examples/xyacfs.mod
author Alpar Juttner <alpar@cs.elte.hu>
Mon, 06 Dec 2010 13:09:21 +0100
changeset 1 c445c931472f
permissions -rw-r--r--
Import glpk-4.45

- Generated files and doc/notes are removed
     1 /*Extended Yet Another Curve Fitting Solution (The poor man's RMA)
     2 
     3   An extension of yacfs.mod adding a Weight parameter:
     4     When set to 1 the model produces best fit by least squares with all error in y and none in x (YonX);
     5     When set to zero the model produces best fit by least squares with all error in x and none in y (XonY);
     6     When set to 0.5 the model assumes equal error in x and y producing results similar to fitting by Reduced Major Axis Analysis.
     7 
     8   Nigel_Galloway@operamail.com
     9   November 5th., 2009
    10 */
    11 set Sample;
    12 param Sx {z in Sample};
    13 param Sy {z in Sample};
    14 param Weight := 0.5;
    15 
    16 var a;
    17 var b;
    18 var p;
    19 var q;
    20 
    21 XonY1 :sum{z in Sample} q*Sy[z]*Sy[z] + sum{z in Sample} p*Sy[z] = sum{z in Sample} Sy[z]*Sx[z];
    22 XonY2 :sum{z in Sample} q*Sy[z] + sum{z in Sample} p = sum{z in Sample} Sx[z];
    23 YonX1 :sum{z in Sample} a*Sx[z]*Sx[z] + sum{z in Sample} b*Sx[z] = sum{z in Sample} Sy[z]*Sx[z];
    24 YonX2 :sum{z in Sample} a*Sx[z] + sum{z in Sample} b = sum{z in Sample} Sy[z];
    25 
    26 solve;
    27 
    28 param W := Weight*a + (1-Weight)*(1/q);
    29 printf "\nbest linear fit is:\n\ty = %f %s %fx\n\n", b*Weight - (1-Weight)*(p/q), if W < 0 then "-" else "+", abs(W);
    30 
    31 data;
    32 
    33 param:
    34 Sample:   Sx    Sy :=
    35   1         0    1
    36   2       0.5  0.9
    37   3         1  0.7
    38   4       1.5  1.5
    39   5       1.9    2
    40   6       2.5  2.4
    41   7         3  3.2
    42   8       3.5    2
    43   9         4  2.7
    44  10       4.5  3.5
    45  11         5    1
    46  12       5.5    4
    47  13         6  3.6
    48  14       6.6  2.7
    49  15         7  5.7
    50  16       7.6  4.6
    51  17       8.5    6
    52  18         9  6.8
    53  19        10  7.3
    54 ;
    55 
    56 end;