diff -r d59bea55db9b -r c445c931472f examples/misp.mod --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/examples/misp.mod Mon Dec 06 13:09:21 2010 +0100 @@ -0,0 +1,665 @@ +/* MISP, Maximum Independent Set Problem */ + +/* Written in GNU MathProg by Andrew Makhorin */ + +/* Let G = (V,E) be an undirected graph with vertex set V and edge set + E. Vertices u, v in V are non-adjacent if (u,v) not in E. A subset + of the vertices S within V is independent if all vertices in S are + pairwise non-adjacent. The Maximum Independent Set Problem (MISP) is + to find an independent set having the largest cardinality. */ + +param n, integer, > 0; +/* number of vertices */ + +set V := 1..n; +/* set of vertices */ + +set E within V cross V; +/* set of edges */ + +var x{i in V}, binary; +/* x[i] = 1 means vertex i belongs to independent set */ + +s.t. edge{(i,j) in E}: x[i] + x[j] <= 1; +/* if there is edge (i,j), vertices i and j cannot belong to the same + independent set */ + +maximize obj: sum{i in V} x[i]; +/* the objective is to maximize the cardinality of independent set */ + +data; + +/* These data corresponds to the test instance from: + + M.G.C. Resende, T.A.Feo, S.H.Smith, "Algorithm 787 -- FORTRAN + subroutines for approximate solution of the maximum independent set + problem using GRASP," Trans. on Math. Softw., Vol. 24, No. 4, + December 1998, pp. 386-394. */ + +/* The optimal solution is 7 */ + +param n := 50; + +set E := + 1 2 + 1 3 + 1 5 + 1 7 + 1 8 + 1 12 + 1 15 + 1 16 + 1 19 + 1 20 + 1 21 + 1 22 + 1 28 + 1 30 + 1 34 + 1 35 + 1 37 + 1 41 + 1 42 + 1 47 + 1 50 + 2 3 + 2 5 + 2 6 + 2 7 + 2 8 + 2 9 + 2 10 + 2 13 + 2 17 + 2 19 + 2 20 + 2 21 + 2 23 + 2 25 + 2 26 + 2 29 + 2 31 + 2 35 + 2 36 + 2 44 + 2 45 + 2 46 + 2 50 + 3 5 + 3 6 + 3 8 + 3 9 + 3 10 + 3 11 + 3 14 + 3 16 + 3 23 + 3 24 + 3 26 + 3 27 + 3 28 + 3 29 + 3 30 + 3 31 + 3 34 + 3 35 + 3 36 + 3 39 + 3 41 + 3 42 + 3 43 + 3 44 + 3 50 + 4 6 + 4 7 + 4 9 + 4 10 + 4 11 + 4 13 + 4 14 + 4 15 + 4 17 + 4 21 + 4 22 + 4 23 + 4 24 + 4 25 + 4 27 + 4 28 + 4 30 + 4 31 + 4 33 + 4 34 + 4 35 + 4 36 + 4 37 + 4 38 + 4 40 + 4 41 + 4 42 + 4 46 + 4 49 + 5 6 + 5 11 + 5 14 + 5 21 + 5 24 + 5 25 + 5 28 + 5 35 + 5 38 + 5 39 + 5 41 + 5 44 + 5 49 + 5 50 + 6 8 + 6 9 + 6 10 + 6 13 + 6 14 + 6 16 + 6 17 + 6 19 + 6 22 + 6 23 + 6 26 + 6 27 + 6 30 + 6 34 + 6 35 + 6 38 + 6 39 + 6 40 + 6 41 + 6 44 + 6 45 + 6 47 + 6 50 + 7 8 + 7 9 + 7 10 + 7 11 + 7 13 + 7 15 + 7 16 + 7 18 + 7 20 + 7 22 + 7 23 + 7 24 + 7 25 + 7 33 + 7 35 + 7 36 + 7 38 + 7 43 + 7 45 + 7 46 + 7 47 + 8 10 + 8 11 + 8 13 + 8 16 + 8 17 + 8 18 + 8 19 + 8 20 + 8 21 + 8 22 + 8 23 + 8 24 + 8 25 + 8 26 + 8 33 + 8 35 + 8 36 + 8 39 + 8 42 + 8 44 + 8 48 + 8 49 + 9 12 + 9 14 + 9 17 + 9 19 + 9 20 + 9 23 + 9 28 + 9 30 + 9 31 + 9 32 + 9 33 + 9 34 + 9 38 + 9 39 + 9 42 + 9 44 + 9 45 + 9 46 + 10 11 + 10 13 + 10 15 + 10 16 + 10 17 + 10 20 + 10 21 + 10 22 + 10 23 + 10 25 + 10 26 + 10 27 + 10 28 + 10 30 + 10 31 + 10 32 + 10 37 + 10 38 + 10 41 + 10 43 + 10 44 + 10 45 + 10 50 + 11 12 + 11 14 + 11 15 + 11 18 + 11 21 + 11 24 + 11 25 + 11 26 + 11 29 + 11 32 + 11 33 + 11 35 + 11 36 + 11 37 + 11 39 + 11 40 + 11 42 + 11 43 + 11 45 + 11 47 + 11 49 + 11 50 + 12 13 + 12 16 + 12 17 + 12 19 + 12 24 + 12 25 + 12 26 + 12 30 + 12 31 + 12 32 + 12 34 + 12 36 + 12 37 + 12 39 + 12 41 + 12 44 + 12 47 + 12 48 + 12 49 + 13 15 + 13 16 + 13 18 + 13 19 + 13 20 + 13 22 + 13 23 + 13 24 + 13 27 + 13 28 + 13 29 + 13 31 + 13 33 + 13 35 + 13 36 + 13 37 + 13 44 + 13 47 + 13 49 + 13 50 + 14 15 + 14 16 + 14 17 + 14 18 + 14 19 + 14 20 + 14 21 + 14 26 + 14 28 + 14 29 + 14 30 + 14 31 + 14 32 + 14 34 + 14 35 + 14 36 + 14 38 + 14 39 + 14 41 + 14 44 + 14 46 + 14 47 + 14 48 + 15 18 + 15 21 + 15 22 + 15 23 + 15 25 + 15 28 + 15 29 + 15 30 + 15 33 + 15 34 + 15 36 + 15 37 + 15 38 + 15 39 + 15 40 + 15 43 + 15 44 + 15 46 + 15 50 + 16 17 + 16 19 + 16 20 + 16 25 + 16 26 + 16 29 + 16 35 + 16 38 + 16 39 + 16 40 + 16 41 + 16 42 + 16 44 + 17 18 + 17 19 + 17 21 + 17 22 + 17 23 + 17 25 + 17 26 + 17 28 + 17 29 + 17 33 + 17 37 + 17 44 + 17 45 + 17 48 + 18 20 + 18 24 + 18 27 + 18 28 + 18 31 + 18 32 + 18 34 + 18 35 + 18 36 + 18 37 + 18 38 + 18 45 + 18 48 + 18 49 + 18 50 + 19 22 + 19 24 + 19 28 + 19 29 + 19 36 + 19 37 + 19 39 + 19 41 + 19 43 + 19 45 + 19 48 + 19 49 + 20 21 + 20 22 + 20 24 + 20 25 + 20 26 + 20 27 + 20 29 + 20 30 + 20 31 + 20 33 + 20 34 + 20 35 + 20 38 + 20 39 + 20 41 + 20 42 + 20 43 + 20 44 + 20 45 + 20 46 + 20 48 + 20 49 + 21 22 + 21 23 + 21 29 + 21 31 + 21 35 + 21 38 + 21 42 + 21 46 + 21 47 + 22 23 + 22 26 + 22 27 + 22 28 + 22 29 + 22 30 + 22 39 + 22 40 + 22 41 + 22 42 + 22 44 + 22 45 + 22 46 + 22 47 + 22 49 + 22 50 + 23 28 + 23 31 + 23 32 + 23 33 + 23 34 + 23 35 + 23 36 + 23 39 + 23 40 + 23 41 + 23 42 + 23 44 + 23 45 + 23 48 + 23 49 + 23 50 + 24 25 + 24 27 + 24 29 + 24 30 + 24 31 + 24 33 + 24 34 + 24 38 + 24 42 + 24 43 + 24 44 + 24 49 + 24 50 + 25 26 + 25 27 + 25 29 + 25 30 + 25 33 + 25 34 + 25 36 + 25 38 + 25 40 + 25 41 + 25 42 + 25 44 + 25 46 + 25 47 + 25 48 + 25 49 + 26 28 + 26 31 + 26 32 + 26 33 + 26 37 + 26 38 + 26 39 + 26 40 + 26 41 + 26 42 + 26 45 + 26 47 + 26 48 + 26 49 + 27 29 + 27 30 + 27 33 + 27 34 + 27 35 + 27 39 + 27 40 + 27 46 + 27 48 + 28 29 + 28 37 + 28 40 + 28 42 + 28 44 + 28 46 + 28 47 + 28 50 + 29 35 + 29 38 + 29 39 + 29 41 + 29 42 + 29 48 + 30 31 + 30 32 + 30 35 + 30 37 + 30 38 + 30 40 + 30 43 + 30 45 + 30 46 + 30 47 + 30 48 + 31 33 + 31 35 + 31 38 + 31 40 + 31 41 + 31 42 + 31 44 + 31 46 + 31 47 + 31 50 + 32 33 + 32 35 + 32 39 + 32 40 + 32 46 + 32 49 + 32 50 + 33 34 + 33 36 + 33 37 + 33 40 + 33 42 + 33 43 + 33 44 + 33 45 + 33 50 + 34 35 + 34 36 + 34 37 + 34 38 + 34 40 + 34 43 + 34 44 + 34 49 + 34 50 + 35 36 + 35 38 + 35 41 + 35 42 + 35 43 + 35 45 + 35 46 + 35 47 + 35 49 + 35 50 + 36 37 + 36 39 + 36 40 + 36 41 + 36 42 + 36 43 + 36 48 + 36 50 + 37 38 + 37 41 + 37 43 + 37 46 + 37 47 + 37 48 + 37 49 + 37 50 + 38 41 + 38 45 + 38 46 + 38 48 + 38 49 + 38 50 + 39 43 + 39 46 + 39 47 + 39 48 + 39 49 + 40 43 + 40 45 + 40 48 + 40 50 + 41 42 + 41 43 + 41 44 + 41 45 + 41 46 + 41 48 + 41 49 + 42 43 + 42 44 + 42 46 + 42 48 + 42 49 + 43 45 + 43 46 + 43 48 + 43 50 + 44 45 + 44 48 + 45 46 + 45 47 + 45 48 + 46 49 + 47 49 + 47 50 + 48 49 + 48 50 + 49 50 +; + +end;