src/glpnpp03.c
author Alpar Juttner <alpar@cs.elte.hu>
Sun, 05 Dec 2010 17:35:23 +0100
changeset 2 4c8956a7bdf4
permissions -rw-r--r--
Set up CMAKE build environment
     1 /* glpnpp03.c */
     2 
     3 /***********************************************************************
     4 *  This code is part of GLPK (GNU Linear Programming Kit).
     5 *
     6 *  Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
     7 *  2009, 2010 Andrew Makhorin, Department for Applied Informatics,
     8 *  Moscow Aviation Institute, Moscow, Russia. All rights reserved.
     9 *  E-mail: <mao@gnu.org>.
    10 *
    11 *  GLPK is free software: you can redistribute it and/or modify it
    12 *  under the terms of the GNU General Public License as published by
    13 *  the Free Software Foundation, either version 3 of the License, or
    14 *  (at your option) any later version.
    15 *
    16 *  GLPK is distributed in the hope that it will be useful, but WITHOUT
    17 *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
    18 *  or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
    19 *  License for more details.
    20 *
    21 *  You should have received a copy of the GNU General Public License
    22 *  along with GLPK. If not, see <http://www.gnu.org/licenses/>.
    23 ***********************************************************************/
    24 
    25 #include "glpnpp.h"
    26 
    27 /***********************************************************************
    28 *  NAME
    29 *
    30 *  npp_empty_row - process empty row
    31 *
    32 *  SYNOPSIS
    33 *
    34 *  #include "glpnpp.h"
    35 *  int npp_empty_row(NPP *npp, NPPROW *p);
    36 *
    37 *  DESCRIPTION
    38 *
    39 *  The routine npp_empty_row processes row p, which is empty, i.e.
    40 *  coefficients at all columns in this row are zero:
    41 *
    42 *     L[p] <= sum 0 x[j] <= U[p],                                    (1)
    43 *
    44 *  where L[p] <= U[p].
    45 *
    46 *  RETURNS
    47 *
    48 *  0 - success;
    49 *
    50 *  1 - problem has no primal feasible solution.
    51 *
    52 *  PROBLEM TRANSFORMATION
    53 *
    54 *  If the following conditions hold:
    55 *
    56 *     L[p] <= +eps,  U[p] >= -eps,                                   (2)
    57 *
    58 *  where eps is an absolute tolerance for row value, the row p is
    59 *  redundant. In this case it can be replaced by equivalent redundant
    60 *  row, which is free (unbounded), and then removed from the problem.
    61 *  Otherwise, the row p is infeasible and, thus, the problem has no
    62 *  primal feasible solution.
    63 *
    64 *  RECOVERING BASIC SOLUTION
    65 *
    66 *  See the routine npp_free_row.
    67 *
    68 *  RECOVERING INTERIOR-POINT SOLUTION
    69 *
    70 *  See the routine npp_free_row.
    71 *
    72 *  RECOVERING MIP SOLUTION
    73 *
    74 *  None needed. */
    75 
    76 int npp_empty_row(NPP *npp, NPPROW *p)
    77 {     /* process empty row */
    78       double eps = 1e-3;
    79       /* the row must be empty */
    80       xassert(p->ptr == NULL);
    81       /* check primal feasibility */
    82       if (p->lb > +eps || p->ub < -eps)
    83          return 1;
    84       /* replace the row by equivalent free (unbounded) row */
    85       p->lb = -DBL_MAX, p->ub = +DBL_MAX;
    86       /* and process it */
    87       npp_free_row(npp, p);
    88       return 0;
    89 }
    90 
    91 /***********************************************************************
    92 *  NAME
    93 *
    94 *  npp_empty_col - process empty column
    95 *
    96 *  SYNOPSIS
    97 *
    98 *  #include "glpnpp.h"
    99 *  int npp_empty_col(NPP *npp, NPPCOL *q);
   100 *
   101 *  DESCRIPTION
   102 *
   103 *  The routine npp_empty_col processes column q:
   104 *
   105 *     l[q] <= x[q] <= u[q],                                          (1)
   106 *
   107 *  where l[q] <= u[q], which is empty, i.e. has zero coefficients in
   108 *  all constraint rows.
   109 *
   110 *  RETURNS
   111 *
   112 *  0 - success;
   113 *
   114 *  1 - problem has no dual feasible solution.
   115 *
   116 *  PROBLEM TRANSFORMATION
   117 *
   118 *  The row of the dual system corresponding to the empty column is the
   119 *  following:
   120 *
   121 *     sum 0 pi[i] + lambda[q] = c[q],                                (2)
   122 *      i
   123 *
   124 *  from which it follows that:
   125 *
   126 *     lambda[q] = c[q].                                              (3)
   127 *
   128 *  If the following condition holds:
   129 *
   130 *     c[q] < - eps,                                                  (4)
   131 *
   132 *  where eps is an absolute tolerance for column multiplier, the lower
   133 *  column bound l[q] must be active to provide dual feasibility (note
   134 *  that being preprocessed the problem is always minimization). In this
   135 *  case the column can be fixed on its lower bound and removed from the
   136 *  problem (if the column is integral, its bounds are also assumed to
   137 *  be integral). And if the column has no lower bound (l[q] = -oo), the
   138 *  problem has no dual feasible solution.
   139 *
   140 *  If the following condition holds:
   141 *
   142 *     c[q] > + eps,                                                  (5)
   143 *
   144 *  the upper column bound u[q] must be active to provide dual
   145 *  feasibility. In this case the column can be fixed on its upper bound
   146 *  and removed from the problem. And if the column has no upper bound
   147 *  (u[q] = +oo), the problem has no dual feasible solution.
   148 *
   149 *  Finally, if the following condition holds:
   150 *
   151 *     - eps <= c[q] <= +eps,                                         (6)
   152 *
   153 *  dual feasibility does not depend on a particular value of column q.
   154 *  In this case the column can be fixed either on its lower bound (if
   155 *  l[q] > -oo) or on its upper bound (if u[q] < +oo) or at zero (if the
   156 *  column is unbounded) and then removed from the problem.
   157 *
   158 *  RECOVERING BASIC SOLUTION
   159 *
   160 *  See the routine npp_fixed_col. Having been recovered the column
   161 *  is assigned status GLP_NS. However, if actually it is not fixed
   162 *  (l[q] < u[q]), its status should be changed to GLP_NL, GLP_NU, or
   163 *  GLP_NF depending on which bound it was fixed on transformation stage.
   164 *
   165 *  RECOVERING INTERIOR-POINT SOLUTION
   166 *
   167 *  See the routine npp_fixed_col.
   168 *
   169 *  RECOVERING MIP SOLUTION
   170 *
   171 *  See the routine npp_fixed_col. */
   172 
   173 struct empty_col
   174 {     /* empty column */
   175       int q;
   176       /* column reference number */
   177       char stat;
   178       /* status in basic solution */
   179 };
   180 
   181 static int rcv_empty_col(NPP *npp, void *info);
   182 
   183 int npp_empty_col(NPP *npp, NPPCOL *q)
   184 {     /* process empty column */
   185       struct empty_col *info;
   186       double eps = 1e-3;
   187       /* the column must be empty */
   188       xassert(q->ptr == NULL);
   189       /* check dual feasibility */
   190       if (q->coef > +eps && q->lb == -DBL_MAX)
   191          return 1;
   192       if (q->coef < -eps && q->ub == +DBL_MAX)
   193          return 1;
   194       /* create transformation stack entry */
   195       info = npp_push_tse(npp,
   196          rcv_empty_col, sizeof(struct empty_col));
   197       info->q = q->j;
   198       /* fix the column */
   199       if (q->lb == -DBL_MAX && q->ub == +DBL_MAX)
   200       {  /* free column */
   201          info->stat = GLP_NF;
   202          q->lb = q->ub = 0.0;
   203       }
   204       else if (q->ub == +DBL_MAX)
   205 lo:   {  /* column with lower bound */
   206          info->stat = GLP_NL;
   207          q->ub = q->lb;
   208       }
   209       else if (q->lb == -DBL_MAX)
   210 up:   {  /* column with upper bound */
   211          info->stat = GLP_NU;
   212          q->lb = q->ub;
   213       }
   214       else if (q->lb != q->ub)
   215       {  /* double-bounded column */
   216          if (q->coef >= +DBL_EPSILON) goto lo;
   217          if (q->coef <= -DBL_EPSILON) goto up;
   218          if (fabs(q->lb) <= fabs(q->ub)) goto lo; else goto up;
   219       }
   220       else
   221       {  /* fixed column */
   222          info->stat = GLP_NS;
   223       }
   224       /* process fixed column */
   225       npp_fixed_col(npp, q);
   226       return 0;
   227 }
   228 
   229 static int rcv_empty_col(NPP *npp, void *_info)
   230 {     /* recover empty column */
   231       struct empty_col *info = _info;
   232       if (npp->sol == GLP_SOL)
   233          npp->c_stat[info->q] = info->stat;
   234       return 0;
   235 }
   236 
   237 /***********************************************************************
   238 *  NAME
   239 *
   240 *  npp_implied_value - process implied column value
   241 *
   242 *  SYNOPSIS
   243 *
   244 *  #include "glpnpp.h"
   245 *  int npp_implied_value(NPP *npp, NPPCOL *q, double s);
   246 *
   247 *  DESCRIPTION
   248 *
   249 *  For column q:
   250 *
   251 *     l[q] <= x[q] <= u[q],                                          (1)
   252 *
   253 *  where l[q] < u[q], the routine npp_implied_value processes its
   254 *  implied value s[q]. If this implied value satisfies to the current
   255 *  column bounds and integrality condition, the routine fixes column q
   256 *  at the given point. Note that the column is kept in the problem in
   257 *  any case.
   258 *
   259 *  RETURNS
   260 *
   261 *  0 - column has been fixed;
   262 *
   263 *  1 - implied value violates to current column bounds;
   264 *
   265 *  2 - implied value violates integrality condition.
   266 *
   267 *  ALGORITHM
   268 *
   269 *  Implied column value s[q] satisfies to the current column bounds if
   270 *  the following condition holds:
   271 *
   272 *     l[q] - eps <= s[q] <= u[q] + eps,                              (2)
   273 *
   274 *  where eps is an absolute tolerance for column value. If the column
   275 *  is integral, the following condition also must hold:
   276 *
   277 *     |s[q] - floor(s[q]+0.5)| <= eps,                               (3)
   278 *
   279 *  where floor(s[q]+0.5) is the nearest integer to s[q].
   280 *
   281 *  If both condition (2) and (3) are satisfied, the column can be fixed
   282 *  at the value s[q], or, if it is integral, at floor(s[q]+0.5).
   283 *  Otherwise, if s[q] violates (2) or (3), the problem has no feasible
   284 *  solution.
   285 *
   286 *  Note: If s[q] is close to l[q] or u[q], it seems to be reasonable to
   287 *  fix the column at its lower or upper bound, resp. rather than at the
   288 *  implied value. */
   289 
   290 int npp_implied_value(NPP *npp, NPPCOL *q, double s)
   291 {     /* process implied column value */
   292       double eps, nint;
   293       xassert(npp == npp);
   294       /* column must not be fixed */
   295       xassert(q->lb < q->ub);
   296       /* check integrality */
   297       if (q->is_int)
   298       {  nint = floor(s + 0.5);
   299          if (fabs(s - nint) <= 1e-5)
   300             s = nint;
   301          else
   302             return 2;
   303       }
   304       /* check current column lower bound */
   305       if (q->lb != -DBL_MAX)
   306       {  eps = (q->is_int ? 1e-5 : 1e-5 + 1e-8 * fabs(q->lb));
   307          if (s < q->lb - eps) return 1;
   308          /* if s[q] is close to l[q], fix column at its lower bound
   309             rather than at the implied value */
   310          if (s < q->lb + 1e-3 * eps)
   311          {  q->ub = q->lb;
   312             return 0;
   313          }
   314       }
   315       /* check current column upper bound */
   316       if (q->ub != +DBL_MAX)
   317       {  eps = (q->is_int ? 1e-5 : 1e-5 + 1e-8 * fabs(q->ub));
   318          if (s > q->ub + eps) return 1;
   319          /* if s[q] is close to u[q], fix column at its upper bound
   320             rather than at the implied value */
   321          if (s > q->ub - 1e-3 * eps)
   322          {  q->lb = q->ub;
   323             return 0;
   324          }
   325       }
   326       /* fix column at the implied value */
   327       q->lb = q->ub = s;
   328       return 0;
   329 }
   330 
   331 /***********************************************************************
   332 *  NAME
   333 *
   334 *  npp_eq_singlet - process row singleton (equality constraint)
   335 *
   336 *  SYNOPSIS
   337 *
   338 *  #include "glpnpp.h"
   339 *  int npp_eq_singlet(NPP *npp, NPPROW *p);
   340 *
   341 *  DESCRIPTION
   342 *
   343 *  The routine npp_eq_singlet processes row p, which is equiality
   344 *  constraint having the only non-zero coefficient:
   345 *
   346 *     a[p,q] x[q] = b.                                               (1)
   347 *
   348 *  RETURNS
   349 *
   350 *  0 - success;
   351 *
   352 *  1 - problem has no primal feasible solution;
   353 *
   354 *  2 - problem has no integer feasible solution.
   355 *
   356 *  PROBLEM TRANSFORMATION
   357 *
   358 *  The equality constraint defines implied value of column q:
   359 *
   360 *     x[q] = s[q] = b / a[p,q].                                      (2)
   361 *
   362 *  If the implied value s[q] satisfies to the column bounds (see the
   363 *  routine npp_implied_value), the column can be fixed at s[q] and
   364 *  removed from the problem. In this case row p becomes redundant, so
   365 *  it can be replaced by equivalent free row and also removed from the
   366 *  problem.
   367 *
   368 *  Note that the routine removes from the problem only row p. Column q
   369 *  becomes fixed, however, it is kept in the problem.
   370 *
   371 *  RECOVERING BASIC SOLUTION
   372 *
   373 *  In solution to the original problem row p is assigned status GLP_NS
   374 *  (active equality constraint), and column q is assigned status GLP_BS
   375 *  (basic column).
   376 *
   377 *  Multiplier for row p can be computed as follows. In the dual system
   378 *  of the original problem column q corresponds to the following row:
   379 *
   380 *     sum a[i,q] pi[i] + lambda[q] = c[q]  ==>
   381 *      i
   382 *
   383 *     sum a[i,q] pi[i] + a[p,q] pi[p] + lambda[q] = c[q].
   384 *     i!=p
   385 *
   386 *  Therefore:
   387 *
   388 *               1
   389 *     pi[p] = ------ (c[q] - lambda[q] - sum a[i,q] pi[i]),          (3)
   390 *             a[p,q]                     i!=q
   391 *
   392 *  where lambda[q] = 0 (since column[q] is basic), and pi[i] for all
   393 *  i != p are known in solution to the transformed problem.
   394 *
   395 *  Value of column q in solution to the original problem is assigned
   396 *  its implied value s[q].
   397 *
   398 *  RECOVERING INTERIOR-POINT SOLUTION
   399 *
   400 *  Multiplier for row p is computed with formula (3). Value of column
   401 *  q is assigned its implied value s[q].
   402 *
   403 *  RECOVERING MIP SOLUTION
   404 *
   405 *  Value of column q is assigned its implied value s[q]. */
   406 
   407 struct eq_singlet
   408 {     /* row singleton (equality constraint) */
   409       int p;
   410       /* row reference number */
   411       int q;
   412       /* column reference number */
   413       double apq;
   414       /* constraint coefficient a[p,q] */
   415       double c;
   416       /* objective coefficient at x[q] */
   417       NPPLFE *ptr;
   418       /* list of non-zero coefficients a[i,q], i != p */
   419 };
   420 
   421 static int rcv_eq_singlet(NPP *npp, void *info);
   422 
   423 int npp_eq_singlet(NPP *npp, NPPROW *p)
   424 {     /* process row singleton (equality constraint) */
   425       struct eq_singlet *info;
   426       NPPCOL *q;
   427       NPPAIJ *aij;
   428       NPPLFE *lfe;
   429       int ret;
   430       double s;
   431       /* the row must be singleton equality constraint */
   432       xassert(p->lb == p->ub);
   433       xassert(p->ptr != NULL && p->ptr->r_next == NULL);
   434       /* compute and process implied column value */
   435       aij = p->ptr;
   436       q = aij->col;
   437       s = p->lb / aij->val;
   438       ret = npp_implied_value(npp, q, s);
   439       xassert(0 <= ret && ret <= 2);
   440       if (ret != 0) return ret;
   441       /* create transformation stack entry */
   442       info = npp_push_tse(npp,
   443          rcv_eq_singlet, sizeof(struct eq_singlet));
   444       info->p = p->i;
   445       info->q = q->j;
   446       info->apq = aij->val;
   447       info->c = q->coef;
   448       info->ptr = NULL;
   449       /* save column coefficients a[i,q], i != p (not needed for MIP
   450          solution) */
   451       if (npp->sol != GLP_MIP)
   452       {  for (aij = q->ptr; aij != NULL; aij = aij->c_next)
   453          {  if (aij->row == p) continue; /* skip a[p,q] */
   454             lfe = dmp_get_atom(npp->stack, sizeof(NPPLFE));
   455             lfe->ref = aij->row->i;
   456             lfe->val = aij->val;
   457             lfe->next = info->ptr;
   458             info->ptr = lfe;
   459          }
   460       }
   461       /* remove the row from the problem */
   462       npp_del_row(npp, p);
   463       return 0;
   464 }
   465 
   466 static int rcv_eq_singlet(NPP *npp, void *_info)
   467 {     /* recover row singleton (equality constraint) */
   468       struct eq_singlet *info = _info;
   469       NPPLFE *lfe;
   470       double temp;
   471       if (npp->sol == GLP_SOL)
   472       {  /* column q must be already recovered as GLP_NS */
   473          if (npp->c_stat[info->q] != GLP_NS)
   474          {  npp_error();
   475             return 1;
   476          }
   477          npp->r_stat[info->p] = GLP_NS;
   478          npp->c_stat[info->q] = GLP_BS;
   479       }
   480       if (npp->sol != GLP_MIP)
   481       {  /* compute multiplier for row p with formula (3) */
   482          temp = info->c;
   483          for (lfe = info->ptr; lfe != NULL; lfe = lfe->next)
   484             temp -= lfe->val * npp->r_pi[lfe->ref];
   485          npp->r_pi[info->p] = temp / info->apq;
   486       }
   487       return 0;
   488 }
   489 
   490 /***********************************************************************
   491 *  NAME
   492 *
   493 *  npp_implied_lower - process implied column lower bound
   494 *
   495 *  SYNOPSIS
   496 *
   497 *  #include "glpnpp.h"
   498 *  int npp_implied_lower(NPP *npp, NPPCOL *q, double l);
   499 *
   500 *  DESCRIPTION
   501 *
   502 *  For column q:
   503 *
   504 *     l[q] <= x[q] <= u[q],                                          (1)
   505 *
   506 *  where l[q] < u[q], the routine npp_implied_lower processes its
   507 *  implied lower bound l'[q]. As the result the current column lower
   508 *  bound may increase. Note that the column is kept in the problem in
   509 *  any case.
   510 *
   511 *  RETURNS
   512 *
   513 *  0 - current column lower bound has not changed;
   514 *
   515 *  1 - current column lower bound has changed, but not significantly;
   516 *
   517 *  2 - current column lower bound has significantly changed;
   518 *
   519 *  3 - column has been fixed on its upper bound;
   520 *
   521 *  4 - implied lower bound violates current column upper bound.
   522 *
   523 *  ALGORITHM
   524 *
   525 *  If column q is integral, before processing its implied lower bound
   526 *  should be rounded up:
   527 *
   528 *              ( floor(l'[q]+0.5), if |l'[q] - floor(l'[q]+0.5)| <= eps
   529 *     l'[q] := <                                                     (2)
   530 *              ( ceil(l'[q]),      otherwise
   531 *
   532 *  where floor(l'[q]+0.5) is the nearest integer to l'[q], ceil(l'[q])
   533 *  is smallest integer not less than l'[q], and eps is an absolute
   534 *  tolerance for column value.
   535 *
   536 *  Processing implied column lower bound l'[q] includes the following
   537 *  cases:
   538 *
   539 *  1) if l'[q] < l[q] + eps, implied lower bound is redundant;
   540 *
   541 *  2) if l[q] + eps <= l[q] <= u[q] + eps, current column lower bound
   542 *     l[q] can be strengthened by replacing it with l'[q]. If in this
   543 *     case new column lower bound becomes close to current column upper
   544 *     bound u[q], the column can be fixed on its upper bound;
   545 *
   546 *  3) if l'[q] > u[q] + eps, implied lower bound violates current
   547 *     column upper bound u[q], in which case the problem has no primal
   548 *     feasible solution. */
   549 
   550 int npp_implied_lower(NPP *npp, NPPCOL *q, double l)
   551 {     /* process implied column lower bound */
   552       int ret;
   553       double eps, nint;
   554       xassert(npp == npp);
   555       /* column must not be fixed */
   556       xassert(q->lb < q->ub);
   557       /* implied lower bound must be finite */
   558       xassert(l != -DBL_MAX);
   559       /* if column is integral, round up l'[q] */
   560       if (q->is_int)
   561       {  nint = floor(l + 0.5);
   562          if (fabs(l - nint) <= 1e-5)
   563             l = nint;
   564          else
   565             l = ceil(l);
   566       }
   567       /* check current column lower bound */
   568       if (q->lb != -DBL_MAX)
   569       {  eps = (q->is_int ? 1e-3 : 1e-3 + 1e-6 * fabs(q->lb));
   570          if (l < q->lb + eps)
   571          {  ret = 0; /* redundant */
   572             goto done;
   573          }
   574       }
   575       /* check current column upper bound */
   576       if (q->ub != +DBL_MAX)
   577       {  eps = (q->is_int ? 1e-5 : 1e-5 + 1e-8 * fabs(q->ub));
   578          if (l > q->ub + eps)
   579          {  ret = 4; /* infeasible */
   580             goto done;
   581          }
   582          /* if l'[q] is close to u[q], fix column at its upper bound */
   583          if (l > q->ub - 1e-3 * eps)
   584          {  q->lb = q->ub;
   585             ret = 3; /* fixed */
   586             goto done;
   587          }
   588       }
   589       /* check if column lower bound changes significantly */
   590       if (q->lb == -DBL_MAX)
   591          ret = 2; /* significantly */
   592       else if (q->is_int && l > q->lb + 0.5)
   593          ret = 2; /* significantly */
   594       else if (l > q->lb + 0.30 * (1.0 + fabs(q->lb)))
   595          ret = 2; /* significantly */
   596       else
   597          ret = 1; /* not significantly */
   598       /* set new column lower bound */
   599       q->lb = l;
   600 done: return ret;
   601 }
   602 
   603 /***********************************************************************
   604 *  NAME
   605 *
   606 *  npp_implied_upper - process implied column upper bound
   607 *
   608 *  SYNOPSIS
   609 *
   610 *  #include "glpnpp.h"
   611 *  int npp_implied_upper(NPP *npp, NPPCOL *q, double u);
   612 *
   613 *  DESCRIPTION
   614 *
   615 *  For column q:
   616 *
   617 *     l[q] <= x[q] <= u[q],                                          (1)
   618 *
   619 *  where l[q] < u[q], the routine npp_implied_upper processes its
   620 *  implied upper bound u'[q]. As the result the current column upper
   621 *  bound may decrease. Note that the column is kept in the problem in
   622 *  any case.
   623 *
   624 *  RETURNS
   625 *
   626 *  0 - current column upper bound has not changed;
   627 *
   628 *  1 - current column upper bound has changed, but not significantly;
   629 *
   630 *  2 - current column upper bound has significantly changed;
   631 *
   632 *  3 - column has been fixed on its lower bound;
   633 *
   634 *  4 - implied upper bound violates current column lower bound.
   635 *
   636 *  ALGORITHM
   637 *
   638 *  If column q is integral, before processing its implied upper bound
   639 *  should be rounded down:
   640 *
   641 *              ( floor(u'[q]+0.5), if |u'[q] - floor(l'[q]+0.5)| <= eps
   642 *     u'[q] := <                                                     (2)
   643 *              ( floor(l'[q]),     otherwise
   644 *
   645 *  where floor(u'[q]+0.5) is the nearest integer to u'[q],
   646 *  floor(u'[q]) is largest integer not greater than u'[q], and eps is
   647 *  an absolute tolerance for column value.
   648 *
   649 *  Processing implied column upper bound u'[q] includes the following
   650 *  cases:
   651 *
   652 *  1) if u'[q] > u[q] - eps, implied upper bound is redundant;
   653 *
   654 *  2) if l[q] - eps <= u[q] <= u[q] - eps, current column upper bound
   655 *     u[q] can be strengthened by replacing it with u'[q]. If in this
   656 *     case new column upper bound becomes close to current column lower
   657 *     bound, the column can be fixed on its lower bound;
   658 *
   659 *  3) if u'[q] < l[q] - eps, implied upper bound violates current
   660 *     column lower bound l[q], in which case the problem has no primal
   661 *     feasible solution. */
   662 
   663 int npp_implied_upper(NPP *npp, NPPCOL *q, double u)
   664 {     int ret;
   665       double eps, nint;
   666       xassert(npp == npp);
   667       /* column must not be fixed */
   668       xassert(q->lb < q->ub);
   669       /* implied upper bound must be finite */
   670       xassert(u != +DBL_MAX);
   671       /* if column is integral, round down u'[q] */
   672       if (q->is_int)
   673       {  nint = floor(u + 0.5);
   674          if (fabs(u - nint) <= 1e-5)
   675             u = nint;
   676          else
   677             u = floor(u);
   678       }
   679       /* check current column upper bound */
   680       if (q->ub != +DBL_MAX)
   681       {  eps = (q->is_int ? 1e-3 : 1e-3 + 1e-6 * fabs(q->ub));
   682          if (u > q->ub - eps)
   683          {  ret = 0; /* redundant */
   684             goto done;
   685          }
   686       }
   687       /* check current column lower bound */
   688       if (q->lb != -DBL_MAX)
   689       {  eps = (q->is_int ? 1e-5 : 1e-5 + 1e-8 * fabs(q->lb));
   690          if (u < q->lb - eps)
   691          {  ret = 4; /* infeasible */
   692             goto done;
   693          }
   694          /* if u'[q] is close to l[q], fix column at its lower bound */
   695          if (u < q->lb + 1e-3 * eps)
   696          {  q->ub = q->lb;
   697             ret = 3; /* fixed */
   698             goto done;
   699          }
   700       }
   701       /* check if column upper bound changes significantly */
   702       if (q->ub == +DBL_MAX)
   703          ret = 2; /* significantly */
   704       else if (q->is_int && u < q->ub - 0.5)
   705          ret = 2; /* significantly */
   706       else if (u < q->ub - 0.30 * (1.0 + fabs(q->ub)))
   707          ret = 2; /* significantly */
   708       else
   709          ret = 1; /* not significantly */
   710       /* set new column upper bound */
   711       q->ub = u;
   712 done: return ret;
   713 }
   714 
   715 /***********************************************************************
   716 *  NAME
   717 *
   718 *  npp_ineq_singlet - process row singleton (inequality constraint)
   719 *
   720 *  SYNOPSIS
   721 *
   722 *  #include "glpnpp.h"
   723 *  int npp_ineq_singlet(NPP *npp, NPPROW *p);
   724 *
   725 *  DESCRIPTION
   726 *
   727 *  The routine npp_ineq_singlet processes row p, which is inequality
   728 *  constraint having the only non-zero coefficient:
   729 *
   730 *     L[p] <= a[p,q] * x[q] <= U[p],                                 (1)
   731 *
   732 *  where L[p] < U[p], L[p] > -oo and/or U[p] < +oo.
   733 *
   734 *  RETURNS
   735 *
   736 *  0 - current column bounds have not changed;
   737 *
   738 *  1 - current column bounds have changed, but not significantly;
   739 *
   740 *  2 - current column bounds have significantly changed;
   741 *
   742 *  3 - column has been fixed on its lower or upper bound;
   743 *
   744 *  4 - problem has no primal feasible solution.
   745 *
   746 *  PROBLEM TRANSFORMATION
   747 *
   748 *  Inequality constraint (1) defines implied bounds of column q:
   749 *
   750 *             (  L[p] / a[p,q],  if a[p,q] > 0
   751 *     l'[q] = <                                                      (2)
   752 *             (  U[p] / a[p,q],  if a[p,q] < 0
   753 *
   754 *             (  U[p] / a[p,q],  if a[p,q] > 0
   755 *     u'[q] = <                                                      (3)
   756 *             (  L[p] / a[p,q],  if a[p,q] < 0
   757 *
   758 *  If these implied bounds do not violate current bounds of column q:
   759 *
   760 *     l[q] <= x[q] <= u[q],                                          (4)
   761 *
   762 *  they can be used to strengthen the current column bounds:
   763 *
   764 *     l[q] := max(l[q], l'[q]),                                      (5)
   765 *
   766 *     u[q] := min(u[q], u'[q]).                                      (6)
   767 *
   768 *  (See the routines npp_implied_lower and npp_implied_upper.)
   769 *
   770 *  Once bounds of row p (1) have been carried over column q, the row
   771 *  becomes redundant, so it can be replaced by equivalent free row and
   772 *  removed from the problem.
   773 *
   774 *  Note that the routine removes from the problem only row p. Column q,
   775 *  even it has been fixed, is kept in the problem.
   776 *
   777 *  RECOVERING BASIC SOLUTION
   778 *
   779 *  Note that the row in the dual system corresponding to column q is
   780 *  the following:
   781 *
   782 *     sum a[i,q] pi[i] + lambda[q] = c[q]  ==>
   783 *      i
   784 *                                                                    (7)
   785 *     sum a[i,q] pi[i] + a[p,q] pi[p] + lambda[q] = c[q],
   786 *     i!=p
   787 *
   788 *  where pi[i] for all i != p are known in solution to the transformed
   789 *  problem. Row p does not exist in the transformed problem, so it has
   790 *  zero multiplier there. This allows computing multiplier for column q
   791 *  in solution to the transformed problem:
   792 *
   793 *     lambda~[q] = c[q] - sum a[i,q] pi[i].                          (8)
   794 *                         i!=p
   795 *
   796 *  Let in solution to the transformed problem column q be non-basic
   797 *  with lower bound active (GLP_NL, lambda~[q] >= 0), and this lower
   798 *  bound be implied one l'[q]. From the original problem's standpoint
   799 *  this then means that actually the original column lower bound l[q]
   800 *  is inactive, and active is that row bound L[p] or U[p] that defines
   801 *  the implied bound l'[q] (2). In this case in solution to the
   802 *  original problem column q is assigned status GLP_BS while row p is
   803 *  assigned status GLP_NL (if a[p,q] > 0) or GLP_NU (if a[p,q] < 0).
   804 *  Since now column q is basic, its multiplier lambda[q] is zero. This
   805 *  allows using (7) and (8) to find multiplier for row p in solution to
   806 *  the original problem:
   807 *
   808 *               1
   809 *     pi[p] = ------ (c[q] - sum a[i,q] pi[i]) = lambda~[q] / a[p,q] (9)
   810 *             a[p,q]         i!=p
   811 *
   812 *  Now let in solution to the transformed problem column q be non-basic
   813 *  with upper bound active (GLP_NU, lambda~[q] <= 0), and this upper
   814 *  bound be implied one u'[q]. As in the previous case this then means
   815 *  that from the original problem's standpoint actually the original
   816 *  column upper bound u[q] is inactive, and active is that row bound
   817 *  L[p] or U[p] that defines the implied bound u'[q] (3). In this case
   818 *  in solution to the original problem column q is assigned status
   819 *  GLP_BS, row p is assigned status GLP_NU (if a[p,q] > 0) or GLP_NL
   820 *  (if a[p,q] < 0), and its multiplier is computed with formula (9).
   821 *
   822 *  Strengthening bounds of column q according to (5) and (6) may make
   823 *  it fixed. Thus, if in solution to the transformed problem column q is
   824 *  non-basic and fixed (GLP_NS), we can suppose that if lambda~[q] > 0,
   825 *  column q has active lower bound (GLP_NL), and if lambda~[q] < 0,
   826 *  column q has active upper bound (GLP_NU), reducing this case to two
   827 *  previous ones. If, however, lambda~[q] is close to zero or
   828 *  corresponding bound of row p does not exist (this may happen if
   829 *  lambda~[q] has wrong sign due to round-off errors, in which case it
   830 *  is expected to be close to zero, since solution is assumed to be dual
   831 *  feasible), column q can be assigned status GLP_BS (basic), and row p
   832 *  can be made active on its existing bound. In the latter case row
   833 *  multiplier pi[p] computed with formula (9) will be also close to
   834 *  zero, and dual feasibility will be kept.
   835 *
   836 *  In all other cases, namely, if in solution to the transformed
   837 *  problem column q is basic (GLP_BS), or non-basic with original lower
   838 *  bound l[q] active (GLP_NL), or non-basic with original upper bound
   839 *  u[q] active (GLP_NU), constraint (1) is inactive. So in solution to
   840 *  the original problem status of column q remains unchanged, row p is
   841 *  assigned status GLP_BS, and its multiplier pi[p] is assigned zero
   842 *  value.
   843 *
   844 *  RECOVERING INTERIOR-POINT SOLUTION
   845 *
   846 *  First, value of multiplier for column q in solution to the original
   847 *  problem is computed with formula (8). If lambda~[q] > 0 and column q
   848 *  has implied lower bound, or if lambda~[q] < 0 and column q has
   849 *  implied upper bound, this means that from the original problem's
   850 *  standpoint actually row p has corresponding active bound, in which
   851 *  case its multiplier pi[p] is computed with formula (9). In other
   852 *  cases, when the sign of lambda~[q] corresponds to original bound of
   853 *  column q, or when lambda~[q] =~ 0, value of row multiplier pi[p] is
   854 *  assigned zero value.
   855 *
   856 *  RECOVERING MIP SOLUTION
   857 *
   858 *  None needed. */
   859 
   860 struct ineq_singlet
   861 {     /* row singleton (inequality constraint) */
   862       int p;
   863       /* row reference number */
   864       int q;
   865       /* column reference number */
   866       double apq;
   867       /* constraint coefficient a[p,q] */
   868       double c;
   869       /* objective coefficient at x[q] */
   870       double lb;
   871       /* row lower bound */
   872       double ub;
   873       /* row upper bound */
   874       char lb_changed;
   875       /* this flag is set if column lower bound was changed */
   876       char ub_changed;
   877       /* this flag is set if column upper bound was changed */
   878       NPPLFE *ptr;
   879       /* list of non-zero coefficients a[i,q], i != p */
   880 };
   881 
   882 static int rcv_ineq_singlet(NPP *npp, void *info);
   883 
   884 int npp_ineq_singlet(NPP *npp, NPPROW *p)
   885 {     /* process row singleton (inequality constraint) */
   886       struct ineq_singlet *info;
   887       NPPCOL *q;
   888       NPPAIJ *apq, *aij;
   889       NPPLFE *lfe;
   890       int lb_changed, ub_changed;
   891       double ll, uu;
   892       /* the row must be singleton inequality constraint */
   893       xassert(p->lb != -DBL_MAX || p->ub != +DBL_MAX);
   894       xassert(p->lb < p->ub);
   895       xassert(p->ptr != NULL && p->ptr->r_next == NULL);
   896       /* compute implied column bounds */
   897       apq = p->ptr;
   898       q = apq->col;
   899       xassert(q->lb < q->ub);
   900       if (apq->val > 0.0)
   901       {  ll = (p->lb == -DBL_MAX ? -DBL_MAX : p->lb / apq->val);
   902          uu = (p->ub == +DBL_MAX ? +DBL_MAX : p->ub / apq->val);
   903       }
   904       else
   905       {  ll = (p->ub == +DBL_MAX ? -DBL_MAX : p->ub / apq->val);
   906          uu = (p->lb == -DBL_MAX ? +DBL_MAX : p->lb / apq->val);
   907       }
   908       /* process implied column lower bound */
   909       if (ll == -DBL_MAX)
   910          lb_changed = 0;
   911       else
   912       {  lb_changed = npp_implied_lower(npp, q, ll);
   913          xassert(0 <= lb_changed && lb_changed <= 4);
   914          if (lb_changed == 4) return 4; /* infeasible */
   915       }
   916       /* process implied column upper bound */
   917       if (uu == +DBL_MAX)
   918          ub_changed = 0;
   919       else if (lb_changed == 3)
   920       {  /* column was fixed on its upper bound due to l'[q] = u[q] */
   921          /* note that L[p] < U[p], so l'[q] = u[q] < u'[q] */
   922          ub_changed = 0;
   923       }
   924       else
   925       {  ub_changed = npp_implied_upper(npp, q, uu);
   926          xassert(0 <= ub_changed && ub_changed <= 4);
   927          if (ub_changed == 4) return 4; /* infeasible */
   928       }
   929       /* if neither lower nor upper column bound was changed, the row
   930          is originally redundant and can be replaced by free row */
   931       if (!lb_changed && !ub_changed)
   932       {  p->lb = -DBL_MAX, p->ub = +DBL_MAX;
   933          npp_free_row(npp, p);
   934          return 0;
   935       }
   936       /* create transformation stack entry */
   937       info = npp_push_tse(npp,
   938          rcv_ineq_singlet, sizeof(struct ineq_singlet));
   939       info->p = p->i;
   940       info->q = q->j;
   941       info->apq = apq->val;
   942       info->c = q->coef;
   943       info->lb = p->lb;
   944       info->ub = p->ub;
   945       info->lb_changed = (char)lb_changed;
   946       info->ub_changed = (char)ub_changed;
   947       info->ptr = NULL;
   948       /* save column coefficients a[i,q], i != p (not needed for MIP
   949          solution) */
   950       if (npp->sol != GLP_MIP)
   951       {  for (aij = q->ptr; aij != NULL; aij = aij->c_next)
   952          {  if (aij == apq) continue; /* skip a[p,q] */
   953             lfe = dmp_get_atom(npp->stack, sizeof(NPPLFE));
   954             lfe->ref = aij->row->i;
   955             lfe->val = aij->val;
   956             lfe->next = info->ptr;
   957             info->ptr = lfe;
   958          }
   959       }
   960       /* remove the row from the problem */
   961       npp_del_row(npp, p);
   962       return lb_changed >= ub_changed ? lb_changed : ub_changed;
   963 }
   964 
   965 static int rcv_ineq_singlet(NPP *npp, void *_info)
   966 {     /* recover row singleton (inequality constraint) */
   967       struct ineq_singlet *info = _info;
   968       NPPLFE *lfe;
   969       double lambda;
   970       if (npp->sol == GLP_MIP) goto done;
   971       /* compute lambda~[q] in solution to the transformed problem
   972          with formula (8) */
   973       lambda = info->c;
   974       for (lfe = info->ptr; lfe != NULL; lfe = lfe->next)
   975          lambda -= lfe->val * npp->r_pi[lfe->ref];
   976       if (npp->sol == GLP_SOL)
   977       {  /* recover basic solution */
   978          if (npp->c_stat[info->q] == GLP_BS)
   979          {  /* column q is basic, so row p is inactive */
   980             npp->r_stat[info->p] = GLP_BS;
   981             npp->r_pi[info->p] = 0.0;
   982          }
   983          else if (npp->c_stat[info->q] == GLP_NL)
   984 nl:      {  /* column q is non-basic with lower bound active */
   985             if (info->lb_changed)
   986             {  /* it is implied bound, so actually row p is active
   987                   while column q is basic */
   988                npp->r_stat[info->p] =
   989                   (char)(info->apq > 0.0 ? GLP_NL : GLP_NU);
   990                npp->c_stat[info->q] = GLP_BS;
   991                npp->r_pi[info->p] = lambda / info->apq;
   992             }
   993             else
   994             {  /* it is original bound, so row p is inactive */
   995                npp->r_stat[info->p] = GLP_BS;
   996                npp->r_pi[info->p] = 0.0;
   997             }
   998          }
   999          else if (npp->c_stat[info->q] == GLP_NU)
  1000 nu:      {  /* column q is non-basic with upper bound active */
  1001             if (info->ub_changed)
  1002             {  /* it is implied bound, so actually row p is active
  1003                   while column q is basic */
  1004                npp->r_stat[info->p] =
  1005                   (char)(info->apq > 0.0 ? GLP_NU : GLP_NL);
  1006                npp->c_stat[info->q] = GLP_BS;
  1007                npp->r_pi[info->p] = lambda / info->apq;
  1008             }
  1009             else
  1010             {  /* it is original bound, so row p is inactive */
  1011                npp->r_stat[info->p] = GLP_BS;
  1012                npp->r_pi[info->p] = 0.0;
  1013             }
  1014          }
  1015          else if (npp->c_stat[info->q] == GLP_NS)
  1016          {  /* column q is non-basic and fixed; note, however, that in
  1017                in the original problem it is non-fixed */
  1018             if (lambda > +1e-7)
  1019             {  if (info->apq > 0.0 && info->lb != -DBL_MAX ||
  1020                    info->apq < 0.0 && info->ub != +DBL_MAX ||
  1021                   !info->lb_changed)
  1022                {  /* either corresponding bound of row p exists or
  1023                      column q remains non-basic with its original lower
  1024                      bound active */
  1025                   npp->c_stat[info->q] = GLP_NL;
  1026                   goto nl;
  1027                }
  1028             }
  1029             if (lambda < -1e-7)
  1030             {  if (info->apq > 0.0 && info->ub != +DBL_MAX ||
  1031                    info->apq < 0.0 && info->lb != -DBL_MAX ||
  1032                   !info->ub_changed)
  1033                {  /* either corresponding bound of row p exists or
  1034                      column q remains non-basic with its original upper
  1035                      bound active */
  1036                   npp->c_stat[info->q] = GLP_NU;
  1037                   goto nu;
  1038                }
  1039             }
  1040             /* either lambda~[q] is close to zero, or corresponding
  1041                bound of row p does not exist, because lambda~[q] has
  1042                wrong sign due to round-off errors; in the latter case
  1043                lambda~[q] is also assumed to be close to zero; so, we
  1044                can make row p active on its existing bound and column q
  1045                basic; pi[p] will have wrong sign, but it also will be
  1046                close to zero (rarus casus of dual degeneracy) */
  1047             if (info->lb != -DBL_MAX && info->ub == +DBL_MAX)
  1048             {  /* row lower bound exists, but upper bound doesn't */
  1049                npp->r_stat[info->p] = GLP_NL;
  1050             }
  1051             else if (info->lb == -DBL_MAX && info->ub != +DBL_MAX)
  1052             {  /* row upper bound exists, but lower bound doesn't */
  1053                npp->r_stat[info->p] = GLP_NU;
  1054             }
  1055             else if (info->lb != -DBL_MAX && info->ub != +DBL_MAX)
  1056             {  /* both row lower and upper bounds exist */
  1057                /* to choose proper active row bound we should not use
  1058                   lambda~[q], because its value being close to zero is
  1059                   unreliable; so we choose that bound which provides
  1060                   primal feasibility for original constraint (1) */
  1061                if (info->apq * npp->c_value[info->q] <=
  1062                    0.5 * (info->lb + info->ub))
  1063                   npp->r_stat[info->p] = GLP_NL;
  1064                else
  1065                   npp->r_stat[info->p] = GLP_NU;
  1066             }
  1067             else
  1068             {  npp_error();
  1069                return 1;
  1070             }
  1071             npp->c_stat[info->q] = GLP_BS;
  1072             npp->r_pi[info->p] = lambda / info->apq;
  1073          }
  1074          else
  1075          {  npp_error();
  1076             return 1;
  1077          }
  1078       }
  1079       if (npp->sol == GLP_IPT)
  1080       {  /* recover interior-point solution */
  1081          if (lambda > +DBL_EPSILON && info->lb_changed ||
  1082              lambda < -DBL_EPSILON && info->ub_changed)
  1083          {  /* actually row p has corresponding active bound */
  1084             npp->r_pi[info->p] = lambda / info->apq;
  1085          }
  1086          else
  1087          {  /* either bounds of column q are both inactive or its
  1088                original bound is active */
  1089             npp->r_pi[info->p] = 0.0;
  1090          }
  1091       }
  1092 done: return 0;
  1093 }
  1094 
  1095 /***********************************************************************
  1096 *  NAME
  1097 *
  1098 *  npp_implied_slack - process column singleton (implied slack variable)
  1099 *
  1100 *  SYNOPSIS
  1101 *
  1102 *  #include "glpnpp.h"
  1103 *  void npp_implied_slack(NPP *npp, NPPCOL *q);
  1104 *
  1105 *  DESCRIPTION
  1106 *
  1107 *  The routine npp_implied_slack processes column q:
  1108 *
  1109 *     l[q] <= x[q] <= u[q],                                          (1)
  1110 *
  1111 *  where l[q] < u[q], having the only non-zero coefficient in row p,
  1112 *  which is equality constraint:
  1113 *
  1114 *     sum a[p,j] x[j] + a[p,q] x[q] = b.                             (2)
  1115 *     j!=q
  1116 *
  1117 *  PROBLEM TRANSFORMATION
  1118 *
  1119 *  (If x[q] is integral, this transformation must not be used.)
  1120 *
  1121 *  The term a[p,q] x[q] in constraint (2) can be considered as a slack
  1122 *  variable that allows to carry bounds of column q over row p and then
  1123 *  remove column q from the problem.
  1124 *
  1125 *  Constraint (2) can be written as follows:
  1126 *
  1127 *     sum a[p,j] x[j] = b - a[p,q] x[q].                             (3)
  1128 *     j!=q
  1129 *
  1130 *  According to (1) constraint (3) is equivalent to the following
  1131 *  inequality constraint:
  1132 *
  1133 *     L[p] <= sum a[p,j] x[j] <= U[p],                               (4)
  1134 *             j!=q
  1135 *
  1136 *  where
  1137 *
  1138 *            ( b - a[p,q] u[q],  if a[p,q] > 0
  1139 *     L[p] = <                                                       (5)
  1140 *            ( b - a[p,q] l[q],  if a[p,q] < 0
  1141 *
  1142 *            ( b - a[p,q] l[q],  if a[p,q] > 0
  1143 *     U[p] = <                                                       (6)
  1144 *            ( b - a[p,q] u[q],  if a[p,q] < 0
  1145 *
  1146 *  From (2) it follows that:
  1147 *
  1148 *              1
  1149 *     x[q] = ------ (b - sum a[p,j] x[j]).                           (7)
  1150 *            a[p,q]      j!=q
  1151 *
  1152 *  In order to eliminate x[q] from the objective row we substitute it
  1153 *  from (6) to that row:
  1154 *
  1155 *     z = sum c[j] x[j] + c[q] x[q] + c[0] =
  1156 *         j!=q
  1157 *                                 1
  1158 *       = sum c[j] x[j] + c[q] [------ (b - sum a[p,j] x[j])] + c0 =
  1159 *         j!=q                  a[p,q]      j!=q
  1160 *
  1161 *       = sum c~[j] x[j] + c~[0],
  1162 *         j!=q
  1163 *                         a[p,j]                     b
  1164 *     c~[j] = c[j] - c[q] ------,  c~0 = c0 - c[q] ------            (8)
  1165 *                         a[p,q]                   a[p,q]
  1166 *
  1167 *  are values of objective coefficients and constant term, resp., in
  1168 *  the transformed problem.
  1169 *
  1170 *  Note that column q is column singleton, so in the dual system of the
  1171 *  original problem it corresponds to the following row singleton:
  1172 *
  1173 *     a[p,q] pi[p] + lambda[q] = c[q].                               (9)
  1174 *
  1175 *  In the transformed problem row (9) would be the following:
  1176 *
  1177 *     a[p,q] pi~[p] + lambda[q] = c~[q] = 0.                        (10)
  1178 *
  1179 *  Subtracting (10) from (9) we have:
  1180 *
  1181 *     a[p,q] (pi[p] - pi~[p]) = c[q]
  1182 *
  1183 *  that gives the following formula to compute multiplier for row p in
  1184 *  solution to the original problem using its value in solution to the
  1185 *  transformed problem:
  1186 *
  1187 *     pi[p] = pi~[p] + c[q] / a[p,q].                               (11)
  1188 *
  1189 *  RECOVERING BASIC SOLUTION
  1190 *
  1191 *  Status of column q in solution to the original problem is defined
  1192 *  by status of row p in solution to the transformed problem and the
  1193 *  sign of coefficient a[p,q] in the original inequality constraint (2)
  1194 *  as follows:
  1195 *
  1196 *     +-----------------------+---------+--------------------+
  1197 *     |    Status of row p    | Sign of | Status of column q |
  1198 *     | (transformed problem) | a[p,q]  | (original problem) |
  1199 *     +-----------------------+---------+--------------------+
  1200 *     |        GLP_BS         |  + / -  |       GLP_BS       |
  1201 *     |        GLP_NL         |    +    |       GLP_NU       |
  1202 *     |        GLP_NL         |    -    |       GLP_NL       |
  1203 *     |        GLP_NU         |    +    |       GLP_NL       |
  1204 *     |        GLP_NU         |    -    |       GLP_NU       |
  1205 *     |        GLP_NF         |  + / -  |       GLP_NF       |
  1206 *     +-----------------------+---------+--------------------+
  1207 *
  1208 *  Value of column q is computed with formula (7). Since originally row
  1209 *  p is equality constraint, its status is assigned GLP_NS, and value of
  1210 *  its multiplier pi[p] is computed with formula (11).
  1211 *
  1212 *  RECOVERING INTERIOR-POINT SOLUTION
  1213 *
  1214 *  Value of column q is computed with formula (7). Row multiplier value
  1215 *  pi[p] is computed with formula (11).
  1216 *
  1217 *  RECOVERING MIP SOLUTION
  1218 *
  1219 *  Value of column q is computed with formula (7). */
  1220 
  1221 struct implied_slack
  1222 {     /* column singleton (implied slack variable) */
  1223       int p;
  1224       /* row reference number */
  1225       int q;
  1226       /* column reference number */
  1227       double apq;
  1228       /* constraint coefficient a[p,q] */
  1229       double b;
  1230       /* right-hand side of original equality constraint */
  1231       double c;
  1232       /* original objective coefficient at x[q] */
  1233       NPPLFE *ptr;
  1234       /* list of non-zero coefficients a[p,j], j != q */
  1235 };
  1236 
  1237 static int rcv_implied_slack(NPP *npp, void *info);
  1238 
  1239 void npp_implied_slack(NPP *npp, NPPCOL *q)
  1240 {     /* process column singleton (implied slack variable) */
  1241       struct implied_slack *info;
  1242       NPPROW *p;
  1243       NPPAIJ *aij;
  1244       NPPLFE *lfe;
  1245       /* the column must be non-integral non-fixed singleton */
  1246       xassert(!q->is_int);
  1247       xassert(q->lb < q->ub);
  1248       xassert(q->ptr != NULL && q->ptr->c_next == NULL);
  1249       /* corresponding row must be equality constraint */
  1250       aij = q->ptr;
  1251       p = aij->row;
  1252       xassert(p->lb == p->ub);
  1253       /* create transformation stack entry */
  1254       info = npp_push_tse(npp,
  1255          rcv_implied_slack, sizeof(struct implied_slack));
  1256       info->p = p->i;
  1257       info->q = q->j;
  1258       info->apq = aij->val;
  1259       info->b = p->lb;
  1260       info->c = q->coef;
  1261       info->ptr = NULL;
  1262       /* save row coefficients a[p,j], j != q, and substitute x[q]
  1263          into the objective row */
  1264       for (aij = p->ptr; aij != NULL; aij = aij->r_next)
  1265       {  if (aij->col == q) continue; /* skip a[p,q] */
  1266          lfe = dmp_get_atom(npp->stack, sizeof(NPPLFE));
  1267          lfe->ref = aij->col->j;
  1268          lfe->val = aij->val;
  1269          lfe->next = info->ptr;
  1270          info->ptr = lfe;
  1271          aij->col->coef -= info->c * (aij->val / info->apq);
  1272       }
  1273       npp->c0 += info->c * (info->b / info->apq);
  1274       /* compute new row bounds */
  1275       if (info->apq > 0.0)
  1276       {  p->lb = (q->ub == +DBL_MAX ?
  1277             -DBL_MAX : info->b - info->apq * q->ub);
  1278          p->ub = (q->lb == -DBL_MAX ?
  1279             +DBL_MAX : info->b - info->apq * q->lb);
  1280       }
  1281       else
  1282       {  p->lb = (q->lb == -DBL_MAX ?
  1283             -DBL_MAX : info->b - info->apq * q->lb);
  1284          p->ub = (q->ub == +DBL_MAX ?
  1285             +DBL_MAX : info->b - info->apq * q->ub);
  1286       }
  1287       /* remove the column from the problem */
  1288       npp_del_col(npp, q);
  1289       return;
  1290 }
  1291 
  1292 static int rcv_implied_slack(NPP *npp, void *_info)
  1293 {     /* recover column singleton (implied slack variable) */
  1294       struct implied_slack *info = _info;
  1295       NPPLFE *lfe;
  1296       double temp;
  1297       if (npp->sol == GLP_SOL)
  1298       {  /* assign statuses to row p and column q */
  1299          if (npp->r_stat[info->p] == GLP_BS ||
  1300              npp->r_stat[info->p] == GLP_NF)
  1301             npp->c_stat[info->q] = npp->r_stat[info->p];
  1302          else if (npp->r_stat[info->p] == GLP_NL)
  1303             npp->c_stat[info->q] =
  1304                (char)(info->apq > 0.0 ? GLP_NU : GLP_NL);
  1305          else if (npp->r_stat[info->p] == GLP_NU)
  1306             npp->c_stat[info->q] =
  1307                (char)(info->apq > 0.0 ? GLP_NL : GLP_NU);
  1308          else
  1309          {  npp_error();
  1310             return 1;
  1311          }
  1312          npp->r_stat[info->p] = GLP_NS;
  1313       }
  1314       if (npp->sol != GLP_MIP)
  1315       {  /* compute multiplier for row p */
  1316          npp->r_pi[info->p] += info->c / info->apq;
  1317       }
  1318       /* compute value of column q */
  1319       temp = info->b;
  1320       for (lfe = info->ptr; lfe != NULL; lfe = lfe->next)
  1321          temp -= lfe->val * npp->c_value[lfe->ref];
  1322       npp->c_value[info->q] = temp / info->apq;
  1323       return 0;
  1324 }
  1325 
  1326 /***********************************************************************
  1327 *  NAME
  1328 *
  1329 *  npp_implied_free - process column singleton (implied free variable)
  1330 *
  1331 *  SYNOPSIS
  1332 *
  1333 *  #include "glpnpp.h"
  1334 *  int npp_implied_free(NPP *npp, NPPCOL *q);
  1335 *
  1336 *  DESCRIPTION
  1337 *
  1338 *  The routine npp_implied_free processes column q:
  1339 *
  1340 *     l[q] <= x[q] <= u[q],                                          (1)
  1341 *
  1342 *  having non-zero coefficient in the only row p, which is inequality
  1343 *  constraint:
  1344 *
  1345 *     L[p] <= sum a[p,j] x[j] + a[p,q] x[q] <= U[p],                 (2)
  1346 *             j!=q
  1347 *
  1348 *  where l[q] < u[q], L[p] < U[p], L[p] > -oo and/or U[p] < +oo.
  1349 *
  1350 *  RETURNS
  1351 *
  1352 *  0 - success;
  1353 *
  1354 *  1 - column lower and/or upper bound(s) can be active;
  1355 *
  1356 *  2 - problem has no dual feasible solution.
  1357 *
  1358 *  PROBLEM TRANSFORMATION
  1359 *
  1360 *  Constraint (2) can be written as follows:
  1361 *
  1362 *     L[p] - sum a[p,j] x[j] <= a[p,q] x[q] <= U[p] - sum a[p,j] x[j],
  1363 *            j!=q                                     j!=q
  1364 *
  1365 *  from which it follows that:
  1366 *
  1367 *     alfa <= a[p,q] x[q] <= beta,                                   (3)
  1368 *
  1369 *  where
  1370 *
  1371 *     alfa = inf(L[p] - sum a[p,j] x[j]) =
  1372 *                       j!=q
  1373 *
  1374 *          = L[p] - sup sum a[p,j] x[j] =                            (4)
  1375 *                       j!=q
  1376 *
  1377 *          = L[p] -  sum  a[p,j] u[j] -  sum  a[p,j] l[j],
  1378 *                  j in Jp             j in Jn
  1379 *
  1380 *     beta = sup(L[p] - sum a[p,j] x[j]) =
  1381 *                       j!=q
  1382 *
  1383 *          = L[p] - inf sum a[p,j] x[j] =                            (5)
  1384 *                       j!=q
  1385 *
  1386 *          = L[p] -  sum  a[p,j] l[j] -  sum  a[p,j] u[j],
  1387 *                  j in Jp             j in Jn
  1388 *
  1389 *     Jp = {j != q: a[p,j] > 0},  Jn = {j != q: a[p,j] < 0}.         (6)
  1390 *
  1391 *  Inequality (3) defines implied bounds of variable x[q]:
  1392 *
  1393 *     l'[q] <= x[q] <= u'[q],                                        (7)
  1394 *
  1395 *  where
  1396 *
  1397 *             ( alfa / a[p,q], if a[p,q] > 0
  1398 *     l'[q] = <                                                     (8a)
  1399 *             ( beta / a[p,q], if a[p,q] < 0
  1400 *
  1401 *             ( beta / a[p,q], if a[p,q] > 0
  1402 *     u'[q] = <                                                     (8b)
  1403 *             ( alfa / a[p,q], if a[p,q] < 0
  1404 *
  1405 *  Thus, if l'[q] > l[q] - eps and u'[q] < u[q] + eps, where eps is
  1406 *  an absolute tolerance for column value, column bounds (1) cannot be
  1407 *  active, in which case column q can be replaced by equivalent free
  1408 *  (unbounded) column.
  1409 *
  1410 *  Note that column q is column singleton, so in the dual system of the
  1411 *  original problem it corresponds to the following row singleton:
  1412 *
  1413 *     a[p,q] pi[p] + lambda[q] = c[q],                               (9)
  1414 *
  1415 *  from which it follows that:
  1416 *
  1417 *     pi[p] = (c[q] - lambda[q]) / a[p,q].                          (10)
  1418 *
  1419 *  Let x[q] be implied free (unbounded) variable. Then column q can be
  1420 *  only basic, so its multiplier lambda[q] is equal to zero, and from
  1421 *  (10) we have:
  1422 *
  1423 *     pi[p] = c[q] / a[p,q].                                        (11)
  1424 *
  1425 *  There are possible three cases:
  1426 *
  1427 *  1) pi[p] < -eps, where eps is an absolute tolerance for row
  1428 *     multiplier. In this case, to provide dual feasibility of the
  1429 *     original problem, row p must be active on its lower bound, and
  1430 *     if its lower bound does not exist (L[p] = -oo), the problem has
  1431 *     no dual feasible solution;
  1432 *
  1433 *  2) pi[p] > +eps. In this case row p must be active on its upper
  1434 *     bound, and if its upper bound does not exist (U[p] = +oo), the
  1435 *     problem has no dual feasible solution;
  1436 *
  1437 *  3) -eps <= pi[p] <= +eps. In this case any (either lower or upper)
  1438 *     bound of row p can be active, because this does not affect dual
  1439 *     feasibility.
  1440 *
  1441 *  Thus, in all three cases original inequality constraint (2) can be
  1442 *  replaced by equality constraint, where the right-hand side is either
  1443 *  lower or upper bound of row p, and bounds of column q can be removed
  1444 *  that makes it free (unbounded). (May note that this transformation
  1445 *  can be followed by transformation "Column singleton (implied slack
  1446 *  variable)" performed by the routine npp_implied_slack.)
  1447 *
  1448 *  RECOVERING BASIC SOLUTION
  1449 *
  1450 *  Status of row p in solution to the original problem is determined
  1451 *  by its status in solution to the transformed problem and its bound,
  1452 *  which was choosen to be active:
  1453 *
  1454 *     +-----------------------+--------+--------------------+
  1455 *     |    Status of row p    | Active | Status of row p    |
  1456 *     | (transformed problem) | bound  | (original problem) |
  1457 *     +-----------------------+--------+--------------------+
  1458 *     |        GLP_BS         |  L[p]  |       GLP_BS       |
  1459 *     |        GLP_BS         |  U[p]  |       GLP_BS       |
  1460 *     |        GLP_NS         |  L[p]  |       GLP_NL       |
  1461 *     |        GLP_NS         |  U[p]  |       GLP_NU       |
  1462 *     +-----------------------+--------+--------------------+
  1463 *
  1464 *  Value of row multiplier pi[p] (as well as value of column q) in
  1465 *  solution to the original problem is the same as in solution to the
  1466 *  transformed problem.
  1467 *
  1468 *  RECOVERING INTERIOR-POINT SOLUTION
  1469 *
  1470 *  Value of row multiplier pi[p] in solution to the original problem is
  1471 *  the same as in solution to the transformed problem.
  1472 *
  1473 *  RECOVERING MIP SOLUTION
  1474 *
  1475 *  None needed. */
  1476 
  1477 struct implied_free
  1478 {     /* column singleton (implied free variable) */
  1479       int p;
  1480       /* row reference number */
  1481       char stat;
  1482       /* row status:
  1483          GLP_NL - active constraint on lower bound
  1484          GLP_NU - active constraint on upper bound */
  1485 };
  1486 
  1487 static int rcv_implied_free(NPP *npp, void *info);
  1488 
  1489 int npp_implied_free(NPP *npp, NPPCOL *q)
  1490 {     /* process column singleton (implied free variable) */
  1491       struct implied_free *info;
  1492       NPPROW *p;
  1493       NPPAIJ *apq, *aij;
  1494       double alfa, beta, l, u, pi, eps;
  1495       /* the column must be non-fixed singleton */
  1496       xassert(q->lb < q->ub);
  1497       xassert(q->ptr != NULL && q->ptr->c_next == NULL);
  1498       /* corresponding row must be inequality constraint */
  1499       apq = q->ptr;
  1500       p = apq->row;
  1501       xassert(p->lb != -DBL_MAX || p->ub != +DBL_MAX);
  1502       xassert(p->lb < p->ub);
  1503       /* compute alfa */
  1504       alfa = p->lb;
  1505       if (alfa != -DBL_MAX)
  1506       {  for (aij = p->ptr; aij != NULL; aij = aij->r_next)
  1507          {  if (aij == apq) continue; /* skip a[p,q] */
  1508             if (aij->val > 0.0)
  1509             {  if (aij->col->ub == +DBL_MAX)
  1510                {  alfa = -DBL_MAX;
  1511                   break;
  1512                }
  1513                alfa -= aij->val * aij->col->ub;
  1514             }
  1515             else /* < 0.0 */
  1516             {  if (aij->col->lb == -DBL_MAX)
  1517                {  alfa = -DBL_MAX;
  1518                   break;
  1519                }
  1520                alfa -= aij->val * aij->col->lb;
  1521             }
  1522          }
  1523       }
  1524       /* compute beta */
  1525       beta = p->ub;
  1526       if (beta != +DBL_MAX)
  1527       {  for (aij = p->ptr; aij != NULL; aij = aij->r_next)
  1528          {  if (aij == apq) continue; /* skip a[p,q] */
  1529             if (aij->val > 0.0)
  1530             {  if (aij->col->lb == -DBL_MAX)
  1531                {  beta = +DBL_MAX;
  1532                   break;
  1533                }
  1534                beta -= aij->val * aij->col->lb;
  1535             }
  1536             else /* < 0.0 */
  1537             {  if (aij->col->ub == +DBL_MAX)
  1538                {  beta = +DBL_MAX;
  1539                   break;
  1540                }
  1541                beta -= aij->val * aij->col->ub;
  1542             }
  1543          }
  1544       }
  1545       /* compute implied column lower bound l'[q] */
  1546       if (apq->val > 0.0)
  1547          l = (alfa == -DBL_MAX ? -DBL_MAX : alfa / apq->val);
  1548       else /* < 0.0 */
  1549          l = (beta == +DBL_MAX ? -DBL_MAX : beta / apq->val);
  1550       /* compute implied column upper bound u'[q] */
  1551       if (apq->val > 0.0)
  1552          u = (beta == +DBL_MAX ? +DBL_MAX : beta / apq->val);
  1553       else
  1554          u = (alfa == -DBL_MAX ? +DBL_MAX : alfa / apq->val);
  1555       /* check if column lower bound l[q] can be active */
  1556       if (q->lb != -DBL_MAX)
  1557       {  eps = 1e-9 + 1e-12 * fabs(q->lb);
  1558          if (l < q->lb - eps) return 1; /* yes, it can */
  1559       }
  1560       /* check if column upper bound u[q] can be active */
  1561       if (q->ub != +DBL_MAX)
  1562       {  eps = 1e-9 + 1e-12 * fabs(q->ub);
  1563          if (u > q->ub + eps) return 1; /* yes, it can */
  1564       }
  1565       /* okay; make column q free (unbounded) */
  1566       q->lb = -DBL_MAX, q->ub = +DBL_MAX;
  1567       /* create transformation stack entry */
  1568       info = npp_push_tse(npp,
  1569          rcv_implied_free, sizeof(struct implied_free));
  1570       info->p = p->i;
  1571       info->stat = -1;
  1572       /* compute row multiplier pi[p] */
  1573       pi = q->coef / apq->val;
  1574       /* check dual feasibility for row p */
  1575       if (pi > +DBL_EPSILON)
  1576       {  /* lower bound L[p] must be active */
  1577          if (p->lb != -DBL_MAX)
  1578 nl:      {  info->stat = GLP_NL;
  1579             p->ub = p->lb;
  1580          }
  1581          else
  1582          {  if (pi > +1e-5) return 2; /* dual infeasibility */
  1583             /* take a chance on U[p] */
  1584             xassert(p->ub != +DBL_MAX);
  1585             goto nu;
  1586          }
  1587       }
  1588       else if (pi < -DBL_EPSILON)
  1589       {  /* upper bound U[p] must be active */
  1590          if (p->ub != +DBL_MAX)
  1591 nu:      {  info->stat = GLP_NU;
  1592             p->lb = p->ub;
  1593          }
  1594          else
  1595          {  if (pi < -1e-5) return 2; /* dual infeasibility */
  1596             /* take a chance on L[p] */
  1597             xassert(p->lb != -DBL_MAX);
  1598             goto nl;
  1599          }
  1600       }
  1601       else
  1602       {  /* any bound (either L[p] or U[p]) can be made active  */
  1603          if (p->ub == +DBL_MAX)
  1604          {  xassert(p->lb != -DBL_MAX);
  1605             goto nl;
  1606          }
  1607          if (p->lb == -DBL_MAX)
  1608          {  xassert(p->ub != +DBL_MAX);
  1609             goto nu;
  1610          }
  1611          if (fabs(p->lb) <= fabs(p->ub)) goto nl; else goto nu;
  1612       }
  1613       return 0;
  1614 }
  1615 
  1616 static int rcv_implied_free(NPP *npp, void *_info)
  1617 {     /* recover column singleton (implied free variable) */
  1618       struct implied_free *info = _info;
  1619       if (npp->sol == GLP_SOL)
  1620       {  if (npp->r_stat[info->p] == GLP_BS)
  1621             npp->r_stat[info->p] = GLP_BS;
  1622          else if (npp->r_stat[info->p] == GLP_NS)
  1623          {  xassert(info->stat == GLP_NL || info->stat == GLP_NU);
  1624             npp->r_stat[info->p] = info->stat;
  1625          }
  1626          else
  1627          {  npp_error();
  1628             return 1;
  1629          }
  1630       }
  1631       return 0;
  1632 }
  1633 
  1634 /***********************************************************************
  1635 *  NAME
  1636 *
  1637 *  npp_eq_doublet - process row doubleton (equality constraint)
  1638 *
  1639 *  SYNOPSIS
  1640 *
  1641 *  #include "glpnpp.h"
  1642 *  NPPCOL *npp_eq_doublet(NPP *npp, NPPROW *p);
  1643 *
  1644 *  DESCRIPTION
  1645 *
  1646 *  The routine npp_eq_doublet processes row p, which is equality
  1647 *  constraint having exactly two non-zero coefficients:
  1648 *
  1649 *     a[p,q] x[q] + a[p,r] x[r] = b.                                 (1)
  1650 *
  1651 *  As the result of processing one of columns q or r is eliminated from
  1652 *  all other rows and, thus, becomes column singleton of type "implied
  1653 *  slack variable". Row p is not changed and along with column q and r
  1654 *  remains in the problem.
  1655 *
  1656 *  RETURNS
  1657 *
  1658 *  The routine npp_eq_doublet returns pointer to the descriptor of that
  1659 *  column q or r which has been eliminated. If, due to some reason, the
  1660 *  elimination was not performed, the routine returns NULL.
  1661 *
  1662 *  PROBLEM TRANSFORMATION
  1663 *
  1664 *  First, we decide which column q or r will be eliminated. Let it be
  1665 *  column q. Consider i-th constraint row, where column q has non-zero
  1666 *  coefficient a[i,q] != 0:
  1667 *
  1668 *     L[i] <= sum a[i,j] x[j] <= U[i].                               (2)
  1669 *              j
  1670 *
  1671 *  In order to eliminate column q from row (2) we subtract from it row
  1672 *  (1) multiplied by gamma[i] = a[i,q] / a[p,q], i.e. we replace in the
  1673 *  transformed problem row (2) by its linear combination with row (1).
  1674 *  This transformation changes only coefficients in columns q and r,
  1675 *  and bounds of row i as follows:
  1676 *
  1677 *     a~[i,q] = a[i,q] - gamma[i] a[p,q] = 0,                        (3)
  1678 *
  1679 *     a~[i,r] = a[i,r] - gamma[i] a[p,r],                            (4)
  1680 *
  1681 *       L~[i] = L[i] - gamma[i] b,                                   (5)
  1682 *
  1683 *       U~[i] = U[i] - gamma[i] b.                                   (6)
  1684 *
  1685 *  RECOVERING BASIC SOLUTION
  1686 *
  1687 *  The transformation of the primal system of the original problem:
  1688 *
  1689 *     L <= A x <= U                                                  (7)
  1690 *
  1691 *  is equivalent to multiplying from the left a transformation matrix F
  1692 *  by components of this primal system, which in the transformed problem
  1693 *  becomes the following:
  1694 *
  1695 *     F L <= F A x <= F U  ==>  L~ <= A~x <= U~.                     (8)
  1696 *
  1697 *  The matrix F has the following structure:
  1698 *
  1699 *         ( 1           -gamma[1]            )
  1700 *         (                                  )
  1701 *         (    1        -gamma[2]            )
  1702 *         (                                  )
  1703 *         (      ...       ...               )
  1704 *         (                                  )
  1705 *     F = (          1  -gamma[p-1]          )                       (9)
  1706 *         (                                  )
  1707 *         (                 1                )
  1708 *         (                                  )
  1709 *         (             -gamma[p+1]  1       )
  1710 *         (                                  )
  1711 *         (                ...          ...  )
  1712 *
  1713 *  where its column containing elements -gamma[i] corresponds to row p
  1714 *  of the primal system.
  1715 *
  1716 *  From (8) it follows that the dual system of the original problem:
  1717 *
  1718 *     A'pi + lambda = c,                                            (10)
  1719 *
  1720 *  in the transformed problem becomes the following:
  1721 *
  1722 *     A'F'inv(F')pi + lambda = c  ==>  (A~)'pi~ + lambda = c,       (11)
  1723 *
  1724 *  where:
  1725 *
  1726 *     pi~ = inv(F')pi                                               (12)
  1727 *
  1728 *  is the vector of row multipliers in the transformed problem. Thus:
  1729 *
  1730 *     pi = F'pi~.                                                   (13)
  1731 *
  1732 *  Therefore, as it follows from (13), value of multiplier for row p in
  1733 *  solution to the original problem can be computed as follows:
  1734 *
  1735 *     pi[p] = pi~[p] - sum gamma[i] pi~[i],                         (14)
  1736 *                       i
  1737 *
  1738 *  where pi~[i] = pi[i] is multiplier for row i (i != p).
  1739 *
  1740 *  Note that the statuses of all rows and columns are not changed.
  1741 *
  1742 *  RECOVERING INTERIOR-POINT SOLUTION
  1743 *
  1744 *  Multiplier for row p in solution to the original problem is computed
  1745 *  with formula (14).
  1746 *
  1747 *  RECOVERING MIP SOLUTION
  1748 *
  1749 *  None needed. */
  1750 
  1751 struct eq_doublet
  1752 {     /* row doubleton (equality constraint) */
  1753       int p;
  1754       /* row reference number */
  1755       double apq;
  1756       /* constraint coefficient a[p,q] */
  1757       NPPLFE *ptr;
  1758       /* list of non-zero coefficients a[i,q], i != p */
  1759 };
  1760 
  1761 static int rcv_eq_doublet(NPP *npp, void *info);
  1762 
  1763 NPPCOL *npp_eq_doublet(NPP *npp, NPPROW *p)
  1764 {     /* process row doubleton (equality constraint) */
  1765       struct eq_doublet *info;
  1766       NPPROW *i;
  1767       NPPCOL *q, *r;
  1768       NPPAIJ *apq, *apr, *aiq, *air, *next;
  1769       NPPLFE *lfe;
  1770       double gamma;
  1771       /* the row must be doubleton equality constraint */
  1772       xassert(p->lb == p->ub);
  1773       xassert(p->ptr != NULL && p->ptr->r_next != NULL &&
  1774               p->ptr->r_next->r_next == NULL);
  1775       /* choose column to be eliminated */
  1776       {  NPPAIJ *a1, *a2;
  1777          a1 = p->ptr, a2 = a1->r_next;
  1778          if (fabs(a2->val) < 0.001 * fabs(a1->val))
  1779          {  /* only first column can be eliminated, because second one
  1780                has too small constraint coefficient */
  1781             apq = a1, apr = a2;
  1782          }
  1783          else if (fabs(a1->val) < 0.001 * fabs(a2->val))
  1784          {  /* only second column can be eliminated, because first one
  1785                has too small constraint coefficient */
  1786             apq = a2, apr = a1;
  1787          }
  1788          else
  1789          {  /* both columns are appropriate; choose that one which is
  1790                shorter to minimize fill-in */
  1791             if (npp_col_nnz(npp, a1->col) <= npp_col_nnz(npp, a2->col))
  1792             {  /* first column is shorter */
  1793                apq = a1, apr = a2;
  1794             }
  1795             else
  1796             {  /* second column is shorter */
  1797                apq = a2, apr = a1;
  1798             }
  1799          }
  1800       }
  1801       /* now columns q and r have been chosen */
  1802       q = apq->col, r = apr->col;
  1803       /* create transformation stack entry */
  1804       info = npp_push_tse(npp,
  1805          rcv_eq_doublet, sizeof(struct eq_doublet));
  1806       info->p = p->i;
  1807       info->apq = apq->val;
  1808       info->ptr = NULL;
  1809       /* transform each row i (i != p), where a[i,q] != 0, to eliminate
  1810          column q */
  1811       for (aiq = q->ptr; aiq != NULL; aiq = next)
  1812       {  next = aiq->c_next;
  1813          if (aiq == apq) continue; /* skip row p */
  1814          i = aiq->row; /* row i to be transformed */
  1815          /* save constraint coefficient a[i,q] */
  1816          if (npp->sol != GLP_MIP)
  1817          {  lfe = dmp_get_atom(npp->stack, sizeof(NPPLFE));
  1818             lfe->ref = i->i;
  1819             lfe->val = aiq->val;
  1820             lfe->next = info->ptr;
  1821             info->ptr = lfe;
  1822          }
  1823          /* find coefficient a[i,r] in row i */
  1824          for (air = i->ptr; air != NULL; air = air->r_next)
  1825             if (air->col == r) break;
  1826          /* if a[i,r] does not exist, create a[i,r] = 0 */
  1827          if (air == NULL)
  1828             air = npp_add_aij(npp, i, r, 0.0);
  1829          /* compute gamma[i] = a[i,q] / a[p,q] */
  1830          gamma = aiq->val / apq->val;
  1831          /* (row i) := (row i) - gamma[i] * (row p); see (3)-(6) */
  1832          /* new a[i,q] is exact zero due to elimnation; remove it from
  1833             row i */
  1834          npp_del_aij(npp, aiq);
  1835          /* compute new a[i,r] */
  1836          air->val -= gamma * apr->val;
  1837          /* if new a[i,r] is close to zero due to numeric cancelation,
  1838             remove it from row i */
  1839          if (fabs(air->val) <= 1e-10)
  1840             npp_del_aij(npp, air);
  1841          /* compute new lower and upper bounds of row i */
  1842          if (i->lb == i->ub)
  1843             i->lb = i->ub = (i->lb - gamma * p->lb);
  1844          else
  1845          {  if (i->lb != -DBL_MAX)
  1846                i->lb -= gamma * p->lb;
  1847             if (i->ub != +DBL_MAX)
  1848                i->ub -= gamma * p->lb;
  1849          }
  1850       }
  1851       return q;
  1852 }
  1853 
  1854 static int rcv_eq_doublet(NPP *npp, void *_info)
  1855 {     /* recover row doubleton (equality constraint) */
  1856       struct eq_doublet *info = _info;
  1857       NPPLFE *lfe;
  1858       double gamma, temp;
  1859       /* we assume that processing row p is followed by processing
  1860          column q as singleton of type "implied slack variable", in
  1861          which case row p must always be active equality constraint */
  1862       if (npp->sol == GLP_SOL)
  1863       {  if (npp->r_stat[info->p] != GLP_NS)
  1864          {  npp_error();
  1865             return 1;
  1866          }
  1867       }
  1868       if (npp->sol != GLP_MIP)
  1869       {  /* compute value of multiplier for row p; see (14) */
  1870          temp = npp->r_pi[info->p];
  1871          for (lfe = info->ptr; lfe != NULL; lfe = lfe->next)
  1872          {  gamma = lfe->val / info->apq; /* a[i,q] / a[p,q] */
  1873             temp -= gamma * npp->r_pi[lfe->ref];
  1874          }
  1875          npp->r_pi[info->p] = temp;
  1876       }
  1877       return 0;
  1878 }
  1879 
  1880 /***********************************************************************
  1881 *  NAME
  1882 *
  1883 *  npp_forcing_row - process forcing row
  1884 *
  1885 *  SYNOPSIS
  1886 *
  1887 *  #include "glpnpp.h"
  1888 *  int npp_forcing_row(NPP *npp, NPPROW *p, int at);
  1889 *
  1890 *  DESCRIPTION
  1891 *
  1892 *  The routine npp_forcing row processes row p of general format:
  1893 *
  1894 *     L[p] <= sum a[p,j] x[j] <= U[p],                               (1)
  1895 *              j
  1896 *
  1897 *     l[j] <= x[j] <= u[j],                                          (2)
  1898 *
  1899 *  where L[p] <= U[p] and l[j] < u[j] for all a[p,j] != 0. It is also
  1900 *  assumed that:
  1901 *
  1902 *  1) if at = 0 then |L[p] - U'[p]| <= eps, where U'[p] is implied
  1903 *     row upper bound (see below), eps is an absolute tolerance for row
  1904 *     value;
  1905 *
  1906 *  2) if at = 1 then |U[p] - L'[p]| <= eps, where L'[p] is implied
  1907 *     row lower bound (see below).
  1908 *
  1909 *  RETURNS
  1910 *
  1911 *  0 - success;
  1912 *
  1913 *  1 - cannot fix columns due to too small constraint coefficients.
  1914 *
  1915 *  PROBLEM TRANSFORMATION
  1916 *
  1917 *  Implied lower and upper bounds of row (1) are determined by bounds
  1918 *  of corresponding columns (variables) as follows:
  1919 *
  1920 *     L'[p] = inf sum a[p,j] x[j] =
  1921 *                  j
  1922 *                                                                    (3)
  1923 *           =  sum  a[p,j] l[j] +  sum  a[p,j] u[j],
  1924 *            j in Jp             j in Jn
  1925 *
  1926 *     U'[p] = sup sum a[p,j] x[j] =
  1927 *                                                                    (4)
  1928 *           =  sum  a[p,j] u[j] +  sum  a[p,j] l[j],
  1929 *            j in Jp             j in Jn
  1930 *
  1931 *     Jp = {j: a[p,j] > 0},  Jn = {j: a[p,j] < 0}.                   (5)
  1932 *
  1933 *  If L[p] =~ U'[p] (at = 0), solution can be primal feasible only when
  1934 *  all variables take their boundary values as defined by (4):
  1935 *
  1936 *            ( u[j], if j in Jp
  1937 *     x[j] = <                                                       (6)
  1938 *            ( l[j], if j in Jn
  1939 *
  1940 *  Similarly, if U[p] =~ L'[p] (at = 1), solution can be primal feasible
  1941 *  only when all variables take their boundary values as defined by (3):
  1942 *
  1943 *            ( l[j], if j in Jp
  1944 *     x[j] = <                                                       (7)
  1945 *            ( u[j], if j in Jn
  1946 *
  1947 *  Condition (6) or (7) allows fixing all columns (variables x[j])
  1948 *  in row (1) on their bounds and then removing them from the problem
  1949 *  (see the routine npp_fixed_col). Due to this row p becomes redundant,
  1950 *  so it can be replaced by equivalent free (unbounded) row and also
  1951 *  removed from the problem (see the routine npp_free_row).
  1952 *
  1953 *  1. To apply this transformation row (1) should not have coefficients
  1954 *     whose magnitude is too small, i.e. all a[p,j] should satisfy to
  1955 *     the following condition:
  1956 *
  1957 *        |a[p,j]| >= eps * max(1, |a[p,k]|),                         (8)
  1958 *                           k
  1959 *     where eps is a relative tolerance for constraint coefficients.
  1960 *     Otherwise, fixing columns may be numerically unreliable and may
  1961 *     lead to wrong solution.
  1962 *
  1963 *  2. The routine fixes columns and remove bounds of row p, however,
  1964 *     it does not remove the row and columns from the problem.
  1965 *
  1966 *  RECOVERING BASIC SOLUTION
  1967 *
  1968 *  In the transformed problem row p being inactive constraint is
  1969 *  assigned status GLP_BS (as the result of transformation of free
  1970 *  row), and all columns in this row are assigned status GLP_NS (as the
  1971 *  result of transformation of fixed columns).
  1972 *
  1973 *  Note that in the dual system of the transformed (as well as original)
  1974 *  problem every column j in row p corresponds to the following row:
  1975 *
  1976 *     sum  a[i,j] pi[i] + a[p,j] pi[p] + lambda[j] = c[j],           (9)
  1977 *     i!=p
  1978 *
  1979 *  from which it follows that:
  1980 *
  1981 *     lambda[j] = c[j] - sum a[i,j] pi[i] - a[p,j] pi[p].           (10)
  1982 *                        i!=p
  1983 *
  1984 *  In the transformed problem values of all multipliers pi[i] are known
  1985 *  (including pi[i], whose value is zero, since row p is inactive).
  1986 *  Thus, using formula (10) it is possible to compute values of
  1987 *  multipliers lambda[j] for all columns in row p.
  1988 *
  1989 *  Note also that in the original problem all columns in row p are
  1990 *  bounded, not fixed. So status GLP_NS assigned to every such column
  1991 *  must be changed to GLP_NL or GLP_NU depending on which bound the
  1992 *  corresponding column has been fixed. This status change may lead to
  1993 *  dual feasibility violation for solution of the original problem,
  1994 *  because now column multipliers must satisfy to the following
  1995 *  condition:
  1996 *
  1997 *               ( >= 0, if status of column j is GLP_NL,
  1998 *     lambda[j] <                                                   (11)
  1999 *               ( <= 0, if status of column j is GLP_NU.
  2000 *
  2001 *  If this condition holds, solution to the original problem is the
  2002 *  same as to the transformed problem. Otherwise, we have to perform
  2003 *  one degenerate pivoting step of the primal simplex method to obtain
  2004 *  dual feasible (hence, optimal) solution to the original problem as
  2005 *  follows. If, on problem transformation, row p was made active on its
  2006 *  lower bound (case at = 0), we change its status to GLP_NL (or GLP_NS)
  2007 *  and start increasing its multiplier pi[p]. Otherwise, if row p was
  2008 *  made active on its upper bound (case at = 1), we change its status
  2009 *  to GLP_NU (or GLP_NS) and start decreasing pi[p]. From (10) it
  2010 *  follows that:
  2011 *
  2012 *     delta lambda[j] = - a[p,j] * delta pi[p] = - a[p,j] pi[p].    (12)
  2013 *
  2014 *  Simple analysis of formulae (3)-(5) shows that changing pi[p] in the
  2015 *  specified direction causes increasing lambda[j] for every column j
  2016 *  assigned status GLP_NL (delta lambda[j] > 0) and decreasing lambda[j]
  2017 *  for every column j assigned status GLP_NU (delta lambda[j] < 0). It
  2018 *  is understood that once the last lambda[q], which violates condition
  2019 *  (11), has reached zero, multipliers lambda[j] for all columns get
  2020 *  valid signs. Such column q can be determined as follows. Let d[j] be
  2021 *  initial value of lambda[j] (i.e. reduced cost of column j) in the
  2022 *  transformed problem computed with formula (10) when pi[p] = 0. Then
  2023 *  lambda[j] = d[j] + delta lambda[j], and from (12) it follows that
  2024 *  lambda[j] becomes zero if:
  2025 *
  2026 *     delta lambda[j] = - a[p,j] pi[p] = - d[j]  ==>
  2027 *                                                                   (13)
  2028 *     pi[p] = d[j] / a[p,j].
  2029 *
  2030 *  Therefore, the last column q, for which lambda[q] becomes zero, can
  2031 *  be determined from the following condition:
  2032 *
  2033 *     |d[q] / a[p,q]| = max  |pi[p]| = max  |d[j] / a[p,j]|,        (14)
  2034 *                      j in D         j in D
  2035 *
  2036 *  where D is a set of columns j whose, reduced costs d[j] have invalid
  2037 *  signs, i.e. violate condition (11). (Thus, if D is empty, solution
  2038 *  to the original problem is the same as solution to the transformed
  2039 *  problem, and no correction is needed as was noticed above.) In
  2040 *  solution to the original problem column q is assigned status GLP_BS,
  2041 *  since it replaces column of auxiliary variable of row p (becoming
  2042 *  active) in the basis, and multiplier for row p is assigned its new
  2043 *  value, which is pi[p] = d[q] / a[p,q]. Note that due to primal
  2044 *  degeneracy values of all columns having non-zero coefficients in row
  2045 *  p remain unchanged.
  2046 *
  2047 *  RECOVERING INTERIOR-POINT SOLUTION
  2048 *
  2049 *  Value of multiplier pi[p] in solution to the original problem is
  2050 *  corrected in the same way as for basic solution. Values of all
  2051 *  columns having non-zero coefficients in row p remain unchanged.
  2052 *
  2053 *  RECOVERING MIP SOLUTION
  2054 *
  2055 *  None needed. */
  2056 
  2057 struct forcing_col
  2058 {     /* column fixed on its bound by forcing row */
  2059       int j;
  2060       /* column reference number */
  2061       char stat;
  2062       /* original column status:
  2063          GLP_NL - fixed on lower bound
  2064          GLP_NU - fixed on upper bound */
  2065       double a;
  2066       /* constraint coefficient a[p,j] */
  2067       double c;
  2068       /* objective coefficient c[j] */
  2069       NPPLFE *ptr;
  2070       /* list of non-zero coefficients a[i,j], i != p */
  2071       struct forcing_col *next;
  2072       /* pointer to another column fixed by forcing row */
  2073 };
  2074 
  2075 struct forcing_row
  2076 {     /* forcing row */
  2077       int p;
  2078       /* row reference number */
  2079       char stat;
  2080       /* status assigned to the row if it becomes active:
  2081          GLP_NS - active equality constraint
  2082          GLP_NL - inequality constraint with lower bound active
  2083          GLP_NU - inequality constraint with upper bound active */
  2084       struct forcing_col *ptr;
  2085       /* list of all columns having non-zero constraint coefficient
  2086          a[p,j] in the forcing row */
  2087 };
  2088 
  2089 static int rcv_forcing_row(NPP *npp, void *info);
  2090 
  2091 int npp_forcing_row(NPP *npp, NPPROW *p, int at)
  2092 {     /* process forcing row */
  2093       struct forcing_row *info;
  2094       struct forcing_col *col = NULL;
  2095       NPPCOL *j;
  2096       NPPAIJ *apj, *aij;
  2097       NPPLFE *lfe;
  2098       double big;
  2099       xassert(at == 0 || at == 1);
  2100       /* determine maximal magnitude of the row coefficients */
  2101       big = 1.0;
  2102       for (apj = p->ptr; apj != NULL; apj = apj->r_next)
  2103          if (big < fabs(apj->val)) big = fabs(apj->val);
  2104       /* if there are too small coefficients in the row, transformation
  2105          should not be applied */
  2106       for (apj = p->ptr; apj != NULL; apj = apj->r_next)
  2107          if (fabs(apj->val) < 1e-7 * big) return 1;
  2108       /* create transformation stack entry */
  2109       info = npp_push_tse(npp,
  2110          rcv_forcing_row, sizeof(struct forcing_row));
  2111       info->p = p->i;
  2112       if (p->lb == p->ub)
  2113       {  /* equality constraint */
  2114          info->stat = GLP_NS;
  2115       }
  2116       else if (at == 0)
  2117       {  /* inequality constraint; case L[p] = U'[p] */
  2118          info->stat = GLP_NL;
  2119          xassert(p->lb != -DBL_MAX);
  2120       }
  2121       else /* at == 1 */
  2122       {  /* inequality constraint; case U[p] = L'[p] */
  2123          info->stat = GLP_NU;
  2124          xassert(p->ub != +DBL_MAX);
  2125       }
  2126       info->ptr = NULL;
  2127       /* scan the forcing row, fix columns at corresponding bounds, and
  2128          save column information (the latter is not needed for MIP) */
  2129       for (apj = p->ptr; apj != NULL; apj = apj->r_next)
  2130       {  /* column j has non-zero coefficient in the forcing row */
  2131          j = apj->col;
  2132          /* it must be non-fixed */
  2133          xassert(j->lb < j->ub);
  2134          /* allocate stack entry to save column information */
  2135          if (npp->sol != GLP_MIP)
  2136          {  col = dmp_get_atom(npp->stack, sizeof(struct forcing_col));
  2137             col->j = j->j;
  2138             col->stat = -1; /* will be set below */
  2139             col->a = apj->val;
  2140             col->c = j->coef;
  2141             col->ptr = NULL;
  2142             col->next = info->ptr;
  2143             info->ptr = col;
  2144          }
  2145          /* fix column j */
  2146          if (at == 0 && apj->val < 0.0 || at != 0 && apj->val > 0.0)
  2147          {  /* at its lower bound */
  2148             if (npp->sol != GLP_MIP)
  2149                col->stat = GLP_NL;
  2150             xassert(j->lb != -DBL_MAX);
  2151             j->ub = j->lb;
  2152          }
  2153          else
  2154          {  /* at its upper bound */
  2155             if (npp->sol != GLP_MIP)
  2156                col->stat = GLP_NU;
  2157             xassert(j->ub != +DBL_MAX);
  2158             j->lb = j->ub;
  2159          }
  2160          /* save column coefficients a[i,j], i != p */
  2161          if (npp->sol != GLP_MIP)
  2162          {  for (aij = j->ptr; aij != NULL; aij = aij->c_next)
  2163             {  if (aij == apj) continue; /* skip a[p,j] */
  2164                lfe = dmp_get_atom(npp->stack, sizeof(NPPLFE));
  2165                lfe->ref = aij->row->i;
  2166                lfe->val = aij->val;
  2167                lfe->next = col->ptr;
  2168                col->ptr = lfe;
  2169             }
  2170          }
  2171       }
  2172       /* make the row free (unbounded) */
  2173       p->lb = -DBL_MAX, p->ub = +DBL_MAX;
  2174       return 0;
  2175 }
  2176 
  2177 static int rcv_forcing_row(NPP *npp, void *_info)
  2178 {     /* recover forcing row */
  2179       struct forcing_row *info = _info;
  2180       struct forcing_col *col, *piv;
  2181       NPPLFE *lfe;
  2182       double d, big, temp;
  2183       if (npp->sol == GLP_MIP) goto done;
  2184       /* initially solution to the original problem is the same as
  2185          to the transformed problem, where row p is inactive constraint
  2186          with pi[p] = 0, and all columns are non-basic */
  2187       if (npp->sol == GLP_SOL)
  2188       {  if (npp->r_stat[info->p] != GLP_BS)
  2189          {  npp_error();
  2190             return 1;
  2191          }
  2192          for (col = info->ptr; col != NULL; col = col->next)
  2193          {  if (npp->c_stat[col->j] != GLP_NS)
  2194             {  npp_error();
  2195                return 1;
  2196             }
  2197             npp->c_stat[col->j] = col->stat; /* original status */
  2198          }
  2199       }
  2200       /* compute reduced costs d[j] for all columns with formula (10)
  2201          and store them in col.c instead objective coefficients */
  2202       for (col = info->ptr; col != NULL; col = col->next)
  2203       {  d = col->c;
  2204          for (lfe = col->ptr; lfe != NULL; lfe = lfe->next)
  2205             d -= lfe->val * npp->r_pi[lfe->ref];
  2206          col->c = d;
  2207       }
  2208       /* consider columns j, whose multipliers lambda[j] has wrong
  2209          sign in solution to the transformed problem (where lambda[j] =
  2210          d[j]), and choose column q, whose multipler lambda[q] reaches
  2211          zero last on changing row multiplier pi[p]; see (14) */
  2212       piv = NULL, big = 0.0;
  2213       for (col = info->ptr; col != NULL; col = col->next)
  2214       {  d = col->c; /* d[j] */
  2215          temp = fabs(d / col->a);
  2216          if (col->stat == GLP_NL)
  2217          {  /* column j has active lower bound */
  2218             if (d < 0.0 && big < temp)
  2219                piv = col, big = temp;
  2220          }
  2221          else if (col->stat == GLP_NU)
  2222          {  /* column j has active upper bound */
  2223             if (d > 0.0 && big < temp)
  2224                piv = col, big = temp;
  2225          }
  2226          else
  2227          {  npp_error();
  2228             return 1;
  2229          }
  2230       }
  2231       /* if column q does not exist, no correction is needed */
  2232       if (piv != NULL)
  2233       {  /* correct solution; row p becomes active constraint while
  2234             column q becomes basic */
  2235          if (npp->sol == GLP_SOL)
  2236          {  npp->r_stat[info->p] = info->stat;
  2237             npp->c_stat[piv->j] = GLP_BS;
  2238          }
  2239          /* assign new value to row multiplier pi[p] = d[p] / a[p,q] */
  2240          npp->r_pi[info->p] = piv->c / piv->a;
  2241       }
  2242 done: return 0;
  2243 }
  2244 
  2245 /***********************************************************************
  2246 *  NAME
  2247 *
  2248 *  npp_analyze_row - perform general row analysis
  2249 *
  2250 *  SYNOPSIS
  2251 *
  2252 *  #include "glpnpp.h"
  2253 *  int npp_analyze_row(NPP *npp, NPPROW *p);
  2254 *
  2255 *  DESCRIPTION
  2256 *
  2257 *  The routine npp_analyze_row performs analysis of row p of general
  2258 *  format:
  2259 *
  2260 *     L[p] <= sum a[p,j] x[j] <= U[p],                               (1)
  2261 *              j
  2262 *
  2263 *     l[j] <= x[j] <= u[j],                                          (2)
  2264 *
  2265 *  where L[p] <= U[p] and l[j] <= u[j] for all a[p,j] != 0.
  2266 *
  2267 *  RETURNS
  2268 *
  2269 *  0x?0 - row lower bound does not exist or is redundant;
  2270 *
  2271 *  0x?1 - row lower bound can be active;
  2272 *
  2273 *  0x?2 - row lower bound is a forcing bound;
  2274 *
  2275 *  0x0? - row upper bound does not exist or is redundant;
  2276 *
  2277 *  0x1? - row upper bound can be active;
  2278 *
  2279 *  0x2? - row upper bound is a forcing bound;
  2280 *
  2281 *  0x33 - row bounds are inconsistent with column bounds.
  2282 *
  2283 *  ALGORITHM
  2284 *
  2285 *  Analysis of row (1) is based on analysis of its implied lower and
  2286 *  upper bounds, which are determined by bounds of corresponding columns
  2287 *  (variables) as follows:
  2288 *
  2289 *     L'[p] = inf sum a[p,j] x[j] =
  2290 *                  j
  2291 *                                                                    (3)
  2292 *           =  sum  a[p,j] l[j] +  sum  a[p,j] u[j],
  2293 *            j in Jp             j in Jn
  2294 *
  2295 *     U'[p] = sup sum a[p,j] x[j] =
  2296 *                                                                    (4)
  2297 *           =  sum  a[p,j] u[j] +  sum  a[p,j] l[j],
  2298 *            j in Jp             j in Jn
  2299 *
  2300 *     Jp = {j: a[p,j] > 0},  Jn = {j: a[p,j] < 0}.                   (5)
  2301 *
  2302 *  (Note that bounds of all columns in row p are assumed to be correct,
  2303 *  so L'[p] <= U'[p].)
  2304 *
  2305 *  Analysis of row lower bound L[p] includes the following cases:
  2306 *
  2307 *  1) if L[p] > U'[p] + eps, where eps is an absolute tolerance for row
  2308 *     value, row lower bound L[p] and implied row upper bound U'[p] are
  2309 *     inconsistent, ergo, the problem has no primal feasible solution;
  2310 *
  2311 *  2) if U'[p] - eps <= L[p] <= U'[p] + eps, i.e. if L[p] =~ U'[p],
  2312 *     the row is a forcing row on its lower bound (see description of
  2313 *     the routine npp_forcing_row);
  2314 *
  2315 *  3) if L[p] > L'[p] + eps, row lower bound L[p] can be active (this
  2316 *     conclusion does not account other rows in the problem);
  2317 *
  2318 *  4) if L[p] <= L'[p] + eps, row lower bound L[p] cannot be active, so
  2319 *     it is redundant and can be removed (replaced by -oo).
  2320 *
  2321 *  Analysis of row upper bound U[p] is performed in a similar way and
  2322 *  includes the following cases:
  2323 *
  2324 *  1) if U[p] < L'[p] - eps, row upper bound U[p] and implied row lower
  2325 *     bound L'[p] are inconsistent, ergo the problem has no primal
  2326 *     feasible solution;
  2327 *
  2328 *  2) if L'[p] - eps <= U[p] <= L'[p] + eps, i.e. if U[p] =~ L'[p],
  2329 *     the row is a forcing row on its upper bound (see description of
  2330 *     the routine npp_forcing_row);
  2331 *
  2332 *  3) if U[p] < U'[p] - eps, row upper bound U[p] can be active (this
  2333 *     conclusion does not account other rows in the problem);
  2334 *
  2335 *  4) if U[p] >= U'[p] - eps, row upper bound U[p] cannot be active, so
  2336 *     it is redundant and can be removed (replaced by +oo). */
  2337 
  2338 int npp_analyze_row(NPP *npp, NPPROW *p)
  2339 {     /* perform general row analysis */
  2340       NPPAIJ *aij;
  2341       int ret = 0x00;
  2342       double l, u, eps;
  2343       xassert(npp == npp);
  2344       /* compute implied lower bound L'[p]; see (3) */
  2345       l = 0.0;
  2346       for (aij = p->ptr; aij != NULL; aij = aij->r_next)
  2347       {  if (aij->val > 0.0)
  2348          {  if (aij->col->lb == -DBL_MAX)
  2349             {  l = -DBL_MAX;
  2350                break;
  2351             }
  2352             l += aij->val * aij->col->lb;
  2353          }
  2354          else /* aij->val < 0.0 */
  2355          {  if (aij->col->ub == +DBL_MAX)
  2356             {  l = -DBL_MAX;
  2357                break;
  2358             }
  2359             l += aij->val * aij->col->ub;
  2360          }
  2361       }
  2362       /* compute implied upper bound U'[p]; see (4) */
  2363       u = 0.0;
  2364       for (aij = p->ptr; aij != NULL; aij = aij->r_next)
  2365       {  if (aij->val > 0.0)
  2366          {  if (aij->col->ub == +DBL_MAX)
  2367             {  u = +DBL_MAX;
  2368                break;
  2369             }
  2370             u += aij->val * aij->col->ub;
  2371          }
  2372          else /* aij->val < 0.0 */
  2373          {  if (aij->col->lb == -DBL_MAX)
  2374             {  u = +DBL_MAX;
  2375                break;
  2376             }
  2377             u += aij->val * aij->col->lb;
  2378          }
  2379       }
  2380       /* column bounds are assumed correct, so L'[p] <= U'[p] */
  2381       /* check if row lower bound is consistent */
  2382       if (p->lb != -DBL_MAX)
  2383       {  eps = 1e-3 + 1e-6 * fabs(p->lb);
  2384          if (p->lb - eps > u)
  2385          {  ret = 0x33;
  2386             goto done;
  2387          }
  2388       }
  2389       /* check if row upper bound is consistent */
  2390       if (p->ub != +DBL_MAX)
  2391       {  eps = 1e-3 + 1e-6 * fabs(p->ub);
  2392          if (p->ub + eps < l)
  2393          {  ret = 0x33;
  2394             goto done;
  2395          }
  2396       }
  2397       /* check if row lower bound can be active/forcing */
  2398       if (p->lb != -DBL_MAX)
  2399       {  eps = 1e-9 + 1e-12 * fabs(p->lb);
  2400          if (p->lb - eps > l)
  2401          {  if (p->lb + eps <= u)
  2402                ret |= 0x01;
  2403             else
  2404                ret |= 0x02;
  2405          }
  2406       }
  2407       /* check if row upper bound can be active/forcing */
  2408       if (p->ub != +DBL_MAX)
  2409       {  eps = 1e-9 + 1e-12 * fabs(p->ub);
  2410          if (p->ub + eps < u)
  2411          {  /* check if the upper bound is forcing */
  2412             if (p->ub - eps >= l)
  2413                ret |= 0x10;
  2414             else
  2415                ret |= 0x20;
  2416          }
  2417       }
  2418 done: return ret;
  2419 }
  2420 
  2421 /***********************************************************************
  2422 *  NAME
  2423 *
  2424 *  npp_inactive_bound - remove row lower/upper inactive bound
  2425 *
  2426 *  SYNOPSIS
  2427 *
  2428 *  #include "glpnpp.h"
  2429 *  void npp_inactive_bound(NPP *npp, NPPROW *p, int which);
  2430 *
  2431 *  DESCRIPTION
  2432 *
  2433 *  The routine npp_inactive_bound removes lower (if which = 0) or upper
  2434 *  (if which = 1) bound of row p:
  2435 *
  2436 *     L[p] <= sum a[p,j] x[j] <= U[p],
  2437 *
  2438 *  which (bound) is assumed to be redundant.
  2439 *
  2440 *  PROBLEM TRANSFORMATION
  2441 *
  2442 *  If which = 0, current lower bound L[p] of row p is assigned -oo.
  2443 *  If which = 1, current upper bound U[p] of row p is assigned +oo.
  2444 *
  2445 *  RECOVERING BASIC SOLUTION
  2446 *
  2447 *  If in solution to the transformed problem row p is inactive
  2448 *  constraint (GLP_BS), its status is not changed in solution to the
  2449 *  original problem. Otherwise, status of row p in solution to the
  2450 *  original problem is defined by its type before transformation and
  2451 *  its status in solution to the transformed problem as follows:
  2452 *
  2453 *     +---------------------+-------+---------------+---------------+
  2454 *     |        Row          | Flag  | Row status in | Row status in |
  2455 *     |        type         | which | transfmd soln | original soln |
  2456 *     +---------------------+-------+---------------+---------------+
  2457 *     |     sum >= L[p]     |   0   |    GLP_NF     |    GLP_NL     |
  2458 *     |     sum <= U[p]     |   1   |    GLP_NF     |    GLP_NU     |
  2459 *     | L[p] <= sum <= U[p] |   0   |    GLP_NU     |    GLP_NU     |
  2460 *     | L[p] <= sum <= U[p] |   1   |    GLP_NL     |    GLP_NL     |
  2461 *     |  sum = L[p] = U[p]  |   0   |    GLP_NU     |    GLP_NS     |
  2462 *     |  sum = L[p] = U[p]  |   1   |    GLP_NL     |    GLP_NS     |
  2463 *     +---------------------+-------+---------------+---------------+
  2464 *
  2465 *  RECOVERING INTERIOR-POINT SOLUTION
  2466 *
  2467 *  None needed.
  2468 *
  2469 *  RECOVERING MIP SOLUTION
  2470 *
  2471 *  None needed. */
  2472 
  2473 struct inactive_bound
  2474 {     /* row inactive bound */
  2475       int p;
  2476       /* row reference number */
  2477       char stat;
  2478       /* row status (if active constraint) */
  2479 };
  2480 
  2481 static int rcv_inactive_bound(NPP *npp, void *info);
  2482 
  2483 void npp_inactive_bound(NPP *npp, NPPROW *p, int which)
  2484 {     /* remove row lower/upper inactive bound */
  2485       struct inactive_bound *info;
  2486       if (npp->sol == GLP_SOL)
  2487       {  /* create transformation stack entry */
  2488          info = npp_push_tse(npp,
  2489             rcv_inactive_bound, sizeof(struct inactive_bound));
  2490          info->p = p->i;
  2491          if (p->ub == +DBL_MAX)
  2492             info->stat = GLP_NL;
  2493          else if (p->lb == -DBL_MAX)
  2494             info->stat = GLP_NU;
  2495          else if (p->lb != p->ub)
  2496             info->stat = (char)(which == 0 ? GLP_NU : GLP_NL);
  2497          else
  2498             info->stat = GLP_NS;
  2499       }
  2500       /* remove row inactive bound */
  2501       if (which == 0)
  2502       {  xassert(p->lb != -DBL_MAX);
  2503          p->lb = -DBL_MAX;
  2504       }
  2505       else if (which == 1)
  2506       {  xassert(p->ub != +DBL_MAX);
  2507          p->ub = +DBL_MAX;
  2508       }
  2509       else
  2510          xassert(which != which);
  2511       return;
  2512 }
  2513 
  2514 static int rcv_inactive_bound(NPP *npp, void *_info)
  2515 {     /* recover row status */
  2516       struct inactive_bound *info = _info;
  2517       if (npp->sol != GLP_SOL)
  2518       {  npp_error();
  2519          return 1;
  2520       }
  2521       if (npp->r_stat[info->p] == GLP_BS)
  2522          npp->r_stat[info->p] = GLP_BS;
  2523       else
  2524          npp->r_stat[info->p] = info->stat;
  2525       return 0;
  2526 }
  2527 
  2528 /***********************************************************************
  2529 *  NAME
  2530 *
  2531 *  npp_implied_bounds - determine implied column bounds
  2532 *
  2533 *  SYNOPSIS
  2534 *
  2535 *  #include "glpnpp.h"
  2536 *  void npp_implied_bounds(NPP *npp, NPPROW *p);
  2537 *
  2538 *  DESCRIPTION
  2539 *
  2540 *  The routine npp_implied_bounds inspects general row (constraint) p:
  2541 *
  2542 *     L[p] <= sum a[p,j] x[j] <= U[p],                               (1)
  2543 *
  2544 *     l[j] <= x[j] <= u[j],                                          (2)
  2545 *
  2546 *  where L[p] <= U[p] and l[j] <= u[j] for all a[p,j] != 0, to compute
  2547 *  implied bounds of columns (variables x[j]) in this row.
  2548 *
  2549 *  The routine stores implied column bounds l'[j] and u'[j] in column
  2550 *  descriptors (NPPCOL); it does not change current column bounds l[j]
  2551 *  and u[j]. (Implied column bounds can be then used to strengthen the
  2552 *  current column bounds; see the routines npp_implied_lower and
  2553 *  npp_implied_upper).
  2554 *
  2555 *  ALGORITHM
  2556 *
  2557 *  Current column bounds (2) define implied lower and upper bounds of
  2558 *  row (1) as follows:
  2559 *
  2560 *     L'[p] = inf sum a[p,j] x[j] =
  2561 *                  j
  2562 *                                                                    (3)
  2563 *           =  sum  a[p,j] l[j] +  sum  a[p,j] u[j],
  2564 *            j in Jp             j in Jn
  2565 *
  2566 *     U'[p] = sup sum a[p,j] x[j] =
  2567 *                                                                    (4)
  2568 *           =  sum  a[p,j] u[j] +  sum  a[p,j] l[j],
  2569 *            j in Jp             j in Jn
  2570 *
  2571 *     Jp = {j: a[p,j] > 0},  Jn = {j: a[p,j] < 0}.                   (5)
  2572 *
  2573 *  (Note that bounds of all columns in row p are assumed to be correct,
  2574 *  so L'[p] <= U'[p].)
  2575 *
  2576 *  If L[p] > L'[p] and/or U[p] < U'[p], the lower and/or upper bound of
  2577 *  row (1) can be active, in which case such row defines implied bounds
  2578 *  of its variables.
  2579 *
  2580 *  Let x[k] be some variable having in row (1) coefficient a[p,k] != 0.
  2581 *  Consider a case when row lower bound can be active (L[p] > L'[p]):
  2582 *
  2583 *     sum a[p,j] x[j] >= L[p]  ==>
  2584 *      j
  2585 *
  2586 *     sum a[p,j] x[j] + a[p,k] x[k] >= L[p]  ==>
  2587 *     j!=k
  2588 *                                                                    (6)
  2589 *     a[p,k] x[k] >= L[p] - sum a[p,j] x[j]  ==>
  2590 *                           j!=k
  2591 *
  2592 *     a[p,k] x[k] >= L[p,k],
  2593 *
  2594 *  where
  2595 *
  2596 *     L[p,k] = inf(L[p] - sum a[p,j] x[j]) =
  2597 *                         j!=k
  2598 *
  2599 *            = L[p] - sup sum a[p,j] x[j] =                          (7)
  2600 *                         j!=k
  2601 *
  2602 *            = L[p] - sum a[p,j] u[j] - sum a[p,j] l[j].
  2603 *                    j in Jp\{k}       j in Jn\{k}
  2604 *
  2605 *  Thus:
  2606 *
  2607 *     x[k] >= l'[k] = L[p,k] / a[p,k],  if a[p,k] > 0,               (8)
  2608 *
  2609 *     x[k] <= u'[k] = L[p,k] / a[p,k],  if a[p,k] < 0.               (9)
  2610 *
  2611 *  where l'[k] and u'[k] are implied lower and upper bounds of variable
  2612 *  x[k], resp.
  2613 *
  2614 *  Now consider a similar case when row upper bound can be active
  2615 *  (U[p] < U'[p]):
  2616 *
  2617 *     sum a[p,j] x[j] <= U[p]  ==>
  2618 *      j
  2619 *
  2620 *     sum a[p,j] x[j] + a[p,k] x[k] <= U[p]  ==>
  2621 *     j!=k
  2622 *                                                                   (10)
  2623 *     a[p,k] x[k] <= U[p] - sum a[p,j] x[j]  ==>
  2624 *                           j!=k
  2625 *
  2626 *     a[p,k] x[k] <= U[p,k],
  2627 *
  2628 *  where:
  2629 *
  2630 *     U[p,k] = sup(U[p] - sum a[p,j] x[j]) =
  2631 *                         j!=k
  2632 *
  2633 *            = U[p] - inf sum a[p,j] x[j] =                         (11)
  2634 *                         j!=k
  2635 *
  2636 *            = U[p] - sum a[p,j] l[j] - sum a[p,j] u[j].
  2637 *                    j in Jp\{k}       j in Jn\{k}
  2638 *
  2639 *  Thus:
  2640 *
  2641 *     x[k] <= u'[k] = U[p,k] / a[p,k],  if a[p,k] > 0,              (12)
  2642 *
  2643 *     x[k] >= l'[k] = U[p,k] / a[p,k],  if a[p,k] < 0.              (13)
  2644 *
  2645 *  Note that in formulae (8), (9), (12), and (13) coefficient a[p,k]
  2646 *  must not be too small in magnitude relatively to other non-zero
  2647 *  coefficients in row (1), i.e. the following condition must hold:
  2648 *
  2649 *     |a[p,k]| >= eps * max(1, |a[p,j]|),                           (14)
  2650 *                        j
  2651 *
  2652 *  where eps is a relative tolerance for constraint coefficients.
  2653 *  Otherwise the implied column bounds can be numerical inreliable. For
  2654 *  example, using formula (8) for the following inequality constraint:
  2655 *
  2656 *     1e-12 x1 - x2 - x3 >= 0,
  2657 *
  2658 *  where x1 >= -1, x2, x3, >= 0, may lead to numerically unreliable
  2659 *  conclusion that x1 >= 0.
  2660 *
  2661 *  Using formulae (8), (9), (12), and (13) to compute implied bounds
  2662 *  for one variable requires |J| operations, where J = {j: a[p,j] != 0},
  2663 *  because this needs computing L[p,k] and U[p,k]. Thus, computing
  2664 *  implied bounds for all variables in row (1) would require |J|^2
  2665 *  operations, that is not a good technique. However, the total number
  2666 *  of operations can be reduced to |J| as follows.
  2667 *
  2668 *  Let a[p,k] > 0. Then from (7) and (11) we have:
  2669 *
  2670 *     L[p,k] = L[p] - (U'[p] - a[p,k] u[k]) =
  2671 *
  2672 *            = L[p] - U'[p] + a[p,k] u[k],
  2673 *
  2674 *     U[p,k] = U[p] - (L'[p] - a[p,k] l[k]) =
  2675 *
  2676 *            = U[p] - L'[p] + a[p,k] l[k],
  2677 *
  2678 *  where L'[p] and U'[p] are implied row lower and upper bounds defined
  2679 *  by formulae (3) and (4). Substituting these expressions into (8) and
  2680 *  (12) gives:
  2681 *
  2682 *     l'[k] = L[p,k] / a[p,k] = u[k] + (L[p] - U'[p]) / a[p,k],     (15)
  2683 *
  2684 *     u'[k] = U[p,k] / a[p,k] = l[k] + (U[p] - L'[p]) / a[p,k].     (16)
  2685 *
  2686 *  Similarly, if a[p,k] < 0, according to (7) and (11) we have:
  2687 *
  2688 *     L[p,k] = L[p] - (U'[p] - a[p,k] l[k]) =
  2689 *
  2690 *            = L[p] - U'[p] + a[p,k] l[k],
  2691 *
  2692 *     U[p,k] = U[p] - (L'[p] - a[p,k] u[k]) =
  2693 *
  2694 *            = U[p] - L'[p] + a[p,k] u[k],
  2695 *
  2696 *  and substituting these expressions into (8) and (12) gives:
  2697 *
  2698 *     l'[k] = U[p,k] / a[p,k] = u[k] + (U[p] - L'[p]) / a[p,k],     (17)
  2699 *
  2700 *     u'[k] = L[p,k] / a[p,k] = l[k] + (L[p] - U'[p]) / a[p,k].     (18)
  2701 *
  2702 *  Note that formulae (15)-(18) can be used only if L'[p] and U'[p]
  2703 *  exist. However, if for some variable x[j] it happens that l[j] = -oo
  2704 *  and/or u[j] = +oo, values of L'[p] (if a[p,j] > 0) and/or U'[p] (if
  2705 *  a[p,j] < 0) are undefined. Consider, therefore, the most general
  2706 *  situation, when some column bounds (2) may not exist.
  2707 *
  2708 *  Let:
  2709 *
  2710 *     J' = {j : (a[p,j] > 0 and l[j] = -oo) or
  2711 *                                                                   (19)
  2712 *               (a[p,j] < 0 and u[j] = +oo)}.
  2713 *
  2714 *  Then (assuming that row upper bound U[p] can be active) the following
  2715 *  three cases are possible:
  2716 *
  2717 *  1) |J'| = 0. In this case L'[p] exists, thus, for all variables x[j]
  2718 *     in row (1) we can use formulae (16) and (17);
  2719 *
  2720 *  2) J' = {k}. In this case L'[p] = -oo, however, U[p,k] (11) exists,
  2721 *     so for variable x[k] we can use formulae (12) and (13). Note that
  2722 *     for all other variables x[j] (j != k) l'[j] = -oo (if a[p,j] < 0)
  2723 *     or u'[j] = +oo (if a[p,j] > 0);
  2724 *
  2725 *  3) |J'| > 1. In this case for all variables x[j] in row [1] we have
  2726 *     l'[j] = -oo (if a[p,j] < 0) or u'[j] = +oo (if a[p,j] > 0).
  2727 *
  2728 *  Similarly, let:
  2729 *
  2730 *     J'' = {j : (a[p,j] > 0 and u[j] = +oo) or
  2731 *                                                                   (20)
  2732 *                (a[p,j] < 0 and l[j] = -oo)}.
  2733 *
  2734 *  Then (assuming that row lower bound L[p] can be active) the following
  2735 *  three cases are possible:
  2736 *
  2737 *  1) |J''| = 0. In this case U'[p] exists, thus, for all variables x[j]
  2738 *     in row (1) we can use formulae (15) and (18);
  2739 *
  2740 *  2) J'' = {k}. In this case U'[p] = +oo, however, L[p,k] (7) exists,
  2741 *     so for variable x[k] we can use formulae (8) and (9). Note that
  2742 *     for all other variables x[j] (j != k) l'[j] = -oo (if a[p,j] > 0)
  2743 *     or u'[j] = +oo (if a[p,j] < 0);
  2744 *
  2745 *  3) |J''| > 1. In this case for all variables x[j] in row (1) we have
  2746 *     l'[j] = -oo (if a[p,j] > 0) or u'[j] = +oo (if a[p,j] < 0). */
  2747 
  2748 void npp_implied_bounds(NPP *npp, NPPROW *p)
  2749 {     NPPAIJ *apj, *apk;
  2750       double big, eps, temp;
  2751       xassert(npp == npp);
  2752       /* initialize implied bounds for all variables and determine
  2753          maximal magnitude of row coefficients a[p,j] */
  2754       big = 1.0;
  2755       for (apj = p->ptr; apj != NULL; apj = apj->r_next)
  2756       {  apj->col->ll.ll = -DBL_MAX, apj->col->uu.uu = +DBL_MAX;
  2757          if (big < fabs(apj->val)) big = fabs(apj->val);
  2758       }
  2759       eps = 1e-6 * big;
  2760       /* process row lower bound (assuming that it can be active) */
  2761       if (p->lb != -DBL_MAX)
  2762       {  apk = NULL;
  2763          for (apj = p->ptr; apj != NULL; apj = apj->r_next)
  2764          {  if (apj->val > 0.0 && apj->col->ub == +DBL_MAX ||
  2765                 apj->val < 0.0 && apj->col->lb == -DBL_MAX)
  2766             {  if (apk == NULL)
  2767                   apk = apj;
  2768                else
  2769                   goto skip1;
  2770             }
  2771          }
  2772          /* if a[p,k] = NULL then |J'| = 0 else J' = { k } */
  2773          temp = p->lb;
  2774          for (apj = p->ptr; apj != NULL; apj = apj->r_next)
  2775          {  if (apj == apk)
  2776                /* skip a[p,k] */;
  2777             else if (apj->val > 0.0)
  2778                temp -= apj->val * apj->col->ub;
  2779             else /* apj->val < 0.0 */
  2780                temp -= apj->val * apj->col->lb;
  2781          }
  2782          /* compute column implied bounds */
  2783          if (apk == NULL)
  2784          {  /* temp = L[p] - U'[p] */
  2785             for (apj = p->ptr; apj != NULL; apj = apj->r_next)
  2786             {  if (apj->val >= +eps)
  2787                {  /* l'[j] := u[j] + (L[p] - U'[p]) / a[p,j] */
  2788                   apj->col->ll.ll = apj->col->ub + temp / apj->val;
  2789                }
  2790                else if (apj->val <= -eps)
  2791                {  /* u'[j] := l[j] + (L[p] - U'[p]) / a[p,j] */
  2792                   apj->col->uu.uu = apj->col->lb + temp / apj->val;
  2793                }
  2794             }
  2795          }
  2796          else
  2797          {  /* temp = L[p,k] */
  2798             if (apk->val >= +eps)
  2799             {  /* l'[k] := L[p,k] / a[p,k] */
  2800                apk->col->ll.ll = temp / apk->val;
  2801             }
  2802             else if (apk->val <= -eps)
  2803             {  /* u'[k] := L[p,k] / a[p,k] */
  2804                apk->col->uu.uu = temp / apk->val;
  2805             }
  2806          }
  2807 skip1:   ;
  2808       }
  2809       /* process row upper bound (assuming that it can be active) */
  2810       if (p->ub != +DBL_MAX)
  2811       {  apk = NULL;
  2812          for (apj = p->ptr; apj != NULL; apj = apj->r_next)
  2813          {  if (apj->val > 0.0 && apj->col->lb == -DBL_MAX ||
  2814                 apj->val < 0.0 && apj->col->ub == +DBL_MAX)
  2815             {  if (apk == NULL)
  2816                   apk = apj;
  2817                else
  2818                   goto skip2;
  2819             }
  2820          }
  2821          /* if a[p,k] = NULL then |J''| = 0 else J'' = { k } */
  2822          temp = p->ub;
  2823          for (apj = p->ptr; apj != NULL; apj = apj->r_next)
  2824          {  if (apj == apk)
  2825                /* skip a[p,k] */;
  2826             else if (apj->val > 0.0)
  2827                temp -= apj->val * apj->col->lb;
  2828             else /* apj->val < 0.0 */
  2829                temp -= apj->val * apj->col->ub;
  2830          }
  2831          /* compute column implied bounds */
  2832          if (apk == NULL)
  2833          {  /* temp = U[p] - L'[p] */
  2834             for (apj = p->ptr; apj != NULL; apj = apj->r_next)
  2835             {  if (apj->val >= +eps)
  2836                {  /* u'[j] := l[j] + (U[p] - L'[p]) / a[p,j] */
  2837                   apj->col->uu.uu = apj->col->lb + temp / apj->val;
  2838                }
  2839                else if (apj->val <= -eps)
  2840                {  /* l'[j] := u[j] + (U[p] - L'[p]) / a[p,j] */
  2841                   apj->col->ll.ll = apj->col->ub + temp / apj->val;
  2842                }
  2843             }
  2844          }
  2845          else
  2846          {  /* temp = U[p,k] */
  2847             if (apk->val >= +eps)
  2848             {  /* u'[k] := U[p,k] / a[p,k] */
  2849                apk->col->uu.uu = temp / apk->val;
  2850             }
  2851             else if (apk->val <= -eps)
  2852             {  /* l'[k] := U[p,k] / a[p,k] */
  2853                apk->col->ll.ll = temp / apk->val;
  2854             }
  2855          }
  2856 skip2:   ;
  2857       }
  2858       return;
  2859 }
  2860 
  2861 /* eof */