examples/hashi.mod
author Alpar Juttner <alpar@cs.elte.hu>
Mon, 06 Dec 2010 13:09:21 +0100
changeset 1 c445c931472f
permissions -rw-r--r--
Import glpk-4.45

- Generated files and doc/notes are removed
     1 /* A solver for the Japanese number-puzzle Hashiwokakero
     2  * (http://en.wikipedia.org/wiki/Hashiwokakero)
     3  *
     4  * Sebastian Nowozin <nowozin@gmail.com>, 13th January 2009
     5  */
     6 
     7 param n := 25;
     8 set rows := 1..n;
     9 set cols := 1..n;
    10 param givens{rows, cols}, integer, >= 0, <= 8, default 0;
    11 
    12 /* Set of vertices as (row,col) coordinates */
    13 set V := { (i,j) in { rows, cols }: givens[i,j] != 0 };
    14 
    15 /* Set of feasible horizontal edges from (i,j) to (k,l) rightwards */
    16 set Eh := { (i,j,k,l) in { V, V }:
    17         i = k and j < l and             # Same row and left to right
    18         card({ (s,t) in V: s = i and t > j and t < l }) = 0             # No vertex inbetween
    19         };
    20 
    21 /* Set of feasible vertical edges from (i,j) to (k,l) downwards */
    22 set Ev := { (i,j,k,l) in { V, V }:
    23         j = l and i < k and             # Same column and top to bottom
    24         card({ (s,t) in V: t = j and s > i and s < k }) = 0             # No vertex inbetween
    25         };
    26 
    27 set E := Eh union Ev;
    28 
    29 /* Indicators: use edge once/twice */
    30 var xe1{E}, binary;
    31 var xe2{E}, binary;
    32 
    33 /* Constraint: Do not use edge or do use once or do use twice */
    34 s.t. edge_sel{(i,j,k,l) in E}:
    35         xe1[i,j,k,l] + xe2[i,j,k,l] <= 1;
    36 
    37 /* Constraint: There must be as many edges used as the node value */
    38 s.t. satisfy_vertex_demand{(s,t) in V}:
    39         sum{(i,j,k,l) in E: (i = s and j = t) or (k = s and l = t)}
    40                 (xe1[i,j,k,l] + 2.0*xe2[i,j,k,l]) = givens[s,t];
    41 
    42 /* Constraint: No crossings */
    43 s.t. no_crossing1{(i,j,k,l) in Eh, (s,t,u,v) in Ev:
    44         s < i and u > i and j < t and l > t}:
    45         xe1[i,j,k,l] + xe1[s,t,u,v] <= 1;
    46 s.t. no_crossing2{(i,j,k,l) in Eh, (s,t,u,v) in Ev:
    47         s < i and u > i and j < t and l > t}:
    48         xe1[i,j,k,l] + xe2[s,t,u,v] <= 1;
    49 s.t. no_crossing3{(i,j,k,l) in Eh, (s,t,u,v) in Ev:
    50         s < i and u > i and j < t and l > t}:
    51         xe2[i,j,k,l] + xe1[s,t,u,v] <= 1;
    52 s.t. no_crossing4{(i,j,k,l) in Eh, (s,t,u,v) in Ev:
    53         s < i and u > i and j < t and l > t}:
    54         xe2[i,j,k,l] + xe2[s,t,u,v] <= 1;
    55 
    56 
    57 /* Model connectivity by auxiliary network flow problem:
    58  * One vertex becomes a target node and all other vertices send a unit flow
    59  * to it.  The edge selection variables xe1/xe2 are VUB constraints and
    60  * therefore xe1/xe2 select the feasible graph for the max-flow problems.
    61  */
    62 set node_target := { (s,t) in V:
    63         card({ (i,j) in V: i < s or (i = s and j < t) }) = 0};
    64 set node_sources := { (s,t) in V: (s,t) not in node_target };
    65 
    66 var flow_forward{ E }, >= 0;
    67 var flow_backward{ E }, >= 0;
    68 s.t. flow_conservation{ (s,t) in node_target, (p,q) in V }:
    69         /* All incoming flows */
    70         - sum{(i,j,k,l) in E: k = p and l = q} flow_forward[i,j,k,l]
    71         - sum{(i,j,k,l) in E: i = p and j = q} flow_backward[i,j,k,l]
    72         /* All outgoing flows */
    73         + sum{(i,j,k,l) in E: k = p and l = q} flow_backward[i,j,k,l]
    74         + sum{(i,j,k,l) in E: i = p and j = q} flow_forward[i,j,k,l]
    75         = 0 + (if (p = s and q = t) then card(node_sources) else -1);
    76 
    77 /* Variable-Upper-Bound (VUB) constraints: xe1/xe2 bound the flows.
    78  */
    79 s.t. connectivity_vub1{(i,j,k,l) in E}:
    80         flow_forward[i,j,k,l] <= card(node_sources)*(xe1[i,j,k,l] + xe2[i,j,k,l]);
    81 s.t. connectivity_vub2{(i,j,k,l) in E}:
    82         flow_backward[i,j,k,l] <= card(node_sources)*(xe1[i,j,k,l] + xe2[i,j,k,l]);
    83 
    84 /* A feasible solution is enough
    85  */
    86 minimize cost: 0;
    87 
    88 solve;
    89 
    90 /* Output solution graphically */
    91 printf "\nSolution:\n";
    92 for { row in rows } {
    93         for { col in cols } {
    94                 /* First print this cell information: givens or space */
    95                 printf{0..0: givens[row,col] != 0} "%d", givens[row,col];
    96                 printf{0..0: givens[row,col] = 0 and
    97                         card({(i,j,k,l) in Eh: i = row and col >= j and col < l and
    98                                 xe1[i,j,k,l] = 1}) = 1} "-";
    99                 printf{0..0: givens[row,col] = 0 and
   100                         card({(i,j,k,l) in Eh: i = row and col >= j and col < l and
   101                                 xe2[i,j,k,l] = 1}) = 1} "=";
   102                 printf{0..0: givens[row,col] = 0
   103                         and card({(i,j,k,l) in Ev: j = col and row >= i and row < k and
   104                                 xe1[i,j,k,l] = 1}) = 1} "|";
   105                 printf{0..0: givens[row,col] = 0
   106                         and card({(i,j,k,l) in Ev: j = col and row >= i and row < k and
   107                                 xe2[i,j,k,l] = 1}) = 1} '"';
   108                 printf{0..0: givens[row,col] = 0
   109                         and card({(i,j,k,l) in Eh: i = row and col >= j and col < l and
   110                                 (xe1[i,j,k,l] = 1 or xe2[i,j,k,l] = 1)}) = 0
   111                         and card({(i,j,k,l) in Ev: j = col and row >= i and row < k and
   112                                 (xe1[i,j,k,l] = 1 or xe2[i,j,k,l] = 1)}) = 0} " ";
   113 
   114                 /* Now print any edges */
   115                 printf{(i,j,k,l) in Eh: i = row and col >= j and col < l and xe1[i,j,k,l] = 1} "-";
   116                 printf{(i,j,k,l) in Eh: i = row and col >= j and col < l and xe2[i,j,k,l] = 1} "=";
   117 
   118                 printf{(i,j,k,l) in Eh: i = row and col >= j and col < l and
   119                         xe1[i,j,k,l] = 0 and xe2[i,j,k,l] = 0} " ";
   120                 printf{0..0: card({(i,j,k,l) in Eh: i = row and col >= j and col < l}) = 0} " ";
   121         }
   122         printf "\n";
   123         for { col in cols } {
   124                 printf{(i,j,k,l) in Ev: j = col and row >= i and row < k and xe1[i,j,k,l] = 1} "|";
   125                 printf{(i,j,k,l) in Ev: j = col and row >= i and row < k and xe2[i,j,k,l] = 1} '"';
   126                 printf{(i,j,k,l) in Ev: j = col and row >= i and row < k and
   127                         xe1[i,j,k,l] = 0 and xe2[i,j,k,l] = 0} " ";
   128                 /* No vertical edges: skip also a field */
   129                 printf{0..0: card({(i,j,k,l) in Ev: j = col and row >= i and row < k}) = 0} " ";
   130                 printf " ";
   131         }
   132         printf "\n";
   133 }
   134 
   135 data;
   136 
   137 /* This is a difficult 25x25 Hashiwokakero.
   138  */
   139 param givens : 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
   140 25 :=
   141            1   2 . 2 . 2 . . 2 . 2 . . 2 . . . . 2 . 2 . 2 . 2 .
   142            2   . 1 . . . . 2 . . . 4 . . 5 . 2 . . 1 . 2 . 2 . 1
   143            3   2 . . 5 . 4 . . 3 . . . . . 1 . . 4 . 5 . 1 . 1 .
   144            4   . . . . . . . . . . . 1 . 3 . . 1 . . . . . . . .
   145            5   2 . . 6 . 6 . . 8 . 5 . 2 . . 3 . 5 . 7 . . 2 . .
   146            6   . 1 . . . . . . . . . 1 . . 2 . . . . . 1 . . . 3
   147            7   2 . . . . 5 . . 6 . 4 . . 2 . . . 2 . 5 . 4 . 2 .
   148            8   . 2 . 2 . . . . . . . . . . . 3 . . 3 . . . 1 . 2
   149            9   . . . . . . . . . . 4 . 2 . 2 . . 1 . . . 3 . 1 .
   150           10   2 . 3 . . 6 . . 2 . . . . . . . . . . 3 . . . . .
   151           11   . . . . 1 . . 2 . . 5 . . 1 . 4 . 3 . . . . 2 . 4
   152           12   . . 2 . . 1 . . . . . . 5 . 4 . . . . 4 . 3 . . .
   153           13   2 . . . 3 . 1 . . . . . . . . 3 . . 5 . 5 . . 2 .
   154           14   . . . . . 2 . 5 . . 7 . 5 . 3 . 1 . . 1 . . 1 . 4
   155           15   2 . 5 . 3 . . . . 1 . 2 . 1 . . . . 2 . 4 . . 2 .
   156           16   . . . . . 1 . . . . . . . . . . 2 . . 2 . 1 . . 3
   157           17   2 . 6 . 6 . . 2 . . 2 . 2 . 5 . . . . . 2 . . . .
   158           18   . . . . . 1 . . . 3 . . . . . 1 . . 1 . . 4 . 3 .
   159           19   . . 4 . 5 . . 2 . . . 2 . . 6 . 6 . . 3 . . . . 3
   160           20   2 . . . . . . . . . 2 . . 1 . . . . . . 1 . . 1 .
   161           21   . . 3 . . 3 . 5 . 5 . . 4 . 6 . 7 . . 4 . 6 . . 4
   162           22   2 . . . 3 . 5 . 2 . 1 . . . . . . . . . . . . . .
   163           23   . . . . . . . . . 1 . . . . . . 3 . 2 . . 5 . . 5
   164           24   2 . 3 . 3 . 5 . 4 . 3 . 3 . 4 . . 2 . 2 . . . 1 .
   165           25   . 1 . 2 . 2 . . . 2 . 2 . . . 2 . . . . 2 . 2 . 2
   166            ;
   167 
   168 end;