diff -r d59bea55db9b -r c445c931472f src/glpapi01.c --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/glpapi01.c Mon Dec 06 13:09:21 2010 +0100 @@ -0,0 +1,1570 @@ +/* glpapi01.c (problem creating and modifying routines) */ + +/*********************************************************************** +* This code is part of GLPK (GNU Linear Programming Kit). +* +* Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, +* 2009, 2010 Andrew Makhorin, Department for Applied Informatics, +* Moscow Aviation Institute, Moscow, Russia. All rights reserved. +* E-mail: . +* +* GLPK is free software: you can redistribute it and/or modify it +* under the terms of the GNU General Public License as published by +* the Free Software Foundation, either version 3 of the License, or +* (at your option) any later version. +* +* GLPK is distributed in the hope that it will be useful, but WITHOUT +* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY +* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public +* License for more details. +* +* You should have received a copy of the GNU General Public License +* along with GLPK. If not, see . +***********************************************************************/ + +#include "glpios.h" + +/* CAUTION: DO NOT CHANGE THE LIMITS BELOW */ + +#define M_MAX 100000000 /* = 100*10^6 */ +/* maximal number of rows in the problem object */ + +#define N_MAX 100000000 /* = 100*10^6 */ +/* maximal number of columns in the problem object */ + +#define NNZ_MAX 500000000 /* = 500*10^6 */ +/* maximal number of constraint coefficients in the problem object */ + +/*********************************************************************** +* NAME +* +* glp_create_prob - create problem object +* +* SYNOPSIS +* +* glp_prob *glp_create_prob(void); +* +* DESCRIPTION +* +* The routine glp_create_prob creates a new problem object, which is +* initially "empty", i.e. has no rows and columns. +* +* RETURNS +* +* The routine returns a pointer to the object created, which should be +* used in any subsequent operations on this object. */ + +static void create_prob(glp_prob *lp) +{ lp->magic = GLP_PROB_MAGIC; + lp->pool = dmp_create_pool(); +#if 0 /* 17/XI-2009 */ + lp->cps = xmalloc(sizeof(struct LPXCPS)); + lpx_reset_parms(lp); +#else + lp->parms = NULL; +#endif + lp->tree = NULL; +#if 0 + lp->lwa = 0; + lp->cwa = NULL; +#endif + /* LP/MIP data */ + lp->name = NULL; + lp->obj = NULL; + lp->dir = GLP_MIN; + lp->c0 = 0.0; + lp->m_max = 100; + lp->n_max = 200; + lp->m = lp->n = 0; + lp->nnz = 0; + lp->row = xcalloc(1+lp->m_max, sizeof(GLPROW *)); + lp->col = xcalloc(1+lp->n_max, sizeof(GLPCOL *)); + lp->r_tree = lp->c_tree = NULL; + /* basis factorization */ + lp->valid = 0; + lp->head = xcalloc(1+lp->m_max, sizeof(int)); + lp->bfcp = NULL; + lp->bfd = NULL; + /* basic solution (LP) */ + lp->pbs_stat = lp->dbs_stat = GLP_UNDEF; + lp->obj_val = 0.0; + lp->it_cnt = 0; + lp->some = 0; + /* interior-point solution (LP) */ + lp->ipt_stat = GLP_UNDEF; + lp->ipt_obj = 0.0; + /* integer solution (MIP) */ + lp->mip_stat = GLP_UNDEF; + lp->mip_obj = 0.0; + return; +} + +glp_prob *glp_create_prob(void) +{ glp_prob *lp; + lp = xmalloc(sizeof(glp_prob)); + create_prob(lp); + return lp; +} + +/*********************************************************************** +* NAME +* +* glp_set_prob_name - assign (change) problem name +* +* SYNOPSIS +* +* void glp_set_prob_name(glp_prob *lp, const char *name); +* +* DESCRIPTION +* +* The routine glp_set_prob_name assigns a given symbolic name (1 up to +* 255 characters) to the specified problem object. +* +* If the parameter name is NULL or empty string, the routine erases an +* existing symbolic name of the problem object. */ + +void glp_set_prob_name(glp_prob *lp, const char *name) +{ glp_tree *tree = lp->tree; + if (tree != NULL && tree->reason != 0) + xerror("glp_set_prob_name: operation not allowed\n"); + if (lp->name != NULL) + { dmp_free_atom(lp->pool, lp->name, strlen(lp->name)+1); + lp->name = NULL; + } + if (!(name == NULL || name[0] == '\0')) + { int k; + for (k = 0; name[k] != '\0'; k++) + { if (k == 256) + xerror("glp_set_prob_name: problem name too long\n"); + if (iscntrl((unsigned char)name[k])) + xerror("glp_set_prob_name: problem name contains invalid" + " character(s)\n"); + } + lp->name = dmp_get_atom(lp->pool, strlen(name)+1); + strcpy(lp->name, name); + } + return; +} + +/*********************************************************************** +* NAME +* +* glp_set_obj_name - assign (change) objective function name +* +* SYNOPSIS +* +* void glp_set_obj_name(glp_prob *lp, const char *name); +* +* DESCRIPTION +* +* The routine glp_set_obj_name assigns a given symbolic name (1 up to +* 255 characters) to the objective function of the specified problem +* object. +* +* If the parameter name is NULL or empty string, the routine erases an +* existing name of the objective function. */ + +void glp_set_obj_name(glp_prob *lp, const char *name) +{ glp_tree *tree = lp->tree; + if (tree != NULL && tree->reason != 0) + xerror("glp_set_obj_name: operation not allowed\n"); + if (lp->obj != NULL) + { dmp_free_atom(lp->pool, lp->obj, strlen(lp->obj)+1); + lp->obj = NULL; + } + if (!(name == NULL || name[0] == '\0')) + { int k; + for (k = 0; name[k] != '\0'; k++) + { if (k == 256) + xerror("glp_set_obj_name: objective name too long\n"); + if (iscntrl((unsigned char)name[k])) + xerror("glp_set_obj_name: objective name contains invali" + "d character(s)\n"); + } + lp->obj = dmp_get_atom(lp->pool, strlen(name)+1); + strcpy(lp->obj, name); + } + return; +} + +/*********************************************************************** +* NAME +* +* glp_set_obj_dir - set (change) optimization direction flag +* +* SYNOPSIS +* +* void glp_set_obj_dir(glp_prob *lp, int dir); +* +* DESCRIPTION +* +* The routine glp_set_obj_dir sets (changes) optimization direction +* flag (i.e. "sense" of the objective function) as specified by the +* parameter dir: +* +* GLP_MIN - minimization; +* GLP_MAX - maximization. */ + +void glp_set_obj_dir(glp_prob *lp, int dir) +{ glp_tree *tree = lp->tree; + if (tree != NULL && tree->reason != 0) + xerror("glp_set_obj_dir: operation not allowed\n"); + if (!(dir == GLP_MIN || dir == GLP_MAX)) + xerror("glp_set_obj_dir: dir = %d; invalid direction flag\n", + dir); + lp->dir = dir; + return; +} + +/*********************************************************************** +* NAME +* +* glp_add_rows - add new rows to problem object +* +* SYNOPSIS +* +* int glp_add_rows(glp_prob *lp, int nrs); +* +* DESCRIPTION +* +* The routine glp_add_rows adds nrs rows (constraints) to the specified +* problem object. New rows are always added to the end of the row list, +* so the ordinal numbers of existing rows remain unchanged. +* +* Being added each new row is initially free (unbounded) and has empty +* list of the constraint coefficients. +* +* RETURNS +* +* The routine glp_add_rows returns the ordinal number of the first new +* row added to the problem object. */ + +int glp_add_rows(glp_prob *lp, int nrs) +{ glp_tree *tree = lp->tree; + GLPROW *row; + int m_new, i; + /* determine new number of rows */ + if (nrs < 1) + xerror("glp_add_rows: nrs = %d; invalid number of rows\n", + nrs); + if (nrs > M_MAX - lp->m) + xerror("glp_add_rows: nrs = %d; too many rows\n", nrs); + m_new = lp->m + nrs; + /* increase the room, if necessary */ + if (lp->m_max < m_new) + { GLPROW **save = lp->row; + while (lp->m_max < m_new) + { lp->m_max += lp->m_max; + xassert(lp->m_max > 0); + } + lp->row = xcalloc(1+lp->m_max, sizeof(GLPROW *)); + memcpy(&lp->row[1], &save[1], lp->m * sizeof(GLPROW *)); + xfree(save); + /* do not forget about the basis header */ + xfree(lp->head); + lp->head = xcalloc(1+lp->m_max, sizeof(int)); + } + /* add new rows to the end of the row list */ + for (i = lp->m+1; i <= m_new; i++) + { /* create row descriptor */ + lp->row[i] = row = dmp_get_atom(lp->pool, sizeof(GLPROW)); + row->i = i; + row->name = NULL; + row->node = NULL; +#if 1 /* 20/IX-2008 */ + row->level = 0; + row->origin = 0; + row->klass = 0; + if (tree != NULL) + { switch (tree->reason) + { case 0: + break; + case GLP_IROWGEN: + xassert(tree->curr != NULL); + row->level = tree->curr->level; + row->origin = GLP_RF_LAZY; + break; + case GLP_ICUTGEN: + xassert(tree->curr != NULL); + row->level = tree->curr->level; + row->origin = GLP_RF_CUT; + break; + default: + xassert(tree != tree); + } + } +#endif + row->type = GLP_FR; + row->lb = row->ub = 0.0; + row->ptr = NULL; + row->rii = 1.0; + row->stat = GLP_BS; +#if 0 + row->bind = -1; +#else + row->bind = 0; +#endif + row->prim = row->dual = 0.0; + row->pval = row->dval = 0.0; + row->mipx = 0.0; + } + /* set new number of rows */ + lp->m = m_new; + /* invalidate the basis factorization */ + lp->valid = 0; +#if 1 + if (tree != NULL && tree->reason != 0) tree->reopt = 1; +#endif + /* return the ordinal number of the first row added */ + return m_new - nrs + 1; +} + +/*********************************************************************** +* NAME +* +* glp_add_cols - add new columns to problem object +* +* SYNOPSIS +* +* int glp_add_cols(glp_prob *lp, int ncs); +* +* DESCRIPTION +* +* The routine glp_add_cols adds ncs columns (structural variables) to +* the specified problem object. New columns are always added to the end +* of the column list, so the ordinal numbers of existing columns remain +* unchanged. +* +* Being added each new column is initially fixed at zero and has empty +* list of the constraint coefficients. +* +* RETURNS +* +* The routine glp_add_cols returns the ordinal number of the first new +* column added to the problem object. */ + +int glp_add_cols(glp_prob *lp, int ncs) +{ glp_tree *tree = lp->tree; + GLPCOL *col; + int n_new, j; + if (tree != NULL && tree->reason != 0) + xerror("glp_add_cols: operation not allowed\n"); + /* determine new number of columns */ + if (ncs < 1) + xerror("glp_add_cols: ncs = %d; invalid number of columns\n", + ncs); + if (ncs > N_MAX - lp->n) + xerror("glp_add_cols: ncs = %d; too many columns\n", ncs); + n_new = lp->n + ncs; + /* increase the room, if necessary */ + if (lp->n_max < n_new) + { GLPCOL **save = lp->col; + while (lp->n_max < n_new) + { lp->n_max += lp->n_max; + xassert(lp->n_max > 0); + } + lp->col = xcalloc(1+lp->n_max, sizeof(GLPCOL *)); + memcpy(&lp->col[1], &save[1], lp->n * sizeof(GLPCOL *)); + xfree(save); + } + /* add new columns to the end of the column list */ + for (j = lp->n+1; j <= n_new; j++) + { /* create column descriptor */ + lp->col[j] = col = dmp_get_atom(lp->pool, sizeof(GLPCOL)); + col->j = j; + col->name = NULL; + col->node = NULL; + col->kind = GLP_CV; + col->type = GLP_FX; + col->lb = col->ub = 0.0; + col->coef = 0.0; + col->ptr = NULL; + col->sjj = 1.0; + col->stat = GLP_NS; +#if 0 + col->bind = -1; +#else + col->bind = 0; /* the basis may remain valid */ +#endif + col->prim = col->dual = 0.0; + col->pval = col->dval = 0.0; + col->mipx = 0.0; + } + /* set new number of columns */ + lp->n = n_new; + /* return the ordinal number of the first column added */ + return n_new - ncs + 1; +} + +/*********************************************************************** +* NAME +* +* glp_set_row_name - assign (change) row name +* +* SYNOPSIS +* +* void glp_set_row_name(glp_prob *lp, int i, const char *name); +* +* DESCRIPTION +* +* The routine glp_set_row_name assigns a given symbolic name (1 up to +* 255 characters) to i-th row (auxiliary variable) of the specified +* problem object. +* +* If the parameter name is NULL or empty string, the routine erases an +* existing name of i-th row. */ + +void glp_set_row_name(glp_prob *lp, int i, const char *name) +{ glp_tree *tree = lp->tree; + GLPROW *row; + if (!(1 <= i && i <= lp->m)) + xerror("glp_set_row_name: i = %d; row number out of range\n", + i); + row = lp->row[i]; + if (tree != NULL && tree->reason != 0) + { xassert(tree->curr != NULL); + xassert(row->level == tree->curr->level); + } + if (row->name != NULL) + { if (row->node != NULL) + { xassert(lp->r_tree != NULL); + avl_delete_node(lp->r_tree, row->node); + row->node = NULL; + } + dmp_free_atom(lp->pool, row->name, strlen(row->name)+1); + row->name = NULL; + } + if (!(name == NULL || name[0] == '\0')) + { int k; + for (k = 0; name[k] != '\0'; k++) + { if (k == 256) + xerror("glp_set_row_name: i = %d; row name too long\n", + i); + if (iscntrl((unsigned char)name[k])) + xerror("glp_set_row_name: i = %d: row name contains inva" + "lid character(s)\n", i); + } + row->name = dmp_get_atom(lp->pool, strlen(name)+1); + strcpy(row->name, name); + if (lp->r_tree != NULL) + { xassert(row->node == NULL); + row->node = avl_insert_node(lp->r_tree, row->name); + avl_set_node_link(row->node, row); + } + } + return; +} + +/*********************************************************************** +* NAME +* +* glp_set_col_name - assign (change) column name +* +* SYNOPSIS +* +* void glp_set_col_name(glp_prob *lp, int j, const char *name); +* +* DESCRIPTION +* +* The routine glp_set_col_name assigns a given symbolic name (1 up to +* 255 characters) to j-th column (structural variable) of the specified +* problem object. +* +* If the parameter name is NULL or empty string, the routine erases an +* existing name of j-th column. */ + +void glp_set_col_name(glp_prob *lp, int j, const char *name) +{ glp_tree *tree = lp->tree; + GLPCOL *col; + if (tree != NULL && tree->reason != 0) + xerror("glp_set_col_name: operation not allowed\n"); + if (!(1 <= j && j <= lp->n)) + xerror("glp_set_col_name: j = %d; column number out of range\n" + , j); + col = lp->col[j]; + if (col->name != NULL) + { if (col->node != NULL) + { xassert(lp->c_tree != NULL); + avl_delete_node(lp->c_tree, col->node); + col->node = NULL; + } + dmp_free_atom(lp->pool, col->name, strlen(col->name)+1); + col->name = NULL; + } + if (!(name == NULL || name[0] == '\0')) + { int k; + for (k = 0; name[k] != '\0'; k++) + { if (k == 256) + xerror("glp_set_col_name: j = %d; column name too long\n" + , j); + if (iscntrl((unsigned char)name[k])) + xerror("glp_set_col_name: j = %d: column name contains i" + "nvalid character(s)\n", j); + } + col->name = dmp_get_atom(lp->pool, strlen(name)+1); + strcpy(col->name, name); + if (lp->c_tree != NULL && col->name != NULL) + { xassert(col->node == NULL); + col->node = avl_insert_node(lp->c_tree, col->name); + avl_set_node_link(col->node, col); + } + } + return; +} + +/*********************************************************************** +* NAME +* +* glp_set_row_bnds - set (change) row bounds +* +* SYNOPSIS +* +* void glp_set_row_bnds(glp_prob *lp, int i, int type, double lb, +* double ub); +* +* DESCRIPTION +* +* The routine glp_set_row_bnds sets (changes) the type and bounds of +* i-th row (auxiliary variable) of the specified problem object. +* +* Parameters type, lb, and ub specify the type, lower bound, and upper +* bound, respectively, as follows: +* +* Type Bounds Comments +* ------------------------------------------------------ +* GLP_FR -inf < x < +inf Free variable +* GLP_LO lb <= x < +inf Variable with lower bound +* GLP_UP -inf < x <= ub Variable with upper bound +* GLP_DB lb <= x <= ub Double-bounded variable +* GLP_FX x = lb Fixed variable +* +* where x is the auxiliary variable associated with i-th row. +* +* If the row has no lower bound, the parameter lb is ignored. If the +* row has no upper bound, the parameter ub is ignored. If the row is +* an equality constraint (i.e. the corresponding auxiliary variable is +* of fixed type), only the parameter lb is used while the parameter ub +* is ignored. */ + +void glp_set_row_bnds(glp_prob *lp, int i, int type, double lb, + double ub) +{ GLPROW *row; + if (!(1 <= i && i <= lp->m)) + xerror("glp_set_row_bnds: i = %d; row number out of range\n", + i); + row = lp->row[i]; + row->type = type; + switch (type) + { case GLP_FR: + row->lb = row->ub = 0.0; + if (row->stat != GLP_BS) row->stat = GLP_NF; + break; + case GLP_LO: + row->lb = lb, row->ub = 0.0; + if (row->stat != GLP_BS) row->stat = GLP_NL; + break; + case GLP_UP: + row->lb = 0.0, row->ub = ub; + if (row->stat != GLP_BS) row->stat = GLP_NU; + break; + case GLP_DB: + row->lb = lb, row->ub = ub; + if (!(row->stat == GLP_BS || + row->stat == GLP_NL || row->stat == GLP_NU)) + row->stat = (fabs(lb) <= fabs(ub) ? GLP_NL : GLP_NU); + break; + case GLP_FX: + row->lb = row->ub = lb; + if (row->stat != GLP_BS) row->stat = GLP_NS; + break; + default: + xerror("glp_set_row_bnds: i = %d; type = %d; invalid row ty" + "pe\n", i, type); + } + return; +} + +/*********************************************************************** +* NAME +* +* glp_set_col_bnds - set (change) column bounds +* +* SYNOPSIS +* +* void glp_set_col_bnds(glp_prob *lp, int j, int type, double lb, +* double ub); +* +* DESCRIPTION +* +* The routine glp_set_col_bnds sets (changes) the type and bounds of +* j-th column (structural variable) of the specified problem object. +* +* Parameters type, lb, and ub specify the type, lower bound, and upper +* bound, respectively, as follows: +* +* Type Bounds Comments +* ------------------------------------------------------ +* GLP_FR -inf < x < +inf Free variable +* GLP_LO lb <= x < +inf Variable with lower bound +* GLP_UP -inf < x <= ub Variable with upper bound +* GLP_DB lb <= x <= ub Double-bounded variable +* GLP_FX x = lb Fixed variable +* +* where x is the structural variable associated with j-th column. +* +* If the column has no lower bound, the parameter lb is ignored. If the +* column has no upper bound, the parameter ub is ignored. If the column +* is of fixed type, only the parameter lb is used while the parameter +* ub is ignored. */ + +void glp_set_col_bnds(glp_prob *lp, int j, int type, double lb, + double ub) +{ GLPCOL *col; + if (!(1 <= j && j <= lp->n)) + xerror("glp_set_col_bnds: j = %d; column number out of range\n" + , j); + col = lp->col[j]; + col->type = type; + switch (type) + { case GLP_FR: + col->lb = col->ub = 0.0; + if (col->stat != GLP_BS) col->stat = GLP_NF; + break; + case GLP_LO: + col->lb = lb, col->ub = 0.0; + if (col->stat != GLP_BS) col->stat = GLP_NL; + break; + case GLP_UP: + col->lb = 0.0, col->ub = ub; + if (col->stat != GLP_BS) col->stat = GLP_NU; + break; + case GLP_DB: + col->lb = lb, col->ub = ub; + if (!(col->stat == GLP_BS || + col->stat == GLP_NL || col->stat == GLP_NU)) + col->stat = (fabs(lb) <= fabs(ub) ? GLP_NL : GLP_NU); + break; + case GLP_FX: + col->lb = col->ub = lb; + if (col->stat != GLP_BS) col->stat = GLP_NS; + break; + default: + xerror("glp_set_col_bnds: j = %d; type = %d; invalid column" + " type\n", j, type); + } + return; +} + +/*********************************************************************** +* NAME +* +* glp_set_obj_coef - set (change) obj. coefficient or constant term +* +* SYNOPSIS +* +* void glp_set_obj_coef(glp_prob *lp, int j, double coef); +* +* DESCRIPTION +* +* The routine glp_set_obj_coef sets (changes) objective coefficient at +* j-th column (structural variable) of the specified problem object. +* +* If the parameter j is 0, the routine sets (changes) the constant term +* ("shift") of the objective function. */ + +void glp_set_obj_coef(glp_prob *lp, int j, double coef) +{ glp_tree *tree = lp->tree; + if (tree != NULL && tree->reason != 0) + xerror("glp_set_obj_coef: operation not allowed\n"); + if (!(0 <= j && j <= lp->n)) + xerror("glp_set_obj_coef: j = %d; column number out of range\n" + , j); + if (j == 0) + lp->c0 = coef; + else + lp->col[j]->coef = coef; + return; +} + +/*********************************************************************** +* NAME +* +* glp_set_mat_row - set (replace) row of the constraint matrix +* +* SYNOPSIS +* +* void glp_set_mat_row(glp_prob *lp, int i, int len, const int ind[], +* const double val[]); +* +* DESCRIPTION +* +* The routine glp_set_mat_row stores (replaces) the contents of i-th +* row of the constraint matrix of the specified problem object. +* +* Column indices and numeric values of new row elements must be placed +* in locations ind[1], ..., ind[len] and val[1], ..., val[len], where +* 0 <= len <= n is the new length of i-th row, n is the current number +* of columns in the problem object. Elements with identical column +* indices are not allowed. Zero elements are allowed, but they are not +* stored in the constraint matrix. +* +* If the parameter len is zero, the parameters ind and/or val can be +* specified as NULL. */ + +void glp_set_mat_row(glp_prob *lp, int i, int len, const int ind[], + const double val[]) +{ glp_tree *tree = lp->tree; + GLPROW *row; + GLPCOL *col; + GLPAIJ *aij, *next; + int j, k; + /* obtain pointer to i-th row */ + if (!(1 <= i && i <= lp->m)) + xerror("glp_set_mat_row: i = %d; row number out of range\n", + i); + row = lp->row[i]; + if (tree != NULL && tree->reason != 0) + { xassert(tree->curr != NULL); + xassert(row->level == tree->curr->level); + } + /* remove all existing elements from i-th row */ + while (row->ptr != NULL) + { /* take next element in the row */ + aij = row->ptr; + /* remove the element from the row list */ + row->ptr = aij->r_next; + /* obtain pointer to corresponding column */ + col = aij->col; + /* remove the element from the column list */ + if (aij->c_prev == NULL) + col->ptr = aij->c_next; + else + aij->c_prev->c_next = aij->c_next; + if (aij->c_next == NULL) + ; + else + aij->c_next->c_prev = aij->c_prev; + /* return the element to the memory pool */ + dmp_free_atom(lp->pool, aij, sizeof(GLPAIJ)), lp->nnz--; + /* if the corresponding column is basic, invalidate the basis + factorization */ + if (col->stat == GLP_BS) lp->valid = 0; + } + /* store new contents of i-th row */ + if (!(0 <= len && len <= lp->n)) + xerror("glp_set_mat_row: i = %d; len = %d; invalid row length " + "\n", i, len); + if (len > NNZ_MAX - lp->nnz) + xerror("glp_set_mat_row: i = %d; len = %d; too many constraint" + " coefficients\n", i, len); + for (k = 1; k <= len; k++) + { /* take number j of corresponding column */ + j = ind[k]; + /* obtain pointer to j-th column */ + if (!(1 <= j && j <= lp->n)) + xerror("glp_set_mat_row: i = %d; ind[%d] = %d; column index" + " out of range\n", i, k, j); + col = lp->col[j]; + /* if there is element with the same column index, it can only + be found in the beginning of j-th column list */ + if (col->ptr != NULL && col->ptr->row->i == i) + xerror("glp_set_mat_row: i = %d; ind[%d] = %d; duplicate co" + "lumn indices not allowed\n", i, k, j); + /* create new element */ + aij = dmp_get_atom(lp->pool, sizeof(GLPAIJ)), lp->nnz++; + aij->row = row; + aij->col = col; + aij->val = val[k]; + /* add the new element to the beginning of i-th row and j-th + column lists */ + aij->r_prev = NULL; + aij->r_next = row->ptr; + aij->c_prev = NULL; + aij->c_next = col->ptr; + if (aij->r_next != NULL) aij->r_next->r_prev = aij; + if (aij->c_next != NULL) aij->c_next->c_prev = aij; + row->ptr = col->ptr = aij; + /* if the corresponding column is basic, invalidate the basis + factorization */ + if (col->stat == GLP_BS && aij->val != 0.0) lp->valid = 0; + } + /* remove zero elements from i-th row */ + for (aij = row->ptr; aij != NULL; aij = next) + { next = aij->r_next; + if (aij->val == 0.0) + { /* remove the element from the row list */ + if (aij->r_prev == NULL) + row->ptr = next; + else + aij->r_prev->r_next = next; + if (next == NULL) + ; + else + next->r_prev = aij->r_prev; + /* remove the element from the column list */ + xassert(aij->c_prev == NULL); + aij->col->ptr = aij->c_next; + if (aij->c_next != NULL) aij->c_next->c_prev = NULL; + /* return the element to the memory pool */ + dmp_free_atom(lp->pool, aij, sizeof(GLPAIJ)), lp->nnz--; + } + } + return; +} + +/*********************************************************************** +* NAME +* +* glp_set_mat_col - set (replace) column of the constraint matrix +* +* SYNOPSIS +* +* void glp_set_mat_col(glp_prob *lp, int j, int len, const int ind[], +* const double val[]); +* +* DESCRIPTION +* +* The routine glp_set_mat_col stores (replaces) the contents of j-th +* column of the constraint matrix of the specified problem object. +* +* Row indices and numeric values of new column elements must be placed +* in locations ind[1], ..., ind[len] and val[1], ..., val[len], where +* 0 <= len <= m is the new length of j-th column, m is the current +* number of rows in the problem object. Elements with identical column +* indices are not allowed. Zero elements are allowed, but they are not +* stored in the constraint matrix. +* +* If the parameter len is zero, the parameters ind and/or val can be +* specified as NULL. */ + +void glp_set_mat_col(glp_prob *lp, int j, int len, const int ind[], + const double val[]) +{ glp_tree *tree = lp->tree; + GLPROW *row; + GLPCOL *col; + GLPAIJ *aij, *next; + int i, k; + if (tree != NULL && tree->reason != 0) + xerror("glp_set_mat_col: operation not allowed\n"); + /* obtain pointer to j-th column */ + if (!(1 <= j && j <= lp->n)) + xerror("glp_set_mat_col: j = %d; column number out of range\n", + j); + col = lp->col[j]; + /* remove all existing elements from j-th column */ + while (col->ptr != NULL) + { /* take next element in the column */ + aij = col->ptr; + /* remove the element from the column list */ + col->ptr = aij->c_next; + /* obtain pointer to corresponding row */ + row = aij->row; + /* remove the element from the row list */ + if (aij->r_prev == NULL) + row->ptr = aij->r_next; + else + aij->r_prev->r_next = aij->r_next; + if (aij->r_next == NULL) + ; + else + aij->r_next->r_prev = aij->r_prev; + /* return the element to the memory pool */ + dmp_free_atom(lp->pool, aij, sizeof(GLPAIJ)), lp->nnz--; + } + /* store new contents of j-th column */ + if (!(0 <= len && len <= lp->m)) + xerror("glp_set_mat_col: j = %d; len = %d; invalid column leng" + "th\n", j, len); + if (len > NNZ_MAX - lp->nnz) + xerror("glp_set_mat_col: j = %d; len = %d; too many constraint" + " coefficients\n", j, len); + for (k = 1; k <= len; k++) + { /* take number i of corresponding row */ + i = ind[k]; + /* obtain pointer to i-th row */ + if (!(1 <= i && i <= lp->m)) + xerror("glp_set_mat_col: j = %d; ind[%d] = %d; row index ou" + "t of range\n", j, k, i); + row = lp->row[i]; + /* if there is element with the same row index, it can only be + found in the beginning of i-th row list */ + if (row->ptr != NULL && row->ptr->col->j == j) + xerror("glp_set_mat_col: j = %d; ind[%d] = %d; duplicate ro" + "w indices not allowed\n", j, k, i); + /* create new element */ + aij = dmp_get_atom(lp->pool, sizeof(GLPAIJ)), lp->nnz++; + aij->row = row; + aij->col = col; + aij->val = val[k]; + /* add the new element to the beginning of i-th row and j-th + column lists */ + aij->r_prev = NULL; + aij->r_next = row->ptr; + aij->c_prev = NULL; + aij->c_next = col->ptr; + if (aij->r_next != NULL) aij->r_next->r_prev = aij; + if (aij->c_next != NULL) aij->c_next->c_prev = aij; + row->ptr = col->ptr = aij; + } + /* remove zero elements from j-th column */ + for (aij = col->ptr; aij != NULL; aij = next) + { next = aij->c_next; + if (aij->val == 0.0) + { /* remove the element from the row list */ + xassert(aij->r_prev == NULL); + aij->row->ptr = aij->r_next; + if (aij->r_next != NULL) aij->r_next->r_prev = NULL; + /* remove the element from the column list */ + if (aij->c_prev == NULL) + col->ptr = next; + else + aij->c_prev->c_next = next; + if (next == NULL) + ; + else + next->c_prev = aij->c_prev; + /* return the element to the memory pool */ + dmp_free_atom(lp->pool, aij, sizeof(GLPAIJ)), lp->nnz--; + } + } + /* if j-th column is basic, invalidate the basis factorization */ + if (col->stat == GLP_BS) lp->valid = 0; + return; +} + +/*********************************************************************** +* NAME +* +* glp_load_matrix - load (replace) the whole constraint matrix +* +* SYNOPSIS +* +* void glp_load_matrix(glp_prob *lp, int ne, const int ia[], +* const int ja[], const double ar[]); +* +* DESCRIPTION +* +* The routine glp_load_matrix loads the constraint matrix passed in +* the arrays ia, ja, and ar into the specified problem object. Before +* loading the current contents of the constraint matrix is destroyed. +* +* Constraint coefficients (elements of the constraint matrix) must be +* specified as triplets (ia[k], ja[k], ar[k]) for k = 1, ..., ne, +* where ia[k] is the row index, ja[k] is the column index, ar[k] is a +* numeric value of corresponding constraint coefficient. The parameter +* ne specifies the total number of (non-zero) elements in the matrix +* to be loaded. Coefficients with identical indices are not allowed. +* Zero coefficients are allowed, however, they are not stored in the +* constraint matrix. +* +* If the parameter ne is zero, the parameters ia, ja, and ar can be +* specified as NULL. */ + +void glp_load_matrix(glp_prob *lp, int ne, const int ia[], + const int ja[], const double ar[]) +{ glp_tree *tree = lp->tree; + GLPROW *row; + GLPCOL *col; + GLPAIJ *aij, *next; + int i, j, k; + if (tree != NULL && tree->reason != 0) + xerror("glp_load_matrix: operation not allowed\n"); + /* clear the constraint matrix */ + for (i = 1; i <= lp->m; i++) + { row = lp->row[i]; + while (row->ptr != NULL) + { aij = row->ptr; + row->ptr = aij->r_next; + dmp_free_atom(lp->pool, aij, sizeof(GLPAIJ)), lp->nnz--; + } + } + xassert(lp->nnz == 0); + for (j = 1; j <= lp->n; j++) lp->col[j]->ptr = NULL; + /* load the new contents of the constraint matrix and build its + row lists */ + if (ne < 0) + xerror("glp_load_matrix: ne = %d; invalid number of constraint" + " coefficients\n", ne); + if (ne > NNZ_MAX) + xerror("glp_load_matrix: ne = %d; too many constraint coeffici" + "ents\n", ne); + for (k = 1; k <= ne; k++) + { /* take indices of new element */ + i = ia[k], j = ja[k]; + /* obtain pointer to i-th row */ + if (!(1 <= i && i <= lp->m)) + xerror("glp_load_matrix: ia[%d] = %d; row index out of rang" + "e\n", k, i); + row = lp->row[i]; + /* obtain pointer to j-th column */ + if (!(1 <= j && j <= lp->n)) + xerror("glp_load_matrix: ja[%d] = %d; column index out of r" + "ange\n", k, j); + col = lp->col[j]; + /* create new element */ + aij = dmp_get_atom(lp->pool, sizeof(GLPAIJ)), lp->nnz++; + aij->row = row; + aij->col = col; + aij->val = ar[k]; + /* add the new element to the beginning of i-th row list */ + aij->r_prev = NULL; + aij->r_next = row->ptr; + if (aij->r_next != NULL) aij->r_next->r_prev = aij; + row->ptr = aij; + } + xassert(lp->nnz == ne); + /* build column lists of the constraint matrix and check elements + with identical indices */ + for (i = 1; i <= lp->m; i++) + { for (aij = lp->row[i]->ptr; aij != NULL; aij = aij->r_next) + { /* obtain pointer to corresponding column */ + col = aij->col; + /* if there is element with identical indices, it can only + be found in the beginning of j-th column list */ + if (col->ptr != NULL && col->ptr->row->i == i) + { for (k = 1; k <= ne; k++) + if (ia[k] == i && ja[k] == col->j) break; + xerror("glp_load_mat: ia[%d] = %d; ja[%d] = %d; duplicat" + "e indices not allowed\n", k, i, k, col->j); + } + /* add the element to the beginning of j-th column list */ + aij->c_prev = NULL; + aij->c_next = col->ptr; + if (aij->c_next != NULL) aij->c_next->c_prev = aij; + col->ptr = aij; + } + } + /* remove zero elements from the constraint matrix */ + for (i = 1; i <= lp->m; i++) + { row = lp->row[i]; + for (aij = row->ptr; aij != NULL; aij = next) + { next = aij->r_next; + if (aij->val == 0.0) + { /* remove the element from the row list */ + if (aij->r_prev == NULL) + row->ptr = next; + else + aij->r_prev->r_next = next; + if (next == NULL) + ; + else + next->r_prev = aij->r_prev; + /* remove the element from the column list */ + if (aij->c_prev == NULL) + aij->col->ptr = aij->c_next; + else + aij->c_prev->c_next = aij->c_next; + if (aij->c_next == NULL) + ; + else + aij->c_next->c_prev = aij->c_prev; + /* return the element to the memory pool */ + dmp_free_atom(lp->pool, aij, sizeof(GLPAIJ)), lp->nnz--; + } + } + } + /* invalidate the basis factorization */ + lp->valid = 0; + return; +} + +/*********************************************************************** +* NAME +* +* glp_check_dup - check for duplicate elements in sparse matrix +* +* SYNOPSIS +* +* int glp_check_dup(int m, int n, int ne, const int ia[], +* const int ja[]); +* +* DESCRIPTION +* +* The routine glp_check_dup checks for duplicate elements (that is, +* elements with identical indices) in a sparse matrix specified in the +* coordinate format. +* +* The parameters m and n specifies, respectively, the number of rows +* and columns in the matrix, m >= 0, n >= 0. +* +* The parameter ne specifies the number of (structurally) non-zero +* elements in the matrix, ne >= 0. +* +* Elements of the matrix are specified as doublets (ia[k],ja[k]) for +* k = 1,...,ne, where ia[k] is a row index, ja[k] is a column index. +* +* The routine glp_check_dup can be used prior to a call to the routine +* glp_load_matrix to check that the constraint matrix to be loaded has +* no duplicate elements. +* +* RETURNS +* +* The routine glp_check_dup returns one of the following values: +* +* 0 - the matrix has no duplicate elements; +* +* -k - indices ia[k] or/and ja[k] are out of range; +* +* +k - element (ia[k],ja[k]) is duplicate. */ + +int glp_check_dup(int m, int n, int ne, const int ia[], const int ja[]) +{ int i, j, k, *ptr, *next, ret; + char *flag; + if (m < 0) + xerror("glp_check_dup: m = %d; invalid parameter\n"); + if (n < 0) + xerror("glp_check_dup: n = %d; invalid parameter\n"); + if (ne < 0) + xerror("glp_check_dup: ne = %d; invalid parameter\n"); + if (ne > 0 && ia == NULL) + xerror("glp_check_dup: ia = %p; invalid parameter\n", ia); + if (ne > 0 && ja == NULL) + xerror("glp_check_dup: ja = %p; invalid parameter\n", ja); + for (k = 1; k <= ne; k++) + { i = ia[k], j = ja[k]; + if (!(1 <= i && i <= m && 1 <= j && j <= n)) + { ret = -k; + goto done; + } + } + if (m == 0 || n == 0) + { ret = 0; + goto done; + } + /* allocate working arrays */ + ptr = xcalloc(1+m, sizeof(int)); + next = xcalloc(1+ne, sizeof(int)); + flag = xcalloc(1+n, sizeof(char)); + /* build row lists */ + for (i = 1; i <= m; i++) + ptr[i] = 0; + for (k = 1; k <= ne; k++) + { i = ia[k]; + next[k] = ptr[i]; + ptr[i] = k; + } + /* clear column flags */ + for (j = 1; j <= n; j++) + flag[j] = 0; + /* check for duplicate elements */ + for (i = 1; i <= m; i++) + { for (k = ptr[i]; k != 0; k = next[k]) + { j = ja[k]; + if (flag[j]) + { /* find first element (i,j) */ + for (k = 1; k <= ne; k++) + if (ia[k] == i && ja[k] == j) break; + xassert(k <= ne); + /* find next (duplicate) element (i,j) */ + for (k++; k <= ne; k++) + if (ia[k] == i && ja[k] == j) break; + xassert(k <= ne); + ret = +k; + goto skip; + } + flag[j] = 1; + } + /* clear column flags */ + for (k = ptr[i]; k != 0; k = next[k]) + flag[ja[k]] = 0; + } + /* no duplicate element found */ + ret = 0; +skip: /* free working arrays */ + xfree(ptr); + xfree(next); + xfree(flag); +done: return ret; +} + +/*********************************************************************** +* NAME +* +* glp_sort_matrix - sort elements of the constraint matrix +* +* SYNOPSIS +* +* void glp_sort_matrix(glp_prob *P); +* +* DESCRIPTION +* +* The routine glp_sort_matrix sorts elements of the constraint matrix +* rebuilding its row and column linked lists. On exit from the routine +* the constraint matrix is not changed, however, elements in the row +* linked lists become ordered by ascending column indices, and the +* elements in the column linked lists become ordered by ascending row +* indices. */ + +void glp_sort_matrix(glp_prob *P) +{ GLPAIJ *aij; + int i, j; + if (P == NULL || P->magic != GLP_PROB_MAGIC) + xerror("glp_sort_matrix: P = %p; invalid problem object\n", + P); + /* rebuild row linked lists */ + for (i = P->m; i >= 1; i--) + P->row[i]->ptr = NULL; + for (j = P->n; j >= 1; j--) + { for (aij = P->col[j]->ptr; aij != NULL; aij = aij->c_next) + { i = aij->row->i; + aij->r_prev = NULL; + aij->r_next = P->row[i]->ptr; + if (aij->r_next != NULL) aij->r_next->r_prev = aij; + P->row[i]->ptr = aij; + } + } + /* rebuild column linked lists */ + for (j = P->n; j >= 1; j--) + P->col[j]->ptr = NULL; + for (i = P->m; i >= 1; i--) + { for (aij = P->row[i]->ptr; aij != NULL; aij = aij->r_next) + { j = aij->col->j; + aij->c_prev = NULL; + aij->c_next = P->col[j]->ptr; + if (aij->c_next != NULL) aij->c_next->c_prev = aij; + P->col[j]->ptr = aij; + } + } + return; +} + +/*********************************************************************** +* NAME +* +* glp_del_rows - delete rows from problem object +* +* SYNOPSIS +* +* void glp_del_rows(glp_prob *lp, int nrs, const int num[]); +* +* DESCRIPTION +* +* The routine glp_del_rows deletes rows from the specified problem +* object. Ordinal numbers of rows to be deleted should be placed in +* locations num[1], ..., num[nrs], where nrs > 0. +* +* Note that deleting rows involves changing ordinal numbers of other +* rows remaining in the problem object. New ordinal numbers of the +* remaining rows are assigned under the assumption that the original +* order of rows is not changed. */ + +void glp_del_rows(glp_prob *lp, int nrs, const int num[]) +{ glp_tree *tree = lp->tree; + GLPROW *row; + int i, k, m_new; + /* mark rows to be deleted */ + if (!(1 <= nrs && nrs <= lp->m)) + xerror("glp_del_rows: nrs = %d; invalid number of rows\n", + nrs); + for (k = 1; k <= nrs; k++) + { /* take the number of row to be deleted */ + i = num[k]; + /* obtain pointer to i-th row */ + if (!(1 <= i && i <= lp->m)) + xerror("glp_del_rows: num[%d] = %d; row number out of range" + "\n", k, i); + row = lp->row[i]; + if (tree != NULL && tree->reason != 0) + { if (!(tree->reason == GLP_IROWGEN || + tree->reason == GLP_ICUTGEN)) + xerror("glp_del_rows: operation not allowed\n"); + xassert(tree->curr != NULL); + if (row->level != tree->curr->level) + xerror("glp_del_rows: num[%d] = %d; invalid attempt to d" + "elete row created not in current subproblem\n", k,i); + if (row->stat != GLP_BS) + xerror("glp_del_rows: num[%d] = %d; invalid attempt to d" + "elete active row (constraint)\n", k, i); + tree->reinv = 1; + } + /* check that the row is not marked yet */ + if (row->i == 0) + xerror("glp_del_rows: num[%d] = %d; duplicate row numbers n" + "ot allowed\n", k, i); + /* erase symbolic name assigned to the row */ + glp_set_row_name(lp, i, NULL); + xassert(row->node == NULL); + /* erase corresponding row of the constraint matrix */ + glp_set_mat_row(lp, i, 0, NULL, NULL); + xassert(row->ptr == NULL); + /* mark the row to be deleted */ + row->i = 0; + } + /* delete all marked rows from the row list */ + m_new = 0; + for (i = 1; i <= lp->m; i++) + { /* obtain pointer to i-th row */ + row = lp->row[i]; + /* check if the row is marked */ + if (row->i == 0) + { /* it is marked, delete it */ + dmp_free_atom(lp->pool, row, sizeof(GLPROW)); + } + else + { /* it is not marked; keep it */ + row->i = ++m_new; + lp->row[row->i] = row; + } + } + /* set new number of rows */ + lp->m = m_new; + /* invalidate the basis factorization */ + lp->valid = 0; + return; +} + +/*********************************************************************** +* NAME +* +* glp_del_cols - delete columns from problem object +* +* SYNOPSIS +* +* void glp_del_cols(glp_prob *lp, int ncs, const int num[]); +* +* DESCRIPTION +* +* The routine glp_del_cols deletes columns from the specified problem +* object. Ordinal numbers of columns to be deleted should be placed in +* locations num[1], ..., num[ncs], where ncs > 0. +* +* Note that deleting columns involves changing ordinal numbers of +* other columns remaining in the problem object. New ordinal numbers +* of the remaining columns are assigned under the assumption that the +* original order of columns is not changed. */ + +void glp_del_cols(glp_prob *lp, int ncs, const int num[]) +{ glp_tree *tree = lp->tree; + GLPCOL *col; + int j, k, n_new; + if (tree != NULL && tree->reason != 0) + xerror("glp_del_cols: operation not allowed\n"); + /* mark columns to be deleted */ + if (!(1 <= ncs && ncs <= lp->n)) + xerror("glp_del_cols: ncs = %d; invalid number of columns\n", + ncs); + for (k = 1; k <= ncs; k++) + { /* take the number of column to be deleted */ + j = num[k]; + /* obtain pointer to j-th column */ + if (!(1 <= j && j <= lp->n)) + xerror("glp_del_cols: num[%d] = %d; column number out of ra" + "nge", k, j); + col = lp->col[j]; + /* check that the column is not marked yet */ + if (col->j == 0) + xerror("glp_del_cols: num[%d] = %d; duplicate column number" + "s not allowed\n", k, j); + /* erase symbolic name assigned to the column */ + glp_set_col_name(lp, j, NULL); + xassert(col->node == NULL); + /* erase corresponding column of the constraint matrix */ + glp_set_mat_col(lp, j, 0, NULL, NULL); + xassert(col->ptr == NULL); + /* mark the column to be deleted */ + col->j = 0; + /* if it is basic, invalidate the basis factorization */ + if (col->stat == GLP_BS) lp->valid = 0; + } + /* delete all marked columns from the column list */ + n_new = 0; + for (j = 1; j <= lp->n; j++) + { /* obtain pointer to j-th column */ + col = lp->col[j]; + /* check if the column is marked */ + if (col->j == 0) + { /* it is marked; delete it */ + dmp_free_atom(lp->pool, col, sizeof(GLPCOL)); + } + else + { /* it is not marked; keep it */ + col->j = ++n_new; + lp->col[col->j] = col; + } + } + /* set new number of columns */ + lp->n = n_new; + /* if the basis header is still valid, adjust it */ + if (lp->valid) + { int m = lp->m; + int *head = lp->head; + for (j = 1; j <= n_new; j++) + { k = lp->col[j]->bind; + if (k != 0) + { xassert(1 <= k && k <= m); + head[k] = m + j; + } + } + } + return; +} + +/*********************************************************************** +* NAME +* +* glp_copy_prob - copy problem object content +* +* SYNOPSIS +* +* void glp_copy_prob(glp_prob *dest, glp_prob *prob, int names); +* +* DESCRIPTION +* +* The routine glp_copy_prob copies the content of the problem object +* prob to the problem object dest. +* +* The parameter names is a flag. If it is non-zero, the routine also +* copies all symbolic names; otherwise, if it is zero, symbolic names +* are not copied. */ + +void glp_copy_prob(glp_prob *dest, glp_prob *prob, int names) +{ glp_tree *tree = dest->tree; + glp_bfcp bfcp; + int i, j, len, *ind; + double *val; + if (tree != NULL && tree->reason != 0) + xerror("glp_copy_prob: operation not allowed\n"); + if (dest == prob) + xerror("glp_copy_prob: copying problem object to itself not al" + "lowed\n"); + if (!(names == GLP_ON || names == GLP_OFF)) + xerror("glp_copy_prob: names = %d; invalid parameter\n", + names); + glp_erase_prob(dest); + if (names && prob->name != NULL) + glp_set_prob_name(dest, prob->name); + if (names && prob->obj != NULL) + glp_set_obj_name(dest, prob->obj); + dest->dir = prob->dir; + dest->c0 = prob->c0; + if (prob->m > 0) + glp_add_rows(dest, prob->m); + if (prob->n > 0) + glp_add_cols(dest, prob->n); + glp_get_bfcp(prob, &bfcp); + glp_set_bfcp(dest, &bfcp); + dest->pbs_stat = prob->pbs_stat; + dest->dbs_stat = prob->dbs_stat; + dest->obj_val = prob->obj_val; + dest->some = prob->some; + dest->ipt_stat = prob->ipt_stat; + dest->ipt_obj = prob->ipt_obj; + dest->mip_stat = prob->mip_stat; + dest->mip_obj = prob->mip_obj; + for (i = 1; i <= prob->m; i++) + { GLPROW *to = dest->row[i]; + GLPROW *from = prob->row[i]; + if (names && from->name != NULL) + glp_set_row_name(dest, i, from->name); + to->type = from->type; + to->lb = from->lb; + to->ub = from->ub; + to->rii = from->rii; + to->stat = from->stat; + to->prim = from->prim; + to->dual = from->dual; + to->pval = from->pval; + to->dval = from->dval; + to->mipx = from->mipx; + } + ind = xcalloc(1+prob->m, sizeof(int)); + val = xcalloc(1+prob->m, sizeof(double)); + for (j = 1; j <= prob->n; j++) + { GLPCOL *to = dest->col[j]; + GLPCOL *from = prob->col[j]; + if (names && from->name != NULL) + glp_set_col_name(dest, j, from->name); + to->kind = from->kind; + to->type = from->type; + to->lb = from->lb; + to->ub = from->ub; + to->coef = from->coef; + len = glp_get_mat_col(prob, j, ind, val); + glp_set_mat_col(dest, j, len, ind, val); + to->sjj = from->sjj; + to->stat = from->stat; + to->prim = from->prim; + to->dual = from->dual; + to->pval = from->pval; + to->dval = from->dval; + to->mipx = from->mipx; + } + xfree(ind); + xfree(val); + return; +} + +/*********************************************************************** +* NAME +* +* glp_erase_prob - erase problem object content +* +* SYNOPSIS +* +* void glp_erase_prob(glp_prob *lp); +* +* DESCRIPTION +* +* The routine glp_erase_prob erases the content of the specified +* problem object. The effect of this operation is the same as if the +* problem object would be deleted with the routine glp_delete_prob and +* then created anew with the routine glp_create_prob, with exception +* that the handle (pointer) to the problem object remains valid. */ + +static void delete_prob(glp_prob *lp); + +void glp_erase_prob(glp_prob *lp) +{ glp_tree *tree = lp->tree; + if (tree != NULL && tree->reason != 0) + xerror("glp_erase_prob: operation not allowed\n"); + delete_prob(lp); + create_prob(lp); + return; +} + +/*********************************************************************** +* NAME +* +* glp_delete_prob - delete problem object +* +* SYNOPSIS +* +* void glp_delete_prob(glp_prob *lp); +* +* DESCRIPTION +* +* The routine glp_delete_prob deletes the specified problem object and +* frees all the memory allocated to it. */ + +static void delete_prob(glp_prob *lp) +{ lp->magic = 0x3F3F3F3F; + dmp_delete_pool(lp->pool); +#if 0 /* 17/XI-2009 */ + xfree(lp->cps); +#else + if (lp->parms != NULL) xfree(lp->parms); +#endif + xassert(lp->tree == NULL); +#if 0 + if (lp->cwa != NULL) xfree(lp->cwa); +#endif + xfree(lp->row); + xfree(lp->col); + if (lp->r_tree != NULL) avl_delete_tree(lp->r_tree); + if (lp->c_tree != NULL) avl_delete_tree(lp->c_tree); + xfree(lp->head); + if (lp->bfcp != NULL) xfree(lp->bfcp); + if (lp->bfd != NULL) bfd_delete_it(lp->bfd); + return; +} + +void glp_delete_prob(glp_prob *lp) +{ glp_tree *tree = lp->tree; + if (tree != NULL && tree->reason != 0) + xerror("glp_delete_prob: operation not allowed\n"); + delete_prob(lp); + xfree(lp); + return; +} + +/* eof */