src/glplpf.h
author Alpar Juttner <alpar@cs.elte.hu>
Mon, 06 Dec 2010 13:09:21 +0100
changeset 1 c445c931472f
permissions -rw-r--r--
Import glpk-4.45

- Generated files and doc/notes are removed
     1 /* glplpf.h (LP basis factorization, Schur complement version) */
     2 
     3 /***********************************************************************
     4 *  This code is part of GLPK (GNU Linear Programming Kit).
     5 *
     6 *  Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
     7 *  2009, 2010 Andrew Makhorin, Department for Applied Informatics,
     8 *  Moscow Aviation Institute, Moscow, Russia. All rights reserved.
     9 *  E-mail: <mao@gnu.org>.
    10 *
    11 *  GLPK is free software: you can redistribute it and/or modify it
    12 *  under the terms of the GNU General Public License as published by
    13 *  the Free Software Foundation, either version 3 of the License, or
    14 *  (at your option) any later version.
    15 *
    16 *  GLPK is distributed in the hope that it will be useful, but WITHOUT
    17 *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
    18 *  or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
    19 *  License for more details.
    20 *
    21 *  You should have received a copy of the GNU General Public License
    22 *  along with GLPK. If not, see <http://www.gnu.org/licenses/>.
    23 ***********************************************************************/
    24 
    25 #ifndef GLPLPF_H
    26 #define GLPLPF_H
    27 
    28 #include "glpscf.h"
    29 #include "glpluf.h"
    30 
    31 /***********************************************************************
    32 *  The structure LPF defines the factorization of the basis mxm matrix
    33 *  B, where m is the number of rows in corresponding problem instance.
    34 *
    35 *  This factorization is the following septet:
    36 *
    37 *     [B] = (L0, U0, R, S, C, P, Q),                                 (1)
    38 *
    39 *  and is based on the following main equality:
    40 *
    41 *     ( B  F^)     ( B0 F )       ( L0 0 ) ( U0 R )
    42 *     (      ) = P (      ) Q = P (      ) (      ) Q,               (2)
    43 *     ( G^ H^)     ( G  H )       ( S  I ) ( 0  C )
    44 *
    45 *  where:
    46 *
    47 *  B is the current basis matrix (not stored);
    48 *
    49 *  F^, G^, H^ are some additional matrices (not stored);
    50 *
    51 *  B0 is some initial basis matrix (not stored);
    52 *
    53 *  F, G, H are some additional matrices (not stored);
    54 *
    55 *  P, Q are permutation matrices (stored in both row- and column-like
    56 *  formats);
    57 *
    58 *  L0, U0 are some matrices that defines a factorization of the initial
    59 *  basis matrix B0 = L0 * U0 (stored in an invertable form);
    60 *
    61 *  R is a matrix defined from L0 * R = F, so R = inv(L0) * F (stored in
    62 *  a column-wise sparse format);
    63 *
    64 *  S is a matrix defined from S * U0 = G, so S = G * inv(U0) (stored in
    65 *  a row-wise sparse format);
    66 *
    67 *  C is the Schur complement for matrix (B0 F G H). It is defined from
    68 *  S * R + C = H, so C = H - S * R = H - G * inv(U0) * inv(L0) * F =
    69 *  = H - G * inv(B0) * F. Matrix C is stored in an invertable form.
    70 *
    71 *  REFERENCES
    72 *
    73 *  1. M.A.Saunders, "LUSOL: A basis package for constrained optimiza-
    74 *     tion," SCCM, Stanford University, 2006.
    75 *
    76 *  2. M.A.Saunders, "Notes 5: Basis Updates," CME 318, Stanford Univer-
    77 *     sity, Spring 2006.
    78 *
    79 *  3. M.A.Saunders, "Notes 6: LUSOL---a Basis Factorization Package,"
    80 *     ibid. */
    81 
    82 typedef struct LPF LPF;
    83 
    84 struct LPF
    85 {     /* LP basis factorization */
    86       int valid;
    87       /* the factorization is valid only if this flag is set */
    88       /*--------------------------------------------------------------*/
    89       /* initial basis matrix B0 */
    90       int m0_max;
    91       /* maximal value of m0 (increased automatically, if necessary) */
    92       int m0;
    93       /* the order of B0 */
    94       LUF *luf;
    95       /* LU-factorization of B0 */
    96       /*--------------------------------------------------------------*/
    97       /* current basis matrix B */
    98       int m;
    99       /* the order of B */
   100       double *B; /* double B[1+m*m]; */
   101       /* B in dense format stored by rows and used only for debugging;
   102          normally this array is not allocated */
   103       /*--------------------------------------------------------------*/
   104       /* augmented matrix (B0 F G H) of the order m0+n */
   105       int n_max;
   106       /* maximal number of additional rows and columns */
   107       int n;
   108       /* current number of additional rows and columns */
   109       /*--------------------------------------------------------------*/
   110       /* m0xn matrix R in column-wise format */
   111       int *R_ptr; /* int R_ptr[1+n_max]; */
   112       /* R_ptr[j], 1 <= j <= n, is a pointer to j-th column */
   113       int *R_len; /* int R_len[1+n_max]; */
   114       /* R_len[j], 1 <= j <= n, is the length of j-th column */
   115       /*--------------------------------------------------------------*/
   116       /* nxm0 matrix S in row-wise format */
   117       int *S_ptr; /* int S_ptr[1+n_max]; */
   118       /* S_ptr[i], 1 <= i <= n, is a pointer to i-th row */
   119       int *S_len; /* int S_len[1+n_max]; */
   120       /* S_len[i], 1 <= i <= n, is the length of i-th row */
   121       /*--------------------------------------------------------------*/
   122       /* Schur complement C of the order n */
   123       SCF *scf; /* SCF scf[1:n_max]; */
   124       /* factorization of the Schur complement */
   125       /*--------------------------------------------------------------*/
   126       /* matrix P of the order m0+n */
   127       int *P_row; /* int P_row[1+m0_max+n_max]; */
   128       /* P_row[i] = j means that P[i,j] = 1 */
   129       int *P_col; /* int P_col[1+m0_max+n_max]; */
   130       /* P_col[j] = i means that P[i,j] = 1 */
   131       /*--------------------------------------------------------------*/
   132       /* matrix Q of the order m0+n */
   133       int *Q_row; /* int Q_row[1+m0_max+n_max]; */
   134       /* Q_row[i] = j means that Q[i,j] = 1 */
   135       int *Q_col; /* int Q_col[1+m0_max+n_max]; */
   136       /* Q_col[j] = i means that Q[i,j] = 1 */
   137       /*--------------------------------------------------------------*/
   138       /* Sparse Vector Area (SVA) is a set of locations intended to
   139          store sparse vectors which represent columns of matrix R and
   140          rows of matrix S; each location is a doublet (ind, val), where
   141          ind is an index, val is a numerical value of a sparse vector
   142          element; in the whole each sparse vector is a set of adjacent
   143          locations defined by a pointer to its first element and its
   144          length, i.e. the number of its elements */
   145       int v_size;
   146       /* the SVA size, in locations; locations are numbered by integers
   147          1, 2, ..., v_size, and location 0 is not used */
   148       int v_ptr;
   149       /* pointer to the first available location */
   150       int *v_ind; /* int v_ind[1+v_size]; */
   151       /* v_ind[k], 1 <= k <= v_size, is the index field of location k */
   152       double *v_val; /* double v_val[1+v_size]; */
   153       /* v_val[k], 1 <= k <= v_size, is the value field of location k */
   154       /*--------------------------------------------------------------*/
   155       double *work1; /* double work1[1+m0+n_max]; */
   156       /* working array */
   157       double *work2; /* double work2[1+m0+n_max]; */
   158       /* working array */
   159 };
   160 
   161 /* return codes: */
   162 #define LPF_ESING    1  /* singular matrix */
   163 #define LPF_ECOND    2  /* ill-conditioned matrix */
   164 #define LPF_ELIMIT   3  /* update limit reached */
   165 
   166 #define lpf_create_it _glp_lpf_create_it
   167 LPF *lpf_create_it(void);
   168 /* create LP basis factorization */
   169 
   170 #define lpf_factorize _glp_lpf_factorize
   171 int lpf_factorize(LPF *lpf, int m, const int bh[], int (*col)
   172       (void *info, int j, int ind[], double val[]), void *info);
   173 /* compute LP basis factorization */
   174 
   175 #define lpf_ftran _glp_lpf_ftran
   176 void lpf_ftran(LPF *lpf, double x[]);
   177 /* perform forward transformation (solve system B*x = b) */
   178 
   179 #define lpf_btran _glp_lpf_btran
   180 void lpf_btran(LPF *lpf, double x[]);
   181 /* perform backward transformation (solve system B'*x = b) */
   182 
   183 #define lpf_update_it _glp_lpf_update_it
   184 int lpf_update_it(LPF *lpf, int j, int bh, int len, const int ind[],
   185       const double val[]);
   186 /* update LP basis factorization */
   187 
   188 #define lpf_delete_it _glp_lpf_delete_it
   189 void lpf_delete_it(LPF *lpf);
   190 /* delete LP basis factorization */
   191 
   192 #endif
   193 
   194 /* eof */