src/glpnet09.c
author Alpar Juttner <alpar@cs.elte.hu>
Mon, 06 Dec 2010 13:09:21 +0100
changeset 1 c445c931472f
permissions -rw-r--r--
Import glpk-4.45

- Generated files and doc/notes are removed
     1 /* glpnet09.c */
     2 
     3 /***********************************************************************
     4 *  This code is part of GLPK (GNU Linear Programming Kit).
     5 *
     6 *  Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
     7 *  2009, 2010 Andrew Makhorin, Department for Applied Informatics,
     8 *  Moscow Aviation Institute, Moscow, Russia. All rights reserved.
     9 *  E-mail: <mao@gnu.org>.
    10 *
    11 *  GLPK is free software: you can redistribute it and/or modify it
    12 *  under the terms of the GNU General Public License as published by
    13 *  the Free Software Foundation, either version 3 of the License, or
    14 *  (at your option) any later version.
    15 *
    16 *  GLPK is distributed in the hope that it will be useful, but WITHOUT
    17 *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
    18 *  or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
    19 *  License for more details.
    20 *
    21 *  You should have received a copy of the GNU General Public License
    22 *  along with GLPK. If not, see <http://www.gnu.org/licenses/>.
    23 ***********************************************************************/
    24 
    25 #include "glpapi.h"
    26 #include "glpnet.h"
    27 
    28 /***********************************************************************
    29 *  NAME
    30 *
    31 *  kellerman - cover edges by cliques with Kellerman's heuristic
    32 *
    33 *  SYNOPSIS
    34 *
    35 *  #include "glpnet.h"
    36 *  int kellerman(int n, int (*func)(void *info, int i, int ind[]),
    37 *     void *info, glp_graph *H);
    38 *
    39 *  DESCRIPTION
    40 *
    41 *  The routine kellerman implements Kellerman's heuristic algorithm
    42 *  to find a minimal set of cliques which cover all edges of specified
    43 *  graph G = (V, E).
    44 *
    45 *  The parameter n specifies the number of vertices |V|, n >= 0.
    46 *
    47 *  Formal routine func specifies the set of edges E in the following
    48 *  way. Running the routine kellerman calls the routine func and passes
    49 *  to it parameter i, which is the number of some vertex, 1 <= i <= n.
    50 *  In response the routine func should store numbers of all vertices
    51 *  adjacent to vertex i to locations ind[1], ind[2], ..., ind[len] and
    52 *  return the value of len, which is the number of adjacent vertices,
    53 *  0 <= len <= n. Self-loops are allowed, but ignored. Multiple edges
    54 *  are not allowed.
    55 *
    56 *  The parameter info is a transit pointer (magic cookie) passed to the
    57 *  formal routine func as its first parameter.
    58 *
    59 *  The result provided by the routine kellerman is the bipartite graph
    60 *  H = (V union C, F), which defines the covering found. (The program
    61 *  object of type glp_graph specified by the parameter H should be
    62 *  previously created with the routine glp_create_graph. On entry the
    63 *  routine kellerman erases the content of this object with the routine
    64 *  glp_erase_graph.) Vertices of first part V correspond to vertices of
    65 *  the graph G and have the same ordinal numbers 1, 2, ..., n. Vertices
    66 *  of second part C correspond to cliques and have ordinal numbers
    67 *  n+1, n+2, ..., n+k, where k is the total number of cliques in the
    68 *  edge covering found. Every edge f in F in the program object H is
    69 *  represented as arc f = (i->j), where i in V and j in C, which means
    70 *  that vertex i of the graph G is in clique C[j], 1 <= j <= k. (Thus,
    71 *  if two vertices of the graph G are in the same clique, these vertices
    72 *  are adjacent in G, and corresponding edge is covered by that clique.)
    73 *
    74 *  RETURNS
    75 *
    76 *  The routine Kellerman returns k, the total number of cliques in the
    77 *  edge covering found.
    78 *
    79 *  REFERENCE
    80 *
    81 *  For more details see: glpk/doc/notes/keller.pdf (in Russian). */
    82 
    83 struct set
    84 {     /* set of vertices */
    85       int size;
    86       /* size (cardinality) of the set, 0 <= card <= n */
    87       int *list; /* int list[1+n]; */
    88       /* the set contains vertices list[1,...,size] */
    89       int *pos; /* int pos[1+n]; */
    90       /* pos[i] > 0 means that vertex i is in the set and
    91          list[pos[i]] = i; pos[i] = 0 means that vertex i is not in
    92          the set */
    93 };
    94 
    95 int kellerman(int n, int (*func)(void *info, int i, int ind[]),
    96       void *info, void /* glp_graph */ *H_)
    97 {     glp_graph *H = H_;
    98       struct set W_, *W = &W_, V_, *V = &V_;
    99       glp_arc *a;
   100       int i, j, k, m, t, len, card, best;
   101       xassert(n >= 0);
   102       /* H := (V, 0; 0), where V is the set of vertices of graph G */
   103       glp_erase_graph(H, H->v_size, H->a_size);
   104       glp_add_vertices(H, n);
   105       /* W := 0 */
   106       W->size = 0;
   107       W->list = xcalloc(1+n, sizeof(int));
   108       W->pos = xcalloc(1+n, sizeof(int));
   109       memset(&W->pos[1], 0, sizeof(int) * n);
   110       /* V := 0 */
   111       V->size = 0;
   112       V->list = xcalloc(1+n, sizeof(int));
   113       V->pos = xcalloc(1+n, sizeof(int));
   114       memset(&V->pos[1], 0, sizeof(int) * n);
   115       /* main loop */
   116       for (i = 1; i <= n; i++)
   117       {  /* W must be empty */
   118          xassert(W->size == 0);
   119          /* W := { j : i > j and (i,j) in E } */
   120          len = func(info, i, W->list);
   121          xassert(0 <= len && len <= n);
   122          for (t = 1; t <= len; t++)
   123          {  j = W->list[t];
   124             xassert(1 <= j && j <= n);
   125             if (j >= i) continue;
   126             xassert(W->pos[j] == 0);
   127             W->list[++W->size] = j, W->pos[j] = W->size;
   128          }
   129          /* on i-th iteration we need to cover edges (i,j) for all
   130             j in W */
   131          /* if W is empty, it is a special case */
   132          if (W->size == 0)
   133          {  /* set k := k + 1 and create new clique C[k] = { i } */
   134             k = glp_add_vertices(H, 1) - n;
   135             glp_add_arc(H, i, n + k);
   136             continue;
   137          }
   138          /* try to include vertex i into existing cliques */
   139          /* V must be empty */
   140          xassert(V->size == 0);
   141          /* k is the number of cliques found so far */
   142          k = H->nv - n;
   143          for (m = 1; m <= k; m++)
   144          {  /* do while V != W; since here V is within W, we can use
   145                equivalent condition: do while |V| < |W| */
   146             if (V->size == W->size) break;
   147             /* check if C[m] is within W */
   148             for (a = H->v[n + m]->in; a != NULL; a = a->h_next)
   149             {  j = a->tail->i;
   150                if (W->pos[j] == 0) break;
   151             }
   152             if (a != NULL) continue;
   153             /* C[m] is within W, expand clique C[m] with vertex i */
   154             /* C[m] := C[m] union {i} */
   155             glp_add_arc(H, i, n + m);
   156             /* V is a set of vertices whose incident edges are already
   157                covered by existing cliques */
   158             /* V := V union C[m] */
   159             for (a = H->v[n + m]->in; a != NULL; a = a->h_next)
   160             {  j = a->tail->i;
   161                if (V->pos[j] == 0)
   162                   V->list[++V->size] = j, V->pos[j] = V->size;
   163             }
   164          }
   165          /* remove from set W the vertices whose incident edges are
   166             already covered by existing cliques */
   167          /* W := W \ V, V := 0 */
   168          for (t = 1; t <= V->size; t++)
   169          {  j = V->list[t], V->pos[j] = 0;
   170             if (W->pos[j] != 0)
   171             {  /* remove vertex j from W */
   172                if (W->pos[j] != W->size)
   173                {  int jj = W->list[W->size];
   174                   W->list[W->pos[j]] = jj;
   175                   W->pos[jj] = W->pos[j];
   176                }
   177                W->size--, W->pos[j] = 0;
   178             }
   179          }
   180          V->size = 0;
   181          /* now set W contains only vertices whose incident edges are
   182             still not covered by existing cliques; create new cliques
   183             to cover remaining edges until set W becomes empty */
   184          while (W->size > 0)
   185          {  /* find clique C[m], 1 <= m <= k, which shares maximal
   186                number of vertices with W; to break ties choose clique
   187                having smallest number m */
   188             m = 0, best = -1;
   189             k = H->nv - n;
   190             for (t = 1; t <= k; t++)
   191             {  /* compute cardinality of intersection of W and C[t] */
   192                card = 0;
   193                for (a = H->v[n + t]->in; a != NULL; a = a->h_next)
   194                {  j = a->tail->i;
   195                   if (W->pos[j] != 0) card++;
   196                }
   197                if (best < card)
   198                   m = t, best = card;
   199             }
   200             xassert(m > 0);
   201             /* set k := k + 1 and create new clique:
   202                C[k] := (W intersect C[m]) union { i }, which covers all
   203                edges incident to vertices from (W intersect C[m]) */
   204             k = glp_add_vertices(H, 1) - n;
   205             for (a = H->v[n + m]->in; a != NULL; a = a->h_next)
   206             {  j = a->tail->i;
   207                if (W->pos[j] != 0)
   208                {  /* vertex j is in both W and C[m]; include it in new
   209                      clique C[k] */
   210                   glp_add_arc(H, j, n + k);
   211                   /* remove vertex j from W, since edge (i,j) will be
   212                      covered by new clique C[k] */
   213                   if (W->pos[j] != W->size)
   214                   {  int jj = W->list[W->size];
   215                      W->list[W->pos[j]] = jj;
   216                      W->pos[jj] = W->pos[j];
   217                   }
   218                   W->size--, W->pos[j] = 0;
   219                }
   220             }
   221             /* include vertex i to new clique C[k] to cover edges (i,j)
   222                incident to all vertices j just removed from W */
   223             glp_add_arc(H, i, n + k);
   224          }
   225       }
   226       /* free working arrays */
   227       xfree(W->list);
   228       xfree(W->pos);
   229       xfree(V->list);
   230       xfree(V->pos);
   231       /* return the number of cliques in the edge covering found */
   232       return H->nv - n;
   233 }
   234 
   235 /* eof */