diff -r d59bea55db9b -r c445c931472f src/amd/amd_1.c --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/amd/amd_1.c Mon Dec 06 13:09:21 2010 +0100 @@ -0,0 +1,181 @@ +/* ========================================================================= */ +/* === AMD_1 =============================================================== */ +/* ========================================================================= */ + +/* ------------------------------------------------------------------------- */ +/* AMD, Copyright (c) Timothy A. Davis, */ +/* Patrick R. Amestoy, and Iain S. Duff. See ../README.txt for License. */ +/* email: davis at cise.ufl.edu CISE Department, Univ. of Florida. */ +/* web: http://www.cise.ufl.edu/research/sparse/amd */ +/* ------------------------------------------------------------------------- */ + +/* AMD_1: Construct A+A' for a sparse matrix A and perform the AMD ordering. + * + * The n-by-n sparse matrix A can be unsymmetric. It is stored in MATLAB-style + * compressed-column form, with sorted row indices in each column, and no + * duplicate entries. Diagonal entries may be present, but they are ignored. + * Row indices of column j of A are stored in Ai [Ap [j] ... Ap [j+1]-1]. + * Ap [0] must be zero, and nz = Ap [n] is the number of entries in A. The + * size of the matrix, n, must be greater than or equal to zero. + * + * This routine must be preceded by a call to AMD_aat, which computes the + * number of entries in each row/column in A+A', excluding the diagonal. + * Len [j], on input, is the number of entries in row/column j of A+A'. This + * routine constructs the matrix A+A' and then calls AMD_2. No error checking + * is performed (this was done in AMD_valid). + */ + +#include "amd_internal.h" + +GLOBAL void AMD_1 +( + Int n, /* n > 0 */ + const Int Ap [ ], /* input of size n+1, not modified */ + const Int Ai [ ], /* input of size nz = Ap [n], not modified */ + Int P [ ], /* size n output permutation */ + Int Pinv [ ], /* size n output inverse permutation */ + Int Len [ ], /* size n input, undefined on output */ + Int slen, /* slen >= sum (Len [0..n-1]) + 7n, + * ideally slen = 1.2 * sum (Len) + 8n */ + Int S [ ], /* size slen workspace */ + double Control [ ], /* input array of size AMD_CONTROL */ + double Info [ ] /* output array of size AMD_INFO */ +) +{ + Int i, j, k, p, pfree, iwlen, pj, p1, p2, pj2, *Iw, *Pe, *Nv, *Head, + *Elen, *Degree, *s, *W, *Sp, *Tp ; + + /* --------------------------------------------------------------------- */ + /* construct the matrix for AMD_2 */ + /* --------------------------------------------------------------------- */ + + ASSERT (n > 0) ; + + iwlen = slen - 6*n ; + s = S ; + Pe = s ; s += n ; + Nv = s ; s += n ; + Head = s ; s += n ; + Elen = s ; s += n ; + Degree = s ; s += n ; + W = s ; s += n ; + Iw = s ; s += iwlen ; + + ASSERT (AMD_valid (n, n, Ap, Ai) == AMD_OK) ; + + /* construct the pointers for A+A' */ + Sp = Nv ; /* use Nv and W as workspace for Sp and Tp [ */ + Tp = W ; + pfree = 0 ; + for (j = 0 ; j < n ; j++) + { + Pe [j] = pfree ; + Sp [j] = pfree ; + pfree += Len [j] ; + } + + /* Note that this restriction on iwlen is slightly more restrictive than + * what is strictly required in AMD_2. AMD_2 can operate with no elbow + * room at all, but it will be very slow. For better performance, at + * least size-n elbow room is enforced. */ + ASSERT (iwlen >= pfree + n) ; + +#ifndef NDEBUG + for (p = 0 ; p < iwlen ; p++) Iw [p] = EMPTY ; +#endif + + for (k = 0 ; k < n ; k++) + { + AMD_DEBUG1 (("Construct row/column k= "ID" of A+A'\n", k)) ; + p1 = Ap [k] ; + p2 = Ap [k+1] ; + + /* construct A+A' */ + for (p = p1 ; p < p2 ; ) + { + /* scan the upper triangular part of A */ + j = Ai [p] ; + ASSERT (j >= 0 && j < n) ; + if (j < k) + { + /* entry A (j,k) in the strictly upper triangular part */ + ASSERT (Sp [j] < (j == n-1 ? pfree : Pe [j+1])) ; + ASSERT (Sp [k] < (k == n-1 ? pfree : Pe [k+1])) ; + Iw [Sp [j]++] = k ; + Iw [Sp [k]++] = j ; + p++ ; + } + else if (j == k) + { + /* skip the diagonal */ + p++ ; + break ; + } + else /* j > k */ + { + /* first entry below the diagonal */ + break ; + } + /* scan lower triangular part of A, in column j until reaching + * row k. Start where last scan left off. */ + ASSERT (Ap [j] <= Tp [j] && Tp [j] <= Ap [j+1]) ; + pj2 = Ap [j+1] ; + for (pj = Tp [j] ; pj < pj2 ; ) + { + i = Ai [pj] ; + ASSERT (i >= 0 && i < n) ; + if (i < k) + { + /* A (i,j) is only in the lower part, not in upper */ + ASSERT (Sp [i] < (i == n-1 ? pfree : Pe [i+1])) ; + ASSERT (Sp [j] < (j == n-1 ? pfree : Pe [j+1])) ; + Iw [Sp [i]++] = j ; + Iw [Sp [j]++] = i ; + pj++ ; + } + else if (i == k) + { + /* entry A (k,j) in lower part and A (j,k) in upper */ + pj++ ; + break ; + } + else /* i > k */ + { + /* consider this entry later, when k advances to i */ + break ; + } + } + Tp [j] = pj ; + } + Tp [k] = p ; + } + + /* clean up, for remaining mismatched entries */ + for (j = 0 ; j < n ; j++) + { + for (pj = Tp [j] ; pj < Ap [j+1] ; pj++) + { + i = Ai [pj] ; + ASSERT (i >= 0 && i < n) ; + /* A (i,j) is only in the lower part, not in upper */ + ASSERT (Sp [i] < (i == n-1 ? pfree : Pe [i+1])) ; + ASSERT (Sp [j] < (j == n-1 ? pfree : Pe [j+1])) ; + Iw [Sp [i]++] = j ; + Iw [Sp [j]++] = i ; + } + } + +#ifndef NDEBUG + for (j = 0 ; j < n-1 ; j++) ASSERT (Sp [j] == Pe [j+1]) ; + ASSERT (Sp [n-1] == pfree) ; +#endif + + /* Tp and Sp no longer needed ] */ + + /* --------------------------------------------------------------------- */ + /* order the matrix */ + /* --------------------------------------------------------------------- */ + + AMD_2 (n, Pe, Iw, Len, iwlen, pfree, + Nv, Pinv, P, Head, Elen, Degree, W, Control, Info) ; +}