alpar@1: /* GAP, Generalized Assignment Problem */ alpar@1: alpar@1: /* Written in GNU MathProg by Andrew Makhorin */ alpar@1: alpar@1: /* The Generalized Assignment Problem (GAP) is to assign a set of jobs alpar@1: to a set of agents subject to the constraints that each job must be alpar@1: assigned exactly to one agent and the total resources consumed by all alpar@1: jobs assigned to an agent must not exceed the agent's capacity. */ alpar@1: alpar@1: param m, integer, > 0; alpar@1: /* number of agents */ alpar@1: alpar@1: param n, integer, > 0; alpar@1: /* number of jobs */ alpar@1: alpar@1: set I := 1..m; alpar@1: /* set of agents */ alpar@1: alpar@1: set J := 1..n; alpar@1: /* set of jobs */ alpar@1: alpar@1: param a{i in I, j in J}, >= 0; alpar@1: /* resource consumed in allocating job j to agent i */ alpar@1: alpar@1: param b{i in I}, >= 0; alpar@1: /* resource capacity of agent i */ alpar@1: alpar@1: param c{i in I, j in J}, >= 0; alpar@1: /* cost of allocating job j to agent i */ alpar@1: alpar@1: var x{i in I, j in J}, binary; alpar@1: /* x[i,j] = 1 means job j is assigned to agent i */ alpar@1: alpar@1: s.t. one{j in J}: sum{i in I} x[i,j] = 1; alpar@1: /* job j must be assigned exactly to one agent */ alpar@1: alpar@1: s.t. lim{i in I}: sum{j in J} a[i,j] * x[i,j] <= b[i]; alpar@1: /* total amount of resources consumed by all jobs assigned to agent i alpar@1: must not exceed the agent's capacity */ alpar@1: alpar@1: minimize obj: sum{i in I, j in J} c[i,j] * x[i,j]; alpar@1: /* the objective is to find cheapest assignment (note that gap can also alpar@1: be formulated as maximization problem) */ alpar@1: alpar@1: data; alpar@1: alpar@1: /* These data correspond to the instance c515-1 (gap1) from: alpar@1: alpar@1: I.H. Osman, "Heuristics for the Generalised Assignment Problem: alpar@1: Simulated Annealing and Tabu Search Approaches", OR Spektrum, Volume alpar@1: 17, 211-225, 1995 alpar@1: alpar@1: D. Cattrysse, M. Salomon and L.N. Van Wassenhove, "A set partitioning alpar@1: heuristic for the generalized assignment problem", European Journal alpar@1: of Operational Research, Volume 72, 167-174, 1994 */ alpar@1: alpar@1: /* The optimal solution is 261 (minimization) or 336 (maximization) */ alpar@1: alpar@1: param m := 5; alpar@1: alpar@1: param n := 15; alpar@1: alpar@1: param a : 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 := alpar@1: 1 8 15 14 23 8 16 8 25 9 17 25 15 10 8 24 alpar@1: 2 15 7 23 22 11 11 12 10 17 16 7 16 10 18 22 alpar@1: 3 21 20 6 22 24 10 24 9 21 14 11 14 11 19 16 alpar@1: 4 20 11 8 14 9 5 6 19 19 7 6 6 13 9 18 alpar@1: 5 8 13 13 13 10 20 25 16 16 17 10 10 5 12 23 ; alpar@1: alpar@1: param b := 1 36, 2 34, 3 38, 4 27, 5 33; alpar@1: alpar@1: param c : 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 := alpar@1: 1 17 21 22 18 24 15 20 18 19 18 16 22 24 24 16 alpar@1: 2 23 16 21 16 17 16 19 25 18 21 17 15 25 17 24 alpar@1: 3 16 20 16 25 24 16 17 19 19 18 20 16 17 21 24 alpar@1: 4 19 19 22 22 20 16 19 17 21 19 25 23 25 25 25 alpar@1: 5 18 19 15 15 21 25 16 16 23 15 22 17 19 22 24 ; alpar@1: alpar@1: end;