examples/gap.mod
author Alpar Juttner <alpar@cs.elte.hu>
Mon, 06 Dec 2010 13:09:21 +0100
changeset 1 c445c931472f
permissions -rw-r--r--
Import glpk-4.45

- Generated files and doc/notes are removed
     1 /* GAP, Generalized Assignment Problem */
     2 
     3 /* Written in GNU MathProg by Andrew Makhorin <mao@gnu.org> */
     4 
     5 /* The Generalized Assignment Problem (GAP) is to assign a set of jobs
     6    to a set of agents subject to the constraints that each job must be
     7    assigned exactly to one agent and the total resources consumed by all
     8    jobs assigned to an agent must not exceed the agent's capacity. */
     9 
    10 param m, integer, > 0;
    11 /* number of agents */
    12 
    13 param n, integer, > 0;
    14 /* number of jobs */
    15 
    16 set I := 1..m;
    17 /* set of agents */
    18 
    19 set J := 1..n;
    20 /* set of jobs */
    21 
    22 param a{i in I, j in J}, >= 0;
    23 /* resource consumed in allocating job j to agent i */
    24 
    25 param b{i in I}, >= 0;
    26 /* resource capacity of agent i */
    27 
    28 param c{i in I, j in J}, >= 0;
    29 /* cost of allocating job j to agent i */
    30 
    31 var x{i in I, j in J}, binary;
    32 /* x[i,j] = 1 means job j is assigned to agent i */
    33 
    34 s.t. one{j in J}: sum{i in I} x[i,j] = 1;
    35 /* job j must be assigned exactly to one agent */
    36 
    37 s.t. lim{i in I}: sum{j in J} a[i,j] * x[i,j] <= b[i];
    38 /* total amount of resources consumed by all jobs assigned to agent i
    39    must not exceed the agent's capacity */
    40 
    41 minimize obj: sum{i in I, j in J} c[i,j] * x[i,j];
    42 /* the objective is to find cheapest assignment (note that gap can also
    43    be formulated as maximization problem) */
    44 
    45 data;
    46 
    47 /* These data correspond to the instance c515-1 (gap1) from:
    48 
    49    I.H. Osman, "Heuristics for the Generalised Assignment Problem:
    50    Simulated Annealing and Tabu Search Approaches", OR Spektrum, Volume
    51    17, 211-225, 1995
    52 
    53    D. Cattrysse, M. Salomon and L.N. Van Wassenhove, "A set partitioning
    54    heuristic for the generalized assignment problem", European Journal
    55    of Operational Research, Volume 72, 167-174, 1994 */
    56 
    57 /* The optimal solution is 261 (minimization) or 336 (maximization) */
    58 
    59 param m := 5;
    60 
    61 param n := 15;
    62 
    63 param a :  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 :=
    64       1    8 15 14 23  8 16  8 25  9 17 25 15 10  8 24
    65       2   15  7 23 22 11 11 12 10 17 16  7 16 10 18 22
    66       3   21 20  6 22 24 10 24  9 21 14 11 14 11 19 16
    67       4   20 11  8 14  9  5  6 19 19  7  6  6 13  9 18
    68       5    8 13 13 13 10 20 25 16 16 17 10 10  5 12 23 ;
    69 
    70 param b := 1 36, 2 34, 3 38, 4 27, 5 33;
    71 
    72 param c :  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 :=
    73       1   17 21 22 18 24 15 20 18 19 18 16 22 24 24 16
    74       2   23 16 21 16 17 16 19 25 18 21 17 15 25 17 24
    75       3   16 20 16 25 24 16 17 19 19 18 20 16 17 21 24
    76       4   19 19 22 22 20 16 19 17 21 19 25 23 25 25 25
    77       5   18 19 15 15 21 25 16 16 23 15 22 17 19 22 24 ;
    78 
    79 end;