alpar@1: /* Data Envelopment Analysis (DEA) alpar@1: * alpar@1: * DEA quantifies the relative efficiency of decision making units (DMUs) by alpar@1: * finding the efficient frontier in multiple input multiple output data. The alpar@1: * inputs are resources (eg. number of employees, available machines, ...), alpar@1: * the outputs are productive outputs (eg. contracts made, total sales, ...). alpar@1: * The method is non-parametric. More details are available in the paper alpar@1: * below. alpar@1: * alpar@1: * Models according to: Seiford, Threall, "Recent developments in DEA", 1990. alpar@1: * alpar@1: * Implementation: Sebastian Nowozin alpar@1: */ alpar@1: alpar@1: ### SETS ### alpar@1: alpar@1: set dmus; # Decision Making Units (DMU) alpar@1: set inputs; # Input parameters alpar@1: set outputs; # Output parameters alpar@1: alpar@1: alpar@1: ### PARAMETERS ### alpar@1: alpar@1: param input_data{dmus,inputs} >= 0; alpar@1: param output_data{dmus,outputs} >= 0; alpar@1: alpar@1: alpar@1: ### PROGRAM ### alpar@1: alpar@1: var theta{dmus} >= 0; alpar@1: var lambda{dmus,dmus} >= 0; alpar@1: alpar@1: minimize inefficiency: sum{td in dmus} theta[td]; alpar@1: alpar@1: s.t. output_lower_limit{o in outputs, td in dmus}: alpar@1: sum{d in dmus} lambda[d,td]*output_data[d,o] >= output_data[td,o]; alpar@1: s.t. input_upper_limit{i in inputs, td in dmus}: alpar@1: sum{d in dmus} lambda[d,td]*input_data[d,i] <= theta[td]*input_data[td,i]; alpar@1: alpar@1: s.t. PI1{td in dmus}: alpar@1: sum{d in dmus} lambda[d,td] = 1; alpar@1: /* alpar@1: possibilities: alpar@1: i) (no constraint) alpar@1: ii) s.t. PI1{td in dmus}: alpar@1: sum{d in dmus} lambda[d,td] <= 1; alpar@1: iii) s.t. PI1{td in dmus}: alpar@1: sum{d in dmus} lambda[d,td] >= 1; alpar@1: */ alpar@1: alpar@1: alpar@1: ### SOLVE AND PRINT SOLUTION ### alpar@1: alpar@1: solve; alpar@1: alpar@1: printf "DMU\tEfficiency\n"; alpar@1: for {td in dmus} { alpar@1: printf "%s\t%1.4f\n", td, theta[td]; alpar@1: } alpar@1: alpar@1: ### DATA ### alpar@1: alpar@1: data; alpar@1: alpar@1: set dmus := 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 alpar@1: 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 alpar@1: 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 alpar@1: 61 62 63 64 65 66 67 68 69 ; alpar@1: set inputs := AvgInventory LaborCost OperatingCost Population ; alpar@1: set outputs := PrescrVol kDollarValue ; alpar@1: alpar@1: param input_data default 0.0 : alpar@1: alpar@1: AvgInventory LaborCost OperatingCost Population := alpar@1: alpar@1: 1 8000 17030 1280 1410 alpar@1: 2 9000 25890 2779 1523 alpar@1: 3 13694 29076 2372 1354 alpar@1: 4 4250 17506 1385 822 alpar@1: 5 6500 23208 639 746 alpar@1: 6 7000 12946 802 1281 alpar@1: 7 4500 18001 1130 1016 alpar@1: 8 5000 14473 1097 1070 alpar@1: 9 27000 31760 5559 1694 alpar@1: 10 21560 50972 15010 1910 alpar@1: 11 15000 39523 4799 1745 alpar@1: 12 8500 13076 3489 1353 alpar@1: 13 35000 35427 1704 500 alpar@1: 14 18000 27554 2882 1016 alpar@1: 15 59750 53848 14208 2500 alpar@1: 16 19200 38253 1480 2293 alpar@1: 17 40000 109404 83016 2718 alpar@1: 18 8466 18198 1278 2877 alpar@1: 19 16000 40891 7599 4150 alpar@1: 20 10000 45444 5556 4421 alpar@1: 21 25000 35623 2121 3883 alpar@1: 22 14000 20192 5515 3519 alpar@1: 23 12500 34973 10475 32366 alpar@1: 24 17260 32284 14498 3393 alpar@1: 25 7000 17920 7585 4489 alpar@1: 26 14000 42094 3742 2217 alpar@1: 27 16400 35422 14236 4641 alpar@1: 28 13000 19100 3529 5968 alpar@1: 29 30000 72167 8656 8715 alpar@1: 30 12530 19970 1714 5968 alpar@1: 31 31500 39183 4919 5607 alpar@1: 32 10000 32048 3483 7324 alpar@1: 33 22000 68877 12279 8685 alpar@1: 34 10000 29812 3332 8685 alpar@1: 35 16000 47686 2507 5420 alpar@1: 36 10000 33415 4738 7703 alpar@1: 37 9000 12359 4603 4665 alpar@1: 38 16439 23614 2989 6317 alpar@1: 39 14500 36069 1793 31839 alpar@1: 40 39000 76307 9539 15619 alpar@1: 41 24927 40706 12661 30213 alpar@1: 42 13858 39267 4609 34719 alpar@1: 43 33375 29509 11323 31839 alpar@1: 44 29044 44482 5542 34719 alpar@1: 45 32257 61365 20550 32366 alpar@1: 46 8800 49671 3306 43561 alpar@1: 47 47000 40425 10396 31263 alpar@1: 48 12000 33034 4915 31263 alpar@1: 49 28000 69163 4688 15173 alpar@1: 50 13300 28931 16735 73064 alpar@1: 51 13500 29758 4260 62309 alpar@1: 52 24000 40927 8285 23166 alpar@1: 53 16000 40403 2131 99836 alpar@1: 54 17000 38730 2539 60348 alpar@1: 55 25000 35978 2502 99836 alpar@1: 56 16000 37509 6278 99836 alpar@1: 57 20000 46950 10715 85925 alpar@1: 58 14000 35966 3144 85925 alpar@1: 59 22000 68318 8015 108987 alpar@1: 60 21879 69537 7778 108987 alpar@1: 61 15000 25425 2812 201404 alpar@1: 62 10000 19508 2454 201404 alpar@1: 63 20000 28191 3367 201404 alpar@1: 64 18000 37073 8624 108987 alpar@1: 65 19051 23763 3496 201404 alpar@1: 66 15000 28642 3366 201404 alpar@1: 67 10000 35919 3868 201404 alpar@1: 68 24000 54653 26494 108987 alpar@1: 69 1800 6276 3413 60348 alpar@1: ; alpar@1: alpar@1: param output_data default 0.0 : alpar@1: alpar@1: PrescrVol kDollarValue := alpar@1: alpar@1: 1 12293 61.00 alpar@1: 2 18400 92.00 alpar@1: 3 16789 92.65 alpar@1: 4 10700 45.00 alpar@1: 5 9800 50.00 alpar@1: 6 6500 29.00 alpar@1: 7 8200 56.00 alpar@1: 8 8680 45.00 alpar@1: 9 33800 183.00 alpar@1: 10 23710 156.00 alpar@1: 11 24000 120.00 alpar@1: 12 17500 75.00 alpar@1: 13 25000 130.00 alpar@1: 14 26000 122.00 alpar@1: 15 26830 178.513 alpar@1: 16 16600 106.00 alpar@1: 17 90000 450.00 alpar@1: 18 11140 73.624 alpar@1: 19 25868 136.00 alpar@1: 20 32700 191.295 alpar@1: 21 29117 152.864 alpar@1: 22 18000 100.00 alpar@1: 23 11100 60.00 alpar@1: 24 23030 137.778 alpar@1: 25 10656 58.00 alpar@1: 26 24682 152.095 alpar@1: 27 26908 120.00 alpar@1: 28 16464 80.00 alpar@1: 29 57000 321.00 alpar@1: 30 17532 94.747 alpar@1: 31 30035 168.00 alpar@1: 32 16000 100.00 alpar@1: 33 63700 277.00 alpar@1: 34 18000 90.00 alpar@1: 35 27339 139.134 alpar@1: 36 19500 116.00 alpar@1: 37 13000 80.00 alpar@1: 38 15370 102.00 alpar@1: 39 18446 90.00 alpar@1: 40 56000 260.00 alpar@1: 41 73845 364.951 alpar@1: 42 28600 145.00 alpar@1: 43 27000 243.00 alpar@1: 44 52423 279.816 alpar@1: 45 73759 363.388 alpar@1: 46 20500 80.00 alpar@1: 47 27100 115.00 alpar@1: 48 15000 110.00 alpar@1: 49 50895 277.852 alpar@1: 50 19707 128.00 alpar@1: 51 17994 78.80 alpar@1: 52 36135 167.222 alpar@1: 53 30000 153.00 alpar@1: 54 26195 125.00 alpar@1: 55 28000 216.00 alpar@1: 56 24658 152.551 alpar@1: 57 36850 190.00 alpar@1: 58 29250 183.69 alpar@1: 59 50000 250.00 alpar@1: 60 40078 265.443 alpar@1: 61 20200 110.00 alpar@1: 62 12500 75.00 alpar@1: 63 30890 195.00 alpar@1: 64 31000 175.00 alpar@1: 65 31277 192.992 alpar@1: 66 11500 75.00 alpar@1: 67 30000 175.668 alpar@1: 68 38383 190.00 alpar@1: 69 2075 8.650 alpar@1: ; alpar@1: alpar@1: end;