src/glpapi10.c
author Alpar Juttner <alpar@cs.elte.hu>
Mon, 06 Dec 2010 13:09:21 +0100
changeset 1 c445c931472f
permissions -rw-r--r--
Import glpk-4.45

- Generated files and doc/notes are removed
     1 /* glpapi10.c (solution checking routines) */
     2 
     3 /***********************************************************************
     4 *  This code is part of GLPK (GNU Linear Programming Kit).
     5 *
     6 *  Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
     7 *  2009, 2010 Andrew Makhorin, Department for Applied Informatics,
     8 *  Moscow Aviation Institute, Moscow, Russia. All rights reserved.
     9 *  E-mail: <mao@gnu.org>.
    10 *
    11 *  GLPK is free software: you can redistribute it and/or modify it
    12 *  under the terms of the GNU General Public License as published by
    13 *  the Free Software Foundation, either version 3 of the License, or
    14 *  (at your option) any later version.
    15 *
    16 *  GLPK is distributed in the hope that it will be useful, but WITHOUT
    17 *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
    18 *  or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
    19 *  License for more details.
    20 *
    21 *  You should have received a copy of the GNU General Public License
    22 *  along with GLPK. If not, see <http://www.gnu.org/licenses/>.
    23 ***********************************************************************/
    24 
    25 #include "glpapi.h"
    26 
    27 void _glp_check_kkt(glp_prob *P, int sol, int cond, double *_ae_max,
    28       int *_ae_ind, double *_re_max, int *_re_ind)
    29 {     /* check feasibility and optimality conditions */
    30       int m = P->m;
    31       int n = P->n;
    32       GLPROW *row;
    33       GLPCOL *col;
    34       GLPAIJ *aij;
    35       int i, j, ae_ind, re_ind;
    36       double e, sp, sn, t, ae_max, re_max;
    37       if (!(sol == GLP_SOL || sol == GLP_IPT || sol == GLP_MIP))
    38          xerror("glp_check_kkt: sol = %d; invalid solution indicator\n",
    39             sol);
    40       if (!(cond == GLP_KKT_PE || cond == GLP_KKT_PB ||
    41             cond == GLP_KKT_DE || cond == GLP_KKT_DB ||
    42             cond == GLP_KKT_CS))
    43          xerror("glp_check_kkt: cond = %d; invalid condition indicator "
    44             "\n", cond);
    45       ae_max = re_max = 0.0;
    46       ae_ind = re_ind = 0;
    47       if (cond == GLP_KKT_PE)
    48       {  /* xR - A * xS = 0 */
    49          for (i = 1; i <= m; i++)
    50          {  row = P->row[i];
    51             sp = sn = 0.0;
    52             /* t := xR[i] */
    53             if (sol == GLP_SOL)
    54                t = row->prim;
    55             else if (sol == GLP_IPT)
    56                t = row->pval;
    57             else if (sol == GLP_MIP)
    58                t = row->mipx;
    59             else
    60                xassert(sol != sol);
    61             if (t >= 0.0) sp += t; else sn -= t;
    62             for (aij = row->ptr; aij != NULL; aij = aij->r_next)
    63             {  col = aij->col;
    64                /* t := - a[i,j] * xS[j] */
    65                if (sol == GLP_SOL)
    66                   t = - aij->val * col->prim;
    67                else if (sol == GLP_IPT)
    68                   t = - aij->val * col->pval;
    69                else if (sol == GLP_MIP)
    70                   t = - aij->val * col->mipx;
    71                else
    72                   xassert(sol != sol);
    73                if (t >= 0.0) sp += t; else sn -= t;
    74             }
    75             /* absolute error */
    76             e = fabs(sp - sn);
    77             if (ae_max < e)
    78                ae_max = e, ae_ind = i;
    79             /* relative error */
    80             e /= (1.0 + sp + sn);
    81             if (re_max < e)
    82                re_max = e, re_ind = i;
    83          }
    84       }
    85       else if (cond == GLP_KKT_PB)
    86       {  /* lR <= xR <= uR */
    87          for (i = 1; i <= m; i++)
    88          {  row = P->row[i];
    89             /* t := xR[i] */
    90             if (sol == GLP_SOL)
    91                t = row->prim;
    92             else if (sol == GLP_IPT)
    93                t = row->pval;
    94             else if (sol == GLP_MIP)
    95                t = row->mipx;
    96             else
    97                xassert(sol != sol);
    98             /* check lower bound */
    99             if (row->type == GLP_LO || row->type == GLP_DB ||
   100                 row->type == GLP_FX)
   101             {  if (t < row->lb)
   102                {  /* absolute error */
   103                   e = row->lb - t;
   104                   if (ae_max < e)
   105                      ae_max = e, ae_ind = i;
   106                   /* relative error */
   107                   e /= (1.0 + fabs(row->lb));
   108                   if (re_max < e)
   109                      re_max = e, re_ind = i;
   110                }
   111             }
   112             /* check upper bound */
   113             if (row->type == GLP_UP || row->type == GLP_DB ||
   114                 row->type == GLP_FX)
   115             {  if (t > row->ub)
   116                {  /* absolute error */
   117                   e = t - row->ub;
   118                   if (ae_max < e)
   119                      ae_max = e, ae_ind = i;
   120                   /* relative error */
   121                   e /= (1.0 + fabs(row->ub));
   122                   if (re_max < e)
   123                      re_max = e, re_ind = i;
   124                }
   125             }
   126          }
   127          /* lS <= xS <= uS */
   128          for (j = 1; j <= n; j++)
   129          {  col = P->col[j];
   130             /* t := xS[j] */
   131             if (sol == GLP_SOL)
   132                t = col->prim;
   133             else if (sol == GLP_IPT)
   134                t = col->pval;
   135             else if (sol == GLP_MIP)
   136                t = col->mipx;
   137             else
   138                xassert(sol != sol);
   139             /* check lower bound */
   140             if (col->type == GLP_LO || col->type == GLP_DB ||
   141                 col->type == GLP_FX)
   142             {  if (t < col->lb)
   143                {  /* absolute error */
   144                   e = col->lb - t;
   145                   if (ae_max < e)
   146                      ae_max = e, ae_ind = m+j;
   147                   /* relative error */
   148                   e /= (1.0 + fabs(col->lb));
   149                   if (re_max < e)
   150                      re_max = e, re_ind = m+j;
   151                }
   152             }
   153             /* check upper bound */
   154             if (col->type == GLP_UP || col->type == GLP_DB ||
   155                 col->type == GLP_FX)
   156             {  if (t > col->ub)
   157                {  /* absolute error */
   158                   e = t - col->ub;
   159                   if (ae_max < e)
   160                      ae_max = e, ae_ind = m+j;
   161                   /* relative error */
   162                   e /= (1.0 + fabs(col->ub));
   163                   if (re_max < e)
   164                      re_max = e, re_ind = m+j;
   165                }
   166             }
   167          }
   168       }
   169       else if (cond == GLP_KKT_DE)
   170       {  /* A' * (lambdaR - cR) + (lambdaS - cS) = 0 */
   171          for (j = 1; j <= n; j++)
   172          {  col = P->col[j];
   173             sp = sn = 0.0;
   174             /* t := lambdaS[j] - cS[j] */
   175             if (sol == GLP_SOL)
   176                t = col->dual - col->coef;
   177             else if (sol == GLP_IPT)
   178                t = col->dval - col->coef;
   179             else
   180                xassert(sol != sol);
   181             if (t >= 0.0) sp += t; else sn -= t;
   182             for (aij = col->ptr; aij != NULL; aij = aij->c_next)
   183             {  row = aij->row;
   184                /* t := a[i,j] * (lambdaR[i] - cR[i]) */
   185                if (sol == GLP_SOL)
   186                   t = aij->val * row->dual;
   187                else if (sol == GLP_IPT)
   188                   t = aij->val * row->dval;
   189                else
   190                   xassert(sol != sol);
   191                if (t >= 0.0) sp += t; else sn -= t;
   192             }
   193             /* absolute error */
   194             e = fabs(sp - sn);
   195             if (ae_max < e)
   196                ae_max = e, ae_ind = m+j;
   197             /* relative error */
   198             e /= (1.0 + sp + sn);
   199             if (re_max < e)
   200                re_max = e, re_ind = m+j;
   201          }
   202       }
   203       else if (cond == GLP_KKT_DB)
   204       {  /* check lambdaR */
   205          for (i = 1; i <= m; i++)
   206          {  row = P->row[i];
   207             /* t := lambdaR[i] */
   208             if (sol == GLP_SOL)
   209                t = row->dual;
   210             else if (sol == GLP_IPT)
   211                t = row->dval;
   212             else
   213                xassert(sol != sol);
   214             /* correct sign */
   215             if (P->dir == GLP_MIN)
   216                t = + t;
   217             else if (P->dir == GLP_MAX)
   218                t = - t;
   219             else
   220                xassert(P != P);
   221             /* check for positivity */
   222             if (row->type == GLP_FR || row->type == GLP_LO)
   223             {  if (t < 0.0)
   224                {  e = - t;
   225                   if (ae_max < e)
   226                      ae_max = re_max = e, ae_ind = re_ind = i;
   227                }
   228             }
   229             /* check for negativity */
   230             if (row->type == GLP_FR || row->type == GLP_UP)
   231             {  if (t > 0.0)
   232                {  e = + t;
   233                   if (ae_max < e)
   234                      ae_max = re_max = e, ae_ind = re_ind = i;
   235                }
   236             }
   237          }
   238          /* check lambdaS */
   239          for (j = 1; j <= n; j++)
   240          {  col = P->col[j];
   241             /* t := lambdaS[j] */
   242             if (sol == GLP_SOL)
   243                t = col->dual;
   244             else if (sol == GLP_IPT)
   245                t = col->dval;
   246             else
   247                xassert(sol != sol);
   248             /* correct sign */
   249             if (P->dir == GLP_MIN)
   250                t = + t;
   251             else if (P->dir == GLP_MAX)
   252                t = - t;
   253             else
   254                xassert(P != P);
   255             /* check for positivity */
   256             if (col->type == GLP_FR || col->type == GLP_LO)
   257             {  if (t < 0.0)
   258                {  e = - t;
   259                   if (ae_max < e)
   260                      ae_max = re_max = e, ae_ind = re_ind = m+j;
   261                }
   262             }
   263             /* check for negativity */
   264             if (col->type == GLP_FR || col->type == GLP_UP)
   265             {  if (t > 0.0)
   266                {  e = + t;
   267                   if (ae_max < e)
   268                      ae_max = re_max = e, ae_ind = re_ind = m+j;
   269                }
   270             }
   271          }
   272       }
   273       else
   274          xassert(cond != cond);
   275       if (_ae_max != NULL) *_ae_max = ae_max;
   276       if (_ae_ind != NULL) *_ae_ind = ae_ind;
   277       if (_re_max != NULL) *_re_max = re_max;
   278       if (_re_ind != NULL) *_re_ind = re_ind;
   279       return;
   280 }
   281 
   282 /* eof */