.1383 +            break;
  1.1384 +         case LPX_K_TOLBND:
  1.1385 +            val = cps->tol_bnd;
  1.1386 +            break;
  1.1387 +         case LPX_K_TOLDJ:
  1.1388 +            val = cps->tol_dj;
  1.1389 +            break;
  1.1390 +         case LPX_K_TOLPIV:
  1.1391 +            val = cps->tol_piv;
  1.1392 +            break;
  1.1393 +         case LPX_K_OBJLL:
  1.1394 +            val = cps->obj_ll;
  1.1395 +            break;
  1.1396 +         case LPX_K_OBJUL:
  1.1397 +            val = cps->obj_ul;
  1.1398 +            break;
  1.1399 +         case LPX_K_TMLIM:
  1.1400 +            val = cps->tm_lim;
  1.1401 +            break;
  1.1402 +         case LPX_K_OUTDLY:
  1.1403 +            val = cps->out_dly;
  1.1404 +            break;
  1.1405 +         case LPX_K_TOLINT:
  1.1406 +            val = cps->tol_int;
  1.1407 +            break;
  1.1408 +         case LPX_K_TOLOBJ:
  1.1409 +            val = cps->tol_obj;
  1.1410 +            break;
  1.1411 +         case LPX_K_MIPGAP:
  1.1412 +            val = cps->mip_gap;
  1.1413 +            break;
  1.1414 +         default:
  1.1415 +            xerror("lpx_get_real_parm: parm = %d; invalid parameter\n",
  1.1416 +               parm);
  1.1417 +      }
  1.1418 +      return val;
  1.1419 +}
  1.1420 +
  1.1421 +LPX *lpx_read_mps(const char *fname)
  1.1422 +{     /* read problem data in fixed MPS format */
  1.1423 +      LPX *lp = lpx_create_prob();
  1.1424 +      if (glp_read_mps(lp, GLP_MPS_DECK, NULL, fname))
  1.1425 +         lpx_delete_prob(lp), lp = NULL;
  1.1426 +      return lp;
  1.1427 +}
  1.1428 +
  1.1429 +int lpx_write_mps(LPX *lp, const char *fname)
  1.1430 +{     /* write problem data in fixed MPS format */
  1.1431 +      return glp_write_mps(lp, GLP_MPS_DECK, NULL, fname);
  1.1432 +}
  1.1433 +
  1.1434 +int lpx_read_bas(LPX *lp, const char *fname)
  1.1435 +{     /* read LP basis in fixed MPS format */
  1.1436 +#if 0 /* 13/IV-2009 */
  1.1437 +      return read_bas(lp, fname);
  1.1438 +#else
  1.1439 +      xassert(lp == lp);
  1.1440 +      xassert(fname == fname);
  1.1441 +      xerror("lpx_read_bas: operation not supported\n");
  1.1442 +      return 0;
  1.1443 +#endif
  1.1444 +}
  1.1445 +
  1.1446 +int lpx_write_bas(LPX *lp, const char *fname)
  1.1447 +{     /* write LP basis in fixed MPS format */
  1.1448 +#if 0 /* 13/IV-2009 */
  1.1449 +      return write_bas(lp, fname);
  1.1450 +#else
  1.1451 +      xassert(lp == lp);
  1.1452 +      xassert(fname == fname);
  1.1453 +      xerror("lpx_write_bas: operation not supported\n");
  1.1454 +      return 0;
  1.1455 +#endif
  1.1456 +}
  1.1457 +
  1.1458 +LPX *lpx_read_freemps(const char *fname)
  1.1459 +{     /* read problem data in free MPS format */
  1.1460 +      LPX *lp = lpx_create_prob();
  1.1461 +      if (glp_read_mps(lp, GLP_MPS_FILE, NULL, fname))
  1.1462 +         lpx_delete_prob(lp), lp = NULL;
  1.1463 +      return lp;
  1.1464 +}
  1.1465 +
  1.1466 +int lpx_write_freemps(LPX *lp, const char *fname)
  1.1467 +{     /* write problem data in free MPS format */
  1.1468 +      return glp_write_mps(lp, GLP_MPS_FILE, NULL, fname);
  1.1469 +}
  1.1470 +
  1.1471 +LPX *lpx_read_cpxlp(const char *fname)
  1.1472 +{     /* read problem data in CPLEX LP format */
  1.1473 +      LPX *lp;
  1.1474 +      lp = lpx_create_prob();
  1.1475 +      if (glp_read_lp(lp, NULL, fname))
  1.1476 +         lpx_delete_prob(lp), lp = NULL;
  1.1477 +      return lp;
  1.1478 +}
  1.1479 +
  1.1480 +int lpx_write_cpxlp(LPX *lp, const char *fname)
  1.1481 +{     /* write problem data in CPLEX LP format */
  1.1482 +      return glp_write_lp(lp, NULL, fname);
  1.1483 +}
  1.1484 +
  1.1485 +LPX *lpx_read_model(const char *model, const char *data, const char
  1.1486 +      *output)
  1.1487 +{     /* read LP/MIP model written in GNU MathProg language */
  1.1488 +      LPX *lp = NULL;
  1.1489 +      glp_tran *tran;
  1.1490 +      /* allocate the translator workspace */
  1.1491 +      tran = glp_mpl_alloc_wksp();
  1.1492 +      /* read model section and optional data section */
  1.1493 +      if (glp_mpl_read_model(tran, model, data != NULL)) goto done;
  1.1494 +      /* read separate data section, if required */
  1.1495 +      if (data != NULL)
  1.1496 +         if (glp_mpl_read_data(tran, data)) goto done;
  1.1497 +      /* generate the model */
  1.1498 +      if (glp_mpl_generate(tran, output)) goto done;
  1.1499 +      /* build the problem instance from the model */
  1.1500 +      lp = glp_create_prob();
  1.1501 +      glp_mpl_build_prob(tran, lp);
  1.1502 +done: /* free the translator workspace */
  1.1503 +      glp_mpl_free_wksp(tran);
  1.1504 +      /* bring the problem object to the calling program */
  1.1505 +      return lp;
  1.1506 +}
  1.1507 +
  1.1508 +int lpx_print_prob(LPX *lp, const char *fname)
  1.1509 +{     /* write problem data in plain text format */
  1.1510 +      return glp_write_lp(lp, NULL, fname);
  1.1511 +}
  1.1512 +
  1.1513 +int lpx_print_sol(LPX *lp, const char *fname)
  1.1514 +{     /* write LP problem solution in printable format */
  1.1515 +      return glp_print_sol(lp, fname);
  1.1516 +}
  1.1517 +
  1.1518 +int lpx_print_sens_bnds(LPX *lp, const char *fname)
  1.1519 +{     /* write bounds sensitivity information */
  1.1520 +      if (glp_get_status(lp) == GLP_OPT && !glp_bf_exists(lp))
  1.1521 +         glp_factorize(lp);
  1.1522 +      return glp_print_ranges(lp, 0, NULL, 0, fname);
  1.1523 +}
  1.1524 +
  1.1525 +int lpx_print_ips(LPX *lp, const char *fname)
  1.1526 +{     /* write interior point solution in printable format */
  1.1527 +      return glp_print_ipt(lp, fname);
  1.1528 +}
  1.1529 +
  1.1530 +int lpx_print_mip(LPX *lp, const char *fname)
  1.1531 +{     /* write MIP problem solution in printable format */
  1.1532 +      return glp_print_mip(lp, fname);
  1.1533 +}
  1.1534 +
  1.1535 +int lpx_is_b_avail(glp_prob *lp)
  1.1536 +{     /* check if LP basis is available */
  1.1537 +      return glp_bf_exists(lp);
  1.1538 +}
  1.1539 +
  1.1540 +int lpx_main(int argc, const char *argv[])
  1.1541 +{     /* stand-alone LP/MIP solver */
  1.1542 +      return glp_main(argc, argv);
  1.1543 +}
  1.1544 +
  1.1545 +/* eof */