examples/prod.mod
author Alpar Juttner <alpar@cs.elte.hu>
Mon, 06 Dec 2010 13:09:21 +0100
changeset 1 c445c931472f
permissions -rw-r--r--
Import glpk-4.45

- Generated files and doc/notes are removed
     1 # PROD, a multiperiod production model
     2 #
     3 # References:
     4 # Robert Fourer, David M. Gay and Brian W. Kernighan, "A Modeling Language
     5 # for Mathematical Programming." Management Science 36 (1990) 519-554.
     6 
     7 ###  PRODUCTION SETS AND PARAMETERS  ###
     8 
     9 set prd 'products';    # Members of the product group
    10 
    11 param pt 'production time' {prd} > 0;
    12 
    13                         # Crew-hours to produce 1000 units
    14 
    15 param pc 'production cost' {prd} > 0;
    16 
    17                         # Nominal production cost per 1000, used
    18                         # to compute inventory and shortage costs
    19 
    20 ###  TIME PERIOD SETS AND PARAMETERS  ###
    21 
    22 param first > 0 integer;
    23                         # Index of first production period to be modeled
    24 
    25 param last > first integer;
    26 
    27                         # Index of last production period to be modeled
    28 
    29 set time 'planning horizon' := first..last;
    30 
    31 ###  EMPLOYMENT PARAMETERS  ###
    32 
    33 param cs 'crew size' > 0 integer;
    34 
    35                         # Workers per crew
    36 
    37 param sl 'shift length' > 0;
    38 
    39                         # Regular-time hours per shift
    40 
    41 param rtr 'regular time rate' > 0;
    42 
    43                         # Wage per hour for regular-time labor
    44 
    45 param otr 'overtime rate' > rtr;
    46 
    47                         # Wage per hour for overtime labor
    48 
    49 param iw 'initial workforce' >= 0 integer;
    50 
    51                         # Crews employed at start of first period
    52 
    53 param dpp 'days per period' {time} > 0;
    54 
    55                         # Regular working days in a production period
    56 
    57 param ol 'overtime limit' {time} >= 0;
    58 
    59                         # Maximum crew-hours of overtime in a period
    60 
    61 param cmin 'crew minimum' {time} >= 0;
    62 
    63                         # Lower limit on average employment in a period
    64 
    65 param cmax 'crew maximum' {t in time} >= cmin[t];
    66 
    67                         # Upper limit on average employment in a period
    68 
    69 param hc 'hiring cost' {time} >= 0;
    70 
    71                         # Penalty cost of hiring a crew
    72 
    73 param lc 'layoff cost' {time} >= 0;
    74 
    75                         # Penalty cost of laying off a crew
    76 
    77 ###  DEMAND PARAMETERS  ###
    78 
    79 param dem 'demand' {prd,first..last+1} >= 0;
    80 
    81                         # Requirements (in 1000s)
    82                         # to be met from current production and inventory
    83 
    84 param pro 'promoted' {prd,first..last+1} logical;
    85 
    86                         # true if product will be the subject
    87                         # of a special promotion in the period
    88 
    89 ###  INVENTORY AND SHORTAGE PARAMETERS  ###
    90 
    91 param rir 'regular inventory ratio' >= 0;
    92 
    93                         # Proportion of non-promoted demand
    94                         # that must be in inventory the previous period
    95 
    96 param pir 'promotional inventory ratio' >= 0;
    97 
    98                         # Proportion of promoted demand
    99                         # that must be in inventory the previous period
   100 
   101 param life 'inventory lifetime' > 0 integer;
   102 
   103                         # Upper limit on number of periods that
   104                         # any product may sit in inventory
   105 
   106 param cri 'inventory cost ratio' {prd} > 0;
   107 
   108                         # Inventory cost per 1000 units is
   109                         # cri times nominal production cost
   110 
   111 param crs 'shortage cost ratio' {prd} > 0;
   112 
   113                         # Shortage cost per 1000 units is
   114                         # crs times nominal production cost
   115 
   116 param iinv 'initial inventory' {prd} >= 0;
   117 
   118                         # Inventory at start of first period; age unknown
   119 
   120 param iil 'initial inventory left' {p in prd, t in time}
   121               := iinv[p] less sum {v in first..t} dem[p,v];
   122 
   123                         # Initial inventory still available for allocation
   124                         # at end of period t
   125 
   126 param minv 'minimum inventory' {p in prd, t in time}
   127               := dem[p,t+1] * (if pro[p,t+1] then pir else rir);
   128 
   129                         # Lower limit on inventory at end of period t
   130 
   131 ###  VARIABLES  ###
   132 
   133 var Crews{first-1..last} >= 0;
   134 
   135                         # Average number of crews employed in each period
   136 
   137 var Hire{time} >= 0;    # Crews hired from previous to current period
   138 
   139 var Layoff{time} >= 0;  # Crews laid off from previous to current period
   140 
   141 var Rprd 'regular production' {prd,time} >= 0;
   142 
   143                         # Production using regular-time labor, in 1000s
   144 
   145 var Oprd 'overtime production' {prd,time} >= 0;
   146 
   147                         # Production using overtime labor, in 1000s
   148 
   149 var Inv 'inventory' {prd,time,1..life} >= 0;
   150 
   151                         # Inv[p,t,a] is the amount of product p that is
   152                         # a periods old -- produced in period (t+1)-a --
   153                         # and still in storage at the end of period t
   154 
   155 var Short 'shortage' {prd,time} >= 0;
   156 
   157                         # Accumulated unsatisfied demand at the end of period t
   158 
   159 ###  OBJECTIVE  ###
   160 
   161 minimize cost:
   162 
   163     sum {t in time} rtr * sl * dpp[t] * cs * Crews[t] +
   164     sum {t in time} hc[t] * Hire[t] +
   165     sum {t in time} lc[t] * Layoff[t] +
   166     sum {t in time, p in prd} otr * cs * pt[p] * Oprd[p,t] +
   167     sum {t in time, p in prd, a in 1..life} cri[p] * pc[p] * Inv[p,t,a] +
   168     sum {t in time, p in prd} crs[p] * pc[p] * Short[p,t];
   169 
   170                         # Full regular wages for all crews employed, plus
   171                         # penalties for hiring and layoffs, plus
   172                         # wages for any overtime worked, plus
   173                         # inventory and shortage costs
   174 
   175                         # (All other production costs are assumed
   176                         # to depend on initial inventory and on demands,
   177                         # and so are not included explicitly.)
   178 
   179 ###  CONSTRAINTS  ###
   180 
   181 rlim 'regular-time limit' {t in time}:
   182 
   183     sum {p in prd} pt[p] * Rprd[p,t] <= sl * dpp[t] * Crews[t];
   184 
   185                         # Hours needed to accomplish all regular-time
   186                         # production in a period must not exceed
   187                         # hours available on all shifts
   188 
   189 olim 'overtime limit' {t in time}:
   190 
   191     sum {p in prd} pt[p] * Oprd[p,t] <= ol[t];
   192 
   193                         # Hours needed to accomplish all overtime
   194                         # production in a period must not exceed
   195                         # the specified overtime limit
   196 
   197 empl0 'initial crew level':  Crews[first-1] = iw;
   198 
   199                         # Use given initial workforce
   200 
   201 empl 'crew levels' {t in time}:  Crews[t] = Crews[t-1] + Hire[t] - Layoff[t];
   202 
   203                         # Workforce changes by hiring or layoffs
   204 
   205 emplbnd 'crew limits' {t in time}:  cmin[t] <= Crews[t] <= cmax[t];
   206 
   207                         # Workforce must remain within specified bounds
   208 
   209 dreq1 'first demand requirement' {p in prd}:
   210 
   211     Rprd[p,first] + Oprd[p,first] + Short[p,first]
   212                              - Inv[p,first,1] = dem[p,first] less iinv[p];
   213 
   214 dreq 'demand requirements' {p in prd, t in first+1..last}:
   215 
   216     Rprd[p,t] + Oprd[p,t] + Short[p,t] - Short[p,t-1]
   217                           + sum {a in 1..life} (Inv[p,t-1,a] - Inv[p,t,a])
   218                                                   = dem[p,t] less iil[p,t-1];
   219 
   220                         # Production plus increase in shortage plus
   221                         # decrease in inventory must equal demand
   222 
   223 ireq 'inventory requirements' {p in prd, t in time}:
   224 
   225     sum {a in 1..life} Inv[p,t,a] + iil[p,t] >= minv[p,t];
   226 
   227                         # Inventory in storage at end of period t
   228                         # must meet specified minimum
   229 
   230 izero 'impossible inventories' {p in prd, v in 1..life-1, a in v+1..life}:
   231 
   232     Inv[p,first+v-1,a] = 0;
   233 
   234                         # In the vth period (starting from first)
   235                         # no inventory may be more than v periods old
   236                         # (initial inventories are handled separately)
   237 
   238 ilim1 'new-inventory limits' {p in prd, t in time}:
   239 
   240     Inv[p,t,1] <= Rprd[p,t] + Oprd[p,t];
   241 
   242                         # New inventory cannot exceed
   243                         # production in the most recent period
   244 
   245 ilim 'inventory limits' {p in prd, t in first+1..last, a in 2..life}:
   246 
   247     Inv[p,t,a] <= Inv[p,t-1,a-1];
   248 
   249                         # Inventory left from period (t+1)-p
   250                         # can only decrease as time goes on
   251 
   252 ###  DATA  ###
   253 
   254 data;
   255 
   256 set prd := 18REG 24REG 24PRO ;
   257 
   258 param first :=  1 ;
   259 param last  := 13 ;
   260 param life  :=  2 ;
   261 
   262 param cs := 18 ;
   263 param sl :=  8 ;
   264 param iw :=  8 ;
   265 
   266 param rtr := 16.00 ;
   267 param otr := 43.85 ;
   268 param rir :=  0.75 ;
   269 param pir :=  0.80 ;
   270 
   271 param :         pt       pc        cri       crs      iinv   :=
   272 
   273   18REG      1.194     2304.     0.015     1.100      82.0
   274   24REG      1.509     2920.     0.015     1.100     792.2
   275   24PRO      1.509     2910.     0.015     1.100       0.0   ;
   276 
   277 param :     dpp        ol      cmin      cmax        hc        lc   :=
   278 
   279   1        19.5      96.0       0.0       8.0      7500      7500
   280   2        19.0      96.0       0.0       8.0      7500      7500
   281   3        20.0      96.0       0.0       8.0      7500      7500
   282   4        19.0      96.0       0.0       8.0      7500      7500
   283   5        19.5      96.0       0.0       8.0     15000     15000
   284   6        19.0      96.0       0.0       8.0     15000     15000
   285   7        19.0      96.0       0.0       8.0     15000     15000
   286   8        20.0      96.0       0.0       8.0     15000     15000
   287   9        19.0      96.0       0.0       8.0     15000     15000
   288  10        20.0      96.0       0.0       8.0     15000     15000
   289  11        20.0      96.0       0.0       8.0      7500      7500
   290  12        18.0      96.0       0.0       8.0      7500      7500
   291  13        18.0      96.0       0.0       8.0      7500      7500   ;
   292 
   293 param dem (tr) :
   294 
   295           18REG     24REG     24PRO   :=
   296 
   297   1        63.8    1212.0       0.0
   298   2        76.0     306.2       0.0
   299   3        88.4     319.0       0.0
   300   4       913.8     208.4       0.0
   301   5       115.0     298.0       0.0
   302   6       133.8     328.2       0.0
   303   7        79.6     959.6       0.0
   304   8       111.0     257.6       0.0
   305   9       121.6     335.6       0.0
   306  10       470.0     118.0    1102.0
   307  11        78.4     284.8       0.0
   308  12        99.4     970.0       0.0
   309  13       140.4     343.8       0.0
   310  14        63.8    1212.0       0.0   ;
   311 
   312 param pro (tr) :
   313 
   314           18REG     24REG     24PRO   :=
   315 
   316   1           0         1         0
   317   2           0         0         0
   318   3           0         0         0
   319   4           1         0         0
   320   5           0         0         0
   321   6           0         0         0
   322   7           0         1         0
   323   8           0         0         0
   324   9           0         0         0
   325  10           1         0         1
   326  11           0         0         0
   327  12           0         0         0
   328  13           0         1         0
   329  14           0         1         0   ;
   330 
   331 end;