src/glpapi02.c
author Alpar Juttner <alpar@cs.elte.hu>
Sun, 05 Dec 2010 17:35:23 +0100
changeset 2 4c8956a7bdf4
permissions -rw-r--r--
Set up CMAKE build environment
     1 /* glpapi02.c (problem retrieving routines) */
     2 
     3 /***********************************************************************
     4 *  This code is part of GLPK (GNU Linear Programming Kit).
     5 *
     6 *  Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
     7 *  2009, 2010 Andrew Makhorin, Department for Applied Informatics,
     8 *  Moscow Aviation Institute, Moscow, Russia. All rights reserved.
     9 *  E-mail: <mao@gnu.org>.
    10 *
    11 *  GLPK is free software: you can redistribute it and/or modify it
    12 *  under the terms of the GNU General Public License as published by
    13 *  the Free Software Foundation, either version 3 of the License, or
    14 *  (at your option) any later version.
    15 *
    16 *  GLPK is distributed in the hope that it will be useful, but WITHOUT
    17 *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
    18 *  or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
    19 *  License for more details.
    20 *
    21 *  You should have received a copy of the GNU General Public License
    22 *  along with GLPK. If not, see <http://www.gnu.org/licenses/>.
    23 ***********************************************************************/
    24 
    25 #include "glpapi.h"
    26 
    27 /***********************************************************************
    28 *  NAME
    29 *
    30 *  glp_get_prob_name - retrieve problem name
    31 *
    32 *  SYNOPSIS
    33 *
    34 *  const char *glp_get_prob_name(glp_prob *lp);
    35 *
    36 *  RETURNS
    37 *
    38 *  The routine glp_get_prob_name returns a pointer to an internal
    39 *  buffer, which contains symbolic name of the problem. However, if the
    40 *  problem has no assigned name, the routine returns NULL. */
    41 
    42 const char *glp_get_prob_name(glp_prob *lp)
    43 {     char *name;
    44       name = lp->name;
    45       return name;
    46 }
    47 
    48 /***********************************************************************
    49 *  NAME
    50 *
    51 *  glp_get_obj_name - retrieve objective function name
    52 *
    53 *  SYNOPSIS
    54 *
    55 *  const char *glp_get_obj_name(glp_prob *lp);
    56 *
    57 *  RETURNS
    58 *
    59 *  The routine glp_get_obj_name returns a pointer to an internal
    60 *  buffer, which contains a symbolic name of the objective function.
    61 *  However, if the objective function has no assigned name, the routine
    62 *  returns NULL. */
    63 
    64 const char *glp_get_obj_name(glp_prob *lp)
    65 {     char *name;
    66       name = lp->obj;
    67       return name;
    68 }
    69 
    70 /***********************************************************************
    71 *  NAME
    72 *
    73 *  glp_get_obj_dir - retrieve optimization direction flag
    74 *
    75 *  SYNOPSIS
    76 *
    77 *  int glp_get_obj_dir(glp_prob *lp);
    78 *
    79 *  RETURNS
    80 *
    81 *  The routine glp_get_obj_dir returns the optimization direction flag
    82 *  (i.e. "sense" of the objective function):
    83 *
    84 *  GLP_MIN - minimization;
    85 *  GLP_MAX - maximization. */
    86 
    87 int glp_get_obj_dir(glp_prob *lp)
    88 {     int dir = lp->dir;
    89       return dir;
    90 }
    91 
    92 /***********************************************************************
    93 *  NAME
    94 *
    95 *  glp_get_num_rows - retrieve number of rows
    96 *
    97 *  SYNOPSIS
    98 *
    99 *  int glp_get_num_rows(glp_prob *lp);
   100 *
   101 *  RETURNS
   102 *
   103 *  The routine glp_get_num_rows returns the current number of rows in
   104 *  the specified problem object. */
   105 
   106 int glp_get_num_rows(glp_prob *lp)
   107 {     int m = lp->m;
   108       return m;
   109 }
   110 
   111 /***********************************************************************
   112 *  NAME
   113 *
   114 *  glp_get_num_cols - retrieve number of columns
   115 *
   116 *  SYNOPSIS
   117 *
   118 *  int glp_get_num_cols(glp_prob *lp);
   119 *
   120 *  RETURNS
   121 *
   122 *  The routine glp_get_num_cols returns the current number of columns
   123 *  in the specified problem object. */
   124 
   125 int glp_get_num_cols(glp_prob *lp)
   126 {     int n = lp->n;
   127       return n;
   128 }
   129 
   130 /***********************************************************************
   131 *  NAME
   132 *
   133 *  glp_get_row_name - retrieve row name
   134 *
   135 *  SYNOPSIS
   136 *
   137 *  const char *glp_get_row_name(glp_prob *lp, int i);
   138 *
   139 *  RETURNS
   140 *
   141 *  The routine glp_get_row_name returns a pointer to an internal
   142 *  buffer, which contains symbolic name of i-th row. However, if i-th
   143 *  row has no assigned name, the routine returns NULL. */
   144 
   145 const char *glp_get_row_name(glp_prob *lp, int i)
   146 {     char *name;
   147       if (!(1 <= i && i <= lp->m))
   148          xerror("glp_get_row_name: i = %d; row number out of range\n",
   149             i);
   150       name = lp->row[i]->name;
   151       return name;
   152 }
   153 
   154 /***********************************************************************
   155 *  NAME
   156 *
   157 *  glp_get_col_name - retrieve column name
   158 *
   159 *  SYNOPSIS
   160 *
   161 *  const char *glp_get_col_name(glp_prob *lp, int j);
   162 *
   163 *  RETURNS
   164 *
   165 *  The routine glp_get_col_name returns a pointer to an internal
   166 *  buffer, which contains symbolic name of j-th column. However, if j-th
   167 *  column has no assigned name, the routine returns NULL. */
   168 
   169 const char *glp_get_col_name(glp_prob *lp, int j)
   170 {     char *name;
   171       if (!(1 <= j && j <= lp->n))
   172          xerror("glp_get_col_name: j = %d; column number out of range\n"
   173             , j);
   174       name = lp->col[j]->name;
   175       return name;
   176 }
   177 
   178 /***********************************************************************
   179 *  NAME
   180 *
   181 *  glp_get_row_type - retrieve row type
   182 *
   183 *  SYNOPSIS
   184 *
   185 *  int glp_get_row_type(glp_prob *lp, int i);
   186 *
   187 *  RETURNS
   188 *
   189 *  The routine glp_get_row_type returns the type of i-th row, i.e. the
   190 *  type of corresponding auxiliary variable, as follows:
   191 *
   192 *  GLP_FR - free (unbounded) variable;
   193 *  GLP_LO - variable with lower bound;
   194 *  GLP_UP - variable with upper bound;
   195 *  GLP_DB - double-bounded variable;
   196 *  GLP_FX - fixed variable. */
   197 
   198 int glp_get_row_type(glp_prob *lp, int i)
   199 {     if (!(1 <= i && i <= lp->m))
   200          xerror("glp_get_row_type: i = %d; row number out of range\n",
   201             i);
   202       return lp->row[i]->type;
   203 }
   204 
   205 /***********************************************************************
   206 *  NAME
   207 *
   208 *  glp_get_row_lb - retrieve row lower bound
   209 *
   210 *  SYNOPSIS
   211 *
   212 *  double glp_get_row_lb(glp_prob *lp, int i);
   213 *
   214 *  RETURNS
   215 *
   216 *  The routine glp_get_row_lb returns the lower bound of i-th row, i.e.
   217 *  the lower bound of corresponding auxiliary variable. However, if the
   218 *  row has no lower bound, the routine returns -DBL_MAX. */
   219 
   220 double glp_get_row_lb(glp_prob *lp, int i)
   221 {     double lb;
   222       if (!(1 <= i && i <= lp->m))
   223          xerror("glp_get_row_lb: i = %d; row number out of range\n", i);
   224       switch (lp->row[i]->type)
   225       {  case GLP_FR:
   226          case GLP_UP:
   227             lb = -DBL_MAX; break;
   228          case GLP_LO:
   229          case GLP_DB:
   230          case GLP_FX:
   231             lb = lp->row[i]->lb; break;
   232          default:
   233             xassert(lp != lp);
   234       }
   235       return lb;
   236 }
   237 
   238 /***********************************************************************
   239 *  NAME
   240 *
   241 *  glp_get_row_ub - retrieve row upper bound
   242 *
   243 *  SYNOPSIS
   244 *
   245 *  double glp_get_row_ub(glp_prob *lp, int i);
   246 *
   247 *  RETURNS
   248 *
   249 *  The routine glp_get_row_ub returns the upper bound of i-th row, i.e.
   250 *  the upper bound of corresponding auxiliary variable. However, if the
   251 *  row has no upper bound, the routine returns +DBL_MAX. */
   252 
   253 double glp_get_row_ub(glp_prob *lp, int i)
   254 {     double ub;
   255       if (!(1 <= i && i <= lp->m))
   256          xerror("glp_get_row_ub: i = %d; row number out of range\n", i);
   257       switch (lp->row[i]->type)
   258       {  case GLP_FR:
   259          case GLP_LO:
   260             ub = +DBL_MAX; break;
   261          case GLP_UP:
   262          case GLP_DB:
   263          case GLP_FX:
   264             ub = lp->row[i]->ub; break;
   265          default:
   266             xassert(lp != lp);
   267       }
   268       return ub;
   269 }
   270 
   271 /***********************************************************************
   272 *  NAME
   273 *
   274 *  glp_get_col_type - retrieve column type
   275 *
   276 *  SYNOPSIS
   277 *
   278 *  int glp_get_col_type(glp_prob *lp, int j);
   279 *
   280 *  RETURNS
   281 *
   282 *  The routine glp_get_col_type returns the type of j-th column, i.e.
   283 *  the type of corresponding structural variable, as follows:
   284 *
   285 *  GLP_FR - free (unbounded) variable;
   286 *  GLP_LO - variable with lower bound;
   287 *  GLP_UP - variable with upper bound;
   288 *  GLP_DB - double-bounded variable;
   289 *  GLP_FX - fixed variable. */
   290 
   291 int glp_get_col_type(glp_prob *lp, int j)
   292 {     if (!(1 <= j && j <= lp->n))
   293          xerror("glp_get_col_type: j = %d; column number out of range\n"
   294             , j);
   295       return lp->col[j]->type;
   296 }
   297 
   298 /***********************************************************************
   299 *  NAME
   300 *
   301 *  glp_get_col_lb - retrieve column lower bound
   302 *
   303 *  SYNOPSIS
   304 *
   305 *  double glp_get_col_lb(glp_prob *lp, int j);
   306 *
   307 *  RETURNS
   308 *
   309 *  The routine glp_get_col_lb returns the lower bound of j-th column,
   310 *  i.e. the lower bound of corresponding structural variable. However,
   311 *  if the column has no lower bound, the routine returns -DBL_MAX. */
   312 
   313 double glp_get_col_lb(glp_prob *lp, int j)
   314 {     double lb;
   315       if (!(1 <= j && j <= lp->n))
   316          xerror("glp_get_col_lb: j = %d; column number out of range\n",
   317             j);
   318       switch (lp->col[j]->type)
   319       {  case GLP_FR:
   320          case GLP_UP:
   321             lb = -DBL_MAX; break;
   322          case GLP_LO:
   323          case GLP_DB:
   324          case GLP_FX:
   325             lb = lp->col[j]->lb; break;
   326          default:
   327             xassert(lp != lp);
   328       }
   329       return lb;
   330 }
   331 
   332 /***********************************************************************
   333 *  NAME
   334 *
   335 *  glp_get_col_ub - retrieve column upper bound
   336 *
   337 *  SYNOPSIS
   338 *
   339 *  double glp_get_col_ub(glp_prob *lp, int j);
   340 *
   341 *  RETURNS
   342 *
   343 *  The routine glp_get_col_ub returns the upper bound of j-th column,
   344 *  i.e. the upper bound of corresponding structural variable. However,
   345 *  if the column has no upper bound, the routine returns +DBL_MAX. */
   346 
   347 double glp_get_col_ub(glp_prob *lp, int j)
   348 {     double ub;
   349       if (!(1 <= j && j <= lp->n))
   350          xerror("glp_get_col_ub: j = %d; column number out of range\n",
   351             j);
   352       switch (lp->col[j]->type)
   353       {  case GLP_FR:
   354          case GLP_LO:
   355             ub = +DBL_MAX; break;
   356          case GLP_UP:
   357          case GLP_DB:
   358          case GLP_FX:
   359             ub = lp->col[j]->ub; break;
   360          default:
   361             xassert(lp != lp);
   362       }
   363       return ub;
   364 }
   365 
   366 /***********************************************************************
   367 *  NAME
   368 *
   369 *  glp_get_obj_coef - retrieve obj. coefficient or constant term
   370 *
   371 *  SYNOPSIS
   372 *
   373 *  double glp_get_obj_coef(glp_prob *lp, int j);
   374 *
   375 *  RETURNS
   376 *
   377 *  The routine glp_get_obj_coef returns the objective coefficient at
   378 *  j-th structural variable (column) of the specified problem object.
   379 *
   380 *  If the parameter j is zero, the routine returns the constant term
   381 *  ("shift") of the objective function. */
   382 
   383 double glp_get_obj_coef(glp_prob *lp, int j)
   384 {     if (!(0 <= j && j <= lp->n))
   385          xerror("glp_get_obj_coef: j = %d; column number out of range\n"
   386             , j);
   387       return j == 0 ? lp->c0 : lp->col[j]->coef;
   388 }
   389 
   390 /***********************************************************************
   391 *  NAME
   392 *
   393 *  glp_get_num_nz - retrieve number of constraint coefficients
   394 *
   395 *  SYNOPSIS
   396 *
   397 *  int glp_get_num_nz(glp_prob *lp);
   398 *
   399 *  RETURNS
   400 *
   401 *  The routine glp_get_num_nz returns the number of (non-zero) elements
   402 *  in the constraint matrix of the specified problem object. */
   403 
   404 int glp_get_num_nz(glp_prob *lp)
   405 {     int nnz = lp->nnz;
   406       return nnz;
   407 }
   408 
   409 /***********************************************************************
   410 *  NAME
   411 *
   412 *  glp_get_mat_row - retrieve row of the constraint matrix
   413 *
   414 *  SYNOPSIS
   415 *
   416 *  int glp_get_mat_row(glp_prob *lp, int i, int ind[], double val[]);
   417 *
   418 *  DESCRIPTION
   419 *
   420 *  The routine glp_get_mat_row scans (non-zero) elements of i-th row
   421 *  of the constraint matrix of the specified problem object and stores
   422 *  their column indices and numeric values to locations ind[1], ...,
   423 *  ind[len] and val[1], ..., val[len], respectively, where 0 <= len <= n
   424 *  is the number of elements in i-th row, n is the number of columns.
   425 *
   426 *  The parameter ind and/or val can be specified as NULL, in which case
   427 *  corresponding information is not stored.
   428 *
   429 *  RETURNS
   430 *
   431 *  The routine glp_get_mat_row returns the length len, i.e. the number
   432 *  of (non-zero) elements in i-th row. */
   433 
   434 int glp_get_mat_row(glp_prob *lp, int i, int ind[], double val[])
   435 {     GLPAIJ *aij;
   436       int len;
   437       if (!(1 <= i && i <= lp->m))
   438          xerror("glp_get_mat_row: i = %d; row number out of range\n",
   439             i);
   440       len = 0;
   441       for (aij = lp->row[i]->ptr; aij != NULL; aij = aij->r_next)
   442       {  len++;
   443          if (ind != NULL) ind[len] = aij->col->j;
   444          if (val != NULL) val[len] = aij->val;
   445       }
   446       xassert(len <= lp->n);
   447       return len;
   448 }
   449 
   450 /***********************************************************************
   451 *  NAME
   452 *
   453 *  glp_get_mat_col - retrieve column of the constraint matrix
   454 *
   455 *  SYNOPSIS
   456 *
   457 *  int glp_get_mat_col(glp_prob *lp, int j, int ind[], double val[]);
   458 *
   459 *  DESCRIPTION
   460 *
   461 *  The routine glp_get_mat_col scans (non-zero) elements of j-th column
   462 *  of the constraint matrix of the specified problem object and stores
   463 *  their row indices and numeric values to locations ind[1], ...,
   464 *  ind[len] and val[1], ..., val[len], respectively, where 0 <= len <= m
   465 *  is the number of elements in j-th column, m is the number of rows.
   466 *
   467 *  The parameter ind or/and val can be specified as NULL, in which case
   468 *  corresponding information is not stored.
   469 *
   470 *  RETURNS
   471 *
   472 *  The routine glp_get_mat_col returns the length len, i.e. the number
   473 *  of (non-zero) elements in j-th column. */
   474 
   475 int glp_get_mat_col(glp_prob *lp, int j, int ind[], double val[])
   476 {     GLPAIJ *aij;
   477       int len;
   478       if (!(1 <= j && j <= lp->n))
   479          xerror("glp_get_mat_col: j = %d; column number out of range\n",
   480             j);
   481       len = 0;
   482       for (aij = lp->col[j]->ptr; aij != NULL; aij = aij->c_next)
   483       {  len++;
   484          if (ind != NULL) ind[len] = aij->row->i;
   485          if (val != NULL) val[len] = aij->val;
   486       }
   487       xassert(len <= lp->m);
   488       return len;
   489 }
   490 
   491 /* eof */