examples/sat.mod
author Alpar Juttner <alpar@cs.elte.hu>
Mon, 06 Dec 2010 13:09:21 +0100
changeset 1 c445c931472f
permissions -rw-r--r--
Import glpk-4.45

- Generated files and doc/notes are removed
     1 /* SAT, Satisfiability Problem */
     2 
     3 /* Written in GNU MathProg by Andrew Makhorin <mao@gnu.org> */
     4 
     5 param m, integer, > 0;
     6 /* number of clauses */
     7 
     8 param n, integer, > 0;
     9 /* number of variables */
    10 
    11 set C{1..m};
    12 /* clauses; each clause C[i], i = 1, ..., m, is disjunction of some
    13    variables or their negations; in the data section each clause is
    14    coded as a set of indices of corresponding variables, where negative
    15    indices mean negation; for example, the clause (x3 or not x7 or x11)
    16    is coded as the set { 3, -7, 11 } */
    17 
    18 var x{1..n}, binary;
    19 /* main variables */
    20 
    21 /* To solve the satisfiability problem means to determine all variables
    22    x[j] such that conjunction of all clauses C[1] and ... and C[m] takes
    23    on the value true, i.e. all clauses are satisfied.
    24 
    25    Let the clause C[i] be (t or t' or ... or t''), where t, t', ..., t''
    26    are either variables or their negations. The condition of satisfying
    27    C[i] can be most naturally written as:
    28 
    29       t + t' + ... + t'' >= 1,                                       (1)
    30 
    31    where t, t', t'' have to be replaced by either x[j] or (1 - x[j]).
    32    The formulation (1) leads to the mip problem with no objective, i.e.
    33    to a feasibility problem.
    34 
    35    Another, more practical way is to write the condition for C[i] as:
    36 
    37       t + t' + ... + t'' + y[i] >= 1,                                (2)
    38 
    39    where y[i] is an auxiliary binary variable, and minimize the sum of
    40    y[i]. If the sum is zero, all y[i] are also zero, and therefore all
    41    clauses are satisfied. If the sum is minimal but non-zero, its value
    42    shows the number of clauses which cannot be satisfied. */
    43 
    44 var y{1..m}, binary, >= 0;
    45 /* auxiliary variables */
    46 
    47 s.t. c{i in 1..m}:
    48       sum{j in C[i]} (if j > 0 then x[j] else (1 - x[-j])) + y[i] >= 1;
    49 /* the condition (2) */
    50 
    51 minimize unsat: sum{i in 1..m} y[i];
    52 /* number of unsatisfied clauses */
    53 
    54 data;
    55 
    56 /* These data correspond to the instance hole6 (pigeon hole problem for
    57    6 holes) from SATLIB, the Satisfiability Library, which is part of
    58    the collection at the Forschungsinstitut fuer anwendungsorientierte
    59    Wissensverarbeitung in Ulm Germany */
    60 
    61 /* The optimal solution is 1 (one clause cannot be satisfied) */
    62 
    63 param m := 133;
    64 
    65 param n := 42;
    66 
    67 set C[1] := -1 -7;
    68 set C[2] := -1 -13;
    69 set C[3] := -1 -19;
    70 set C[4] := -1 -25;
    71 set C[5] := -1 -31;
    72 set C[6] := -1 -37;
    73 set C[7] := -7 -13;
    74 set C[8] := -7 -19;
    75 set C[9] := -7 -25;
    76 set C[10] := -7 -31;
    77 set C[11] := -7 -37;
    78 set C[12] := -13 -19;
    79 set C[13] := -13 -25;
    80 set C[14] := -13 -31;
    81 set C[15] := -13 -37;
    82 set C[16] := -19 -25;
    83 set C[17] := -19 -31;
    84 set C[18] := -19 -37;
    85 set C[19] := -25 -31;
    86 set C[20] := -25 -37;
    87 set C[21] := -31 -37;
    88 set C[22] := -2 -8;
    89 set C[23] := -2 -14;
    90 set C[24] := -2 -20;
    91 set C[25] := -2 -26;
    92 set C[26] := -2 -32;
    93 set C[27] := -2 -38;
    94 set C[28] := -8 -14;
    95 set C[29] := -8 -20;
    96 set C[30] := -8 -26;
    97 set C[31] := -8 -32;
    98 set C[32] := -8 -38;
    99 set C[33] := -14 -20;
   100 set C[34] := -14 -26;
   101 set C[35] := -14 -32;
   102 set C[36] := -14 -38;
   103 set C[37] := -20 -26;
   104 set C[38] := -20 -32;
   105 set C[39] := -20 -38;
   106 set C[40] := -26 -32;
   107 set C[41] := -26 -38;
   108 set C[42] := -32 -38;
   109 set C[43] := -3 -9;
   110 set C[44] := -3 -15;
   111 set C[45] := -3 -21;
   112 set C[46] := -3 -27;
   113 set C[47] := -3 -33;
   114 set C[48] := -3 -39;
   115 set C[49] := -9 -15;
   116 set C[50] := -9 -21;
   117 set C[51] := -9 -27;
   118 set C[52] := -9 -33;
   119 set C[53] := -9 -39;
   120 set C[54] := -15 -21;
   121 set C[55] := -15 -27;
   122 set C[56] := -15 -33;
   123 set C[57] := -15 -39;
   124 set C[58] := -21 -27;
   125 set C[59] := -21 -33;
   126 set C[60] := -21 -39;
   127 set C[61] := -27 -33;
   128 set C[62] := -27 -39;
   129 set C[63] := -33 -39;
   130 set C[64] := -4 -10;
   131 set C[65] := -4 -16;
   132 set C[66] := -4 -22;
   133 set C[67] := -4 -28;
   134 set C[68] := -4 -34;
   135 set C[69] := -4 -40;
   136 set C[70] := -10 -16;
   137 set C[71] := -10 -22;
   138 set C[72] := -10 -28;
   139 set C[73] := -10 -34;
   140 set C[74] := -10 -40;
   141 set C[75] := -16 -22;
   142 set C[76] := -16 -28;
   143 set C[77] := -16 -34;
   144 set C[78] := -16 -40;
   145 set C[79] := -22 -28;
   146 set C[80] := -22 -34;
   147 set C[81] := -22 -40;
   148 set C[82] := -28 -34;
   149 set C[83] := -28 -40;
   150 set C[84] := -34 -40;
   151 set C[85] := -5 -11;
   152 set C[86] := -5 -17;
   153 set C[87] := -5 -23;
   154 set C[88] := -5 -29;
   155 set C[89] := -5 -35;
   156 set C[90] := -5 -41;
   157 set C[91] := -11 -17;
   158 set C[92] := -11 -23;
   159 set C[93] := -11 -29;
   160 set C[94] := -11 -35;
   161 set C[95] := -11 -41;
   162 set C[96] := -17 -23;
   163 set C[97] := -17 -29;
   164 set C[98] := -17 -35;
   165 set C[99] := -17 -41;
   166 set C[100] := -23 -29;
   167 set C[101] := -23 -35;
   168 set C[102] := -23 -41;
   169 set C[103] := -29 -35;
   170 set C[104] := -29 -41;
   171 set C[105] := -35 -41;
   172 set C[106] := -6 -12;
   173 set C[107] := -6 -18;
   174 set C[108] := -6 -24;
   175 set C[109] := -6 -30;
   176 set C[110] := -6 -36;
   177 set C[111] := -6 -42;
   178 set C[112] := -12 -18;
   179 set C[113] := -12 -24;
   180 set C[114] := -12 -30;
   181 set C[115] := -12 -36;
   182 set C[116] := -12 -42;
   183 set C[117] := -18 -24;
   184 set C[118] := -18 -30;
   185 set C[119] := -18 -36;
   186 set C[120] := -18 -42;
   187 set C[121] := -24 -30;
   188 set C[122] := -24 -36;
   189 set C[123] := -24 -42;
   190 set C[124] := -30 -36;
   191 set C[125] := -30 -42;
   192 set C[126] := -36 -42;
   193 set C[127] := 6 5 4 3 2 1;
   194 set C[128] := 12 11 10 9 8 7;
   195 set C[129] := 18 17 16 15 14 13;
   196 set C[130] := 24 23 22 21 20 19;
   197 set C[131] := 30 29 28 27 26 25;
   198 set C[132] := 36 35 34 33 32 31;
   199 set C[133] := 42 41 40 39 38 37;
   200 
   201 end;